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Abstract

In space plasma, various effects of magnetic reconnection and turbulence cause the electron 

motion to significantly deviate from their Larmor orbits. Collectively these orbits affect the 

electron velocity distribution function and lead to the appearance of the “non-gyrotropic” elements 

in the pressure tensor. Quantification of this effect has important applications in space and 

laboratory plasma, one of which is tracing the electron diffusion region (EDR) of magnetic 

reconnection in space observations. Three different measures of agyrotropy of pressure tensor have 

previously been proposed, namely, A∅e, Dng and Q. The multitude of contradictory measures has 

caused confusion within the community. We revisit the problem by considering the basic 

properties an agyrotropy measure should have. We show that A∅e, Dng and Q are all defined 

based on the sum of the principle minors (i.e. the rotation invariant I2) of the pressure tensor. We 

discuss in detail the problems of I2-based measures and explain why they may produce ambiguous 

and biased results. We introduce a new measure AG constructed based on the determinant of the 

pressure tensor (i.e. the rotation invariant I3) which does not suffer from the problems of I2-based 

measures. We compare AG with other measures in 2 and 3-dimension particle-in-cell magnetic 

reconnection simulations, and show that AG can effectively trace the EDR of reconnection in both 

Harris and force-free current sheets. On the other hand, A∅e does not show prominent peaks in 

the EDR and part of the separatrix in the force-free reconnection simulations, demonstrating that 

A∅e does not measure all the non-gyrotropic effects in this case, and is not suitable for studying 

magnetic reconnection in more general situations other than Harris sheet reconnection.

I. INTRODUCTION

The pressure tensor in kinetic theory1 is defined as:

Pij = m∫ vi − vi vj − vj f x, v, t dv3, (1)

where vi and vj are the ith and jth components of the velocity of a particle and v represent 

the mean velocity of particles. In fluid dynamics the pressure tensor corresponds to the 

negative of the stress tensor, but the definition of pressure tensor is more general and does 

not depend on the validity of the fluid description of plasma. Pressure tensor is real, 

symmetric, i.e. Pij = Pji, and positive semidefinite. In homogeneous and isotropic plasma, 

pressure tensor becomes Pij = Pδij and is reduced to a scalar. The isotropy can be broken in 

the presence of a magnetic field. The motion of charged particles and hence their 
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macroscopic properties may be very different in directions parallel and perpendicular to the 

magnetic field. In most situations encountered in space and laboratory plasma, charged 

particles are magnetized, i.e., their gyro-radii being much smaller than the variation scale of 

the magnetic field, hence their motion can be approximated by the fast cyclotron motion plus 

a drift. We call such motion Larmor. Magnetized plasma usually relaxes independently in 

directions parallel and perpendicular to the magnetic field, and consequently the velocity 

distribution function assumes an axisymmetric form, i.e. f(v) = f(v‖, v⊥). The pressure tensor 

is also axisymmetric in the geometric representation2, i.e., having one principle axis of the 

pressure tensor aligned with the magnetic field as shown in Fig. 1. The “gyrotropic” pressure 

tensor G with independent P‖ and P⊥ can be written as

G ≡ ℙgyro =
P 0 0
0 P⊥ 0
0 0 P⊥

. (2)

In some important phenomena such as magnetic reconnection in current sheets and 

turbulence, charged particles encounter large spatial variations of magnetic field or fast 

changing external forces, and their orbits become far more complicated3 than the Larmor 

orbits in uniform or quasi-uniform magnetic fields. These particles can transport momentum 

between different directions, the collective motion of particles lead to the breaking the 

axisymmetry or gyrotropy of the distribution function.

The simplest manifestation of gyrotropy breaking in pressure tensor is when the 

perpendicular part of the pressure breaks axisymmetry, but one principle axis of the pressure 

tensor remains along the magnetic field, thus ℙ can be written as:

ℙagyro =
P 0 0
0 P ⊥ 1 0
0 0 P ⊥ 2

, (3)

where P⊥1 ≠ P⊥2 and the description of pressure tensor needs three independent parameters. 

In general the non-Larmor motion of particles can lead the non-diagonal elements of 

pressure in Eq. (3) to become non-zero, and in geometric terms none of principle axes are 

aligned with the magnetic field:

ℙagyro =
P P12 P13
P12 P ⊥ 1 P23
P13 P23 P ⊥ 2

. (4)

Non-Larmor motion of charged particles can occur in regions with strong inhomogeneity 

and large shear. A simple example can be found around current density peaks in thin current 

sheets where the magnetic field reverses its direction5. In this type of current sheet the 

magnetic shear is large while the field is weak, a condition that causes the electrons to 

demagnetize and their orbits are characterized by the so called meandering motion. In an 
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unperturbed (static) current layer with magnetic field configuration shown in Fig. 2, the 

components of the non-relativistic canonical momentum p of an electron are:

px = mvx, py = mvy, pz = mvz − e
c Az y , (5)

with A being the magnetic vector potential, and the Hamiltonian is 

H = px2 + py2 + pz + eAz/c 2 /2m. The energy of the electron is conserved. The Hamiltonian 

equations ∂pi/∂t = −∂H/∂xi = 0 imply that in a static anti-parallel magnetic field, each 

component of canonical momentum is also conserved. As electrons move near or cross the 

magnetic null, the sharp change of magnetic field Bx = ∂yAz(y) leads to inhomogeneous drift 

and meandering motion of particles in the yz directions6. A consequence of the conservation 

of canonical momentum and energy is that the change in magnetic momentum is 

redistributed between the kinetic momentum mvy and mvz. Collectively the effect causes the 

electron velocity distribution function to deviate from Maxwellian in directions 

perpendicular to the magnetic field. The consequence is the nondiagnal elements of the 

pressure tensor in a field-aligned frame generally become nonzero or the perpendicular 

elements becomes unequal. An initially gyrotropic pressure tensor eventually becomes

ℙ =
P 0 0
0 P ⊥ 1 P23
0 P23 P ⊥ 2

(6)

in any field aligned coordinate except in the eigenvector aligned frame, i.e., a frame 

determined by the magnetic field and the current sheet normal, where the pressure tensor 

become diagonalized to the form shown in Eq. (3). It should be noted that the commonly 

used Harris solution7 of Vlasov equation is obtained under the assumption of global 

isotropic pressure despite the existence of local meandering motions near the null region. If 

an out-of-plane electric field exists, the chaotic motions of electrons around null-point 

become more complex and can produce dramatic non-gyrotropic effects which play an 

important role in magnetic reconnection4,8.

In magnetic reconnection, the situation is more complex than in current sheets associated 

with anti-parallel magnetic fields. First, the topological change of the magnetic field can 

break the 2D anti-parallel magnetic field configuration which produces sharply curved field 

lines and reconnection electric field. In component reconnection, the magnetic field is 3D. 

The magnetic vector potential is no longer dependent only on the two spatial coordinates 

perpendicular to the magnetic field. Consequently the Hamiltonian of particles also become 

functions of all canonical coordinates and no component of canonical momentum is 

guaranteed to conserve, i.e., ∂pi/∂t = 09,10. More importantly, the motion of particles around 

the reconnection x-line can become stochastic11–14. Such stochastic motion causes diffusion 

in the velocity space and allows the particles to transfer kinetic momentum between different 

directions and build up correlations between all velocity components15. On the other hand, 

kinetic instabilities are common in magnetic reconnection and these instabilities can also 

produce anisotropic heating and scattering. Electron-scale magnetic reconnection 
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configurations can be produced in turbulence due to anomalous dissipation of magnetic 

energy16. Considering all these complexities, in magnetic reconnection the non-diagonal 

elements of the pressure tensor in the field-aligned frames are usually non-zero as shown in 

Eq. (4), and the principle axis of the pressure tensor also is generally not aligned with 

magnetic field.

In space physics, the interest in the non-Larmor effects on pressure tensor originated from an 

early argument made by Vasyliunas6 that the gradient of non-gyrotropic part of the electron 

pressure tensor is essential in supporting the reconnection electric field in 2D static 

collisionless magnetic reconnection. This effect has since been demonstrated in many Harris 

sheet magnetic reconnection simulations17–21. It was then suggested22,23 that this effect may 

be used to “illuminate” the electron diffusion region (EDR) of magnetic reconnection in in-
situ observations of the magnetosphere, given that other indicators of the EDR are not 

ubiquitous. In nature, magnetic reconnections generally are not 2D and static, and the 

pressure gradient is not necessarily the only or the dominant term in the Ohm’s law that 

supports the reconnection electric field. Nevertheless, the singular magnetic field 

configuration at the vicinity of the x-line is sufficient to produces significant amount of non-

Larmor electrons in the EDR3,11–13. Therefore, the effect of the non-Larmor electrons on the 

pressure tensor should be significant in most of the reconnection events, not just in 2D 

simulations, and should be a useful indicator of the EDR.

In practice, quantification of the non-Larmor effect provides a useful parameter for detection 

of crossings of the EDR in the time sequence data obtained by space probes, e.g. the recently 

launched Magnetospheric Multiscale Science (MMS)24. While the electron velocity 

distribution functions carry detailed information of the statistical properties of the electrons, 

a quantification of the effects of agyrotropy on the pressure tensor allows easy comparison 

of observations at different locations and time from space instruments. Such a quantity is 

particularly convenient when searching for magnetic reconnection EDRs in large 

observation datasets, or conducting correlation analysis of pressure tensor and other 

thermodynamic or electromagnetic properties of plasma.

Several measures of agyrotropy of pressure tensor have previously been proposed. An early 

proposal22 defines agyrotropy as the relative difference of the two eigenvalues of the 

perpendicular sub-matrix of the pressure tensor in the field aligned coordinate, i.e. 

A∅e ≡ |P ′ ⊥ 1 − P ′ ⊥ 2 | / P ′ ⊥ 1 + P ′ ⊥ 2  (We ignored the factor of 2 in the original 

definition.) . In other words, after a rotation around the magnetic field ℝTℙℝ , here ℝ is the 

2D space rotation matrix, the pressure tensor in Eq.(4) becomes

ℙ =
P ′ P12′ P13′

P ′12 P ⊥ 1′ 0
P13′ 0 P ⊥ 2′

, (7)

where ′ represents the new values after the rotation. The definition A∅e is criticized for not 

accounting for the contribution from all the non-diagonal components of the pressure 

tensor25. A∅e is clearly defined assuming the deformation of electron orbits only occurs in 
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the perpendicular directions and the momentum transport is constrained to the perpendicular 

plane (which is not generally the case). In this particular situation the pressure tensor is 

always field aligned and the definition of agyrotropy as A∅e is an intuitive choice. In 

situations where the deformations of the electron orbits are not confined to the perpendicular 

directions, as demonstrated in magnetic reconnection simulations3,11–13, A∅e clearly misses 

contributions from orbit distortions that are not confined to the perpendicular plane. To make 

A∅e useful, the proponents of A∅e have to hope that the distortion of electron orbits in the 

perpendicular plane always dominates so that A∅e can still be used as a biased tracer of the 

EDR. This is a falsifiable proposition, and all we need is an example to show that non-

gyrotropic effect can be strong but A∅e is small, as we will do in § IID.

Albeit different measures have been proposed, it is generally agreed that agyrotropy is a 

scalar that quantifies the departure of the pressure tensor from axisymmetry about the local 

magnetic field. Mathematically, any pressure tensor ℙ can be written in the following form 

in the field-aligned coordinate:

ℙ =
P Pa Pb
Pa P⊥ Pc
Pb Pc P⊥

. (8)

this pressure tensor can be uniquely decomposed into a gyrotropic part G in the form of Eq. 

(2) and a nongyrotropic part ℕ

ℕ =
0 Pa Pb

Pa 0 Pc
Pb Pc 0

, (9)

such that ℙ = G + ℕ.

Using this decomposition, Aunai et. al.25 proposed an agyrotropy measure

Dng ≡
2 ∑i, jNij

2

tr ℙ =
8 Pa

2 + Pb
2 + Pc

2 1/2

P + 2P⊥
. (10)

An alternative is proposed by Swisdak26 as:

Q ≡ Pa
2 + Pb

2 + Pc
2

P⊥
2 + 2P P⊥

. (11)

Ignoring the numeric factor, the numerator of Dng
2  and Q are the same, but in Dng the 

denominator is the trace of the pressure tensor while in Q it is a quadratic function of the 

diagonal elements.
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The contradicting definitions of non-gyrotropy/agyrotrpy measure has caused confusion and 

naturally raised the question of how arbitrary one can define agyrotropy: should the freedom 

of choice limited by some physical and mathematical principles? What is a good measure of 

agyrotropy? These are the issues we intend to address in this paper. While this study is 

motivated by in situ observations of the magnetic reconnection in the magnetosphere, the 

subject has much broader applications in plasma physics, such as turbulence in which 

microscopic reconnection is thought to be important. It is not the purpose of this paper to 

discuss if a certain method may work in specific observations or conditions.

We first consider the basic properties a good measure of agyrotropy should have, and based 

on these considerations we propose a new independent non-gyrotropic measure AG. We then 

examine AG and re-examine the non-gyrotropic measures previously proposed, namely, 

A∅e, Dng, and Q in cases of different magnetic field alignments. We find that only AG is 

well-behaved in all these cases. As a demonstration of the method, we examine and compare 

AG, Q, Dng and A∅e in particle-in-cell simulations of magnetic reconnection. Space 

observations have shown that turbulence is very important in magnetic reconnection27–29, 

but its influence on agyrotropy has not been investigated previously. We analyze both 

turbulent and non-turbulent magnetic reconnection simulations with both force-free and 

Harris current sheets. We find that A∅e can not properly trace the EDR and turbulent current 

broadening effect in force-free magnetic reconnection.

II. MEASURING AGYROTROPY

A. Basic Considerations

Measurement of any quantity generally involves comparison with some precisely defined 

unit value of the quantity. The definition should be unique and reflect the property 

investigated. Applying these basic principles to agyrotropy – a derived quantity from 

pressure tensor, we must first define a quantity that describes gyrotropy, then the departure 

from this quantity is the measure of agyrotropy.

We hence consider the following basic requirements for a scalar measure of agyrotropy in 

pressure: (a) The gyrotropic pressure should be uniquely defined for any given pressure 

tensor. Since the decomposition of ℙ into G and ℕ is unique25, G is the unique gyrotropic 

tensor associated with ℙ; (b) The function that maps G to a scalar, i.e., F G  should be the 

same function that operates on ℙ so that F ℙ − F G  measures the departure from gyrotropy; 

Note that F is not required to be a linear function of pressure tensor, and in general 

F ℕ = F ℙ − G ≠ F ℙ − F G . (c) Because gyrotropy G depends on the direction of local 

magnetic field, the scalar agyrotropy measure should reflect this dependence; (d) While the 

representation of pressure tensor ℙ depends on the choice of orthogonal coordinate base 

x1, x2, x3 , i.e. Pij = xi · ℙ · xj, where i, j = 1,2,3, the scalar function F should not depend on 

a specific coordinate system in which P and G are measured, so that the agyrotropy measure 

is coordinate independent. The obvious choices for such scalar operators that satisfies (b) in 

any coordinate are invariants under spatial rotation.

Based on these basic considerations, we can construct a scalar measure of agyrotropy. The 

simplest way to define a coordinate independent scalar operator is to use the rotational 
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invariants of pressure tensor ℙ. Mathematically there are only three such invariants: the trace 

I1, the sum of principle minors I2, and the determinant I3, i.e.,

I1 ℙ = tr ℙ , (12)

I2 ℙ = 1
2 tr ℙ 2 − tr ℙ2 , (13)

I3 ℙ = det ℙ . (14)

It is obvious that I1 alone cannot be used to construct an agyrotropy measure since 

tr ℙ = tr G  does not satisfy (a)–(c). I2, I3 are two possible independent choices. We first 

introduce a new agyrotropic measure AG based on I3, and then revisit the previously defined 

agyrotropy measures A∅e, Dng and Q and compare them with AG.

B. A New Measure of agyrotropy

From the discussions above we see that it is possible to define a measure of agyrotropy 

based on the invariant I3. By definition G depends on the local magnetic field, and 

det ℙ − det G  obviously satisfies (c) and (d). In addition, G is also unique in that it has the 

largest determinant among pressure tensors with the same diagonal elements. This is 

because:

det ℙ − det G
= − P Pc

2 − Pa
2 + Pb

2 P⊥ + 2PaPbPc,
= − P Pc

2 − Pa
2 + Pb

2 P⊥ + det ℕ ,
= − P Pc

2 − Pa + Pb
2 P⊥ − Pc /2 − Pb − Pa

2 P⊥ + Pc /2,

(15)

where we used the pressure tensor defined in Eq. (8). Since the principle minor of positive 

semidefinite ℙ requires P⊥ ≥ Pc, the departure det ℙ − det G ≤ 0 .

In theory the absolute departure det ℙ − det G  is sufficient to describe agyrotropy for a 

specific ℙ. In practice we need to compare agyrotropy for different ℙ at different locations, 

or with simulations, and a measure of relative rather than the absolute departure is more 

useful. It is also desirable to have the relative agyrotropy to have values between 0 and 1. 

Thus we define the normalized agyrotropy as

AG = det ℙ − det G
det ℙ + det G

=
4det ℙ − P tr ℙ − P 2

4det ℙ + P tr ℙ − P 2 .
(16)

When one principle axis of ℙ is along the local magnetic field and det ℙ = det G , then ℙ is 

gyrotropic, and AG = 0. When none the principle axes of ℙ is aligned with the local 
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magnetic field, and the eigenvalues are small, then det ℙ ≪ det G , AG → 1. An example is 

given by Swisdak26 for extreme agyrotropy limit when the principle axis is not aligned with 

magnetic field (with one or two eigenvalues being 0)

ℙ =
x x x
x 1 1
x 1 1

, (17)

with x > 0. The eigenvalues are 0,0 and x + 2. In this case det ℙ = 0 and the agyrotropy 

measure AG = 1.

When the pressure is field aligned, i.e, with one principle axis aligned with the magnetic 

field and the pressure tensor is in the form of Eq. (3), agyrotropy should depend only on the 

perpendicular components of the pressure because the deformation of electron orbits in such 

cases occur only in the perpendicular plane, limiting the momentum transport in 

perpendicular directions. Indeed, in this case, AG becomes

AG = P ⊥ 1 − P ⊥ 2
2

P ⊥ 1 + P ⊥ 2
2 + 4P ⊥ 1P ⊥ 2

, (18)

which is independent of P‖.

In practice, we can also normalize agyrotropy to the range of [0,∞). In this case, agyrotropy 

can be defined as

AG′ ≡ 1 − det G /det ℙ (19)

where det G = P tr ℙ − P 2/4 . For extreme agyrotropy, AG′ = ∞ due to det ℙ = 0. For 

gyrotropy, ℙ = G and AG′ = 0. If the Pressure has a principle axis aligned with the magnetic 

field, then AG′ = (P⊥1 − P⊥2)2/(P⊥1P⊥2), also independent of P‖.

C. Revisiting Q, Dng and A∅e

As we have discussed in the preceding section, the invariant I2 ℙ = tr ℙ 2 − tr ℙ2 /2 may 

also be used to define a measure of agyrotropy thus that the absolute departure from 

gyrotropy is I2 ℙ − I2 G . It is easy to show

I2 ℙ − I2 G
= − 1

2 tr ℙ2 − tr G2

= I2 ℕ
= −Pa

2 − Pb
2 − Pc

2

= Pa
2 + Pb

2 + Pc
2,

(20)

where we used tr ℙ = tr G  and tr Gℕ = tr ℕG = 0. The absolute departure defined in Eq.

(20) is a monotonic function of Pa, Pb and Pc. One way to normalize this measure is simply 

to divide the absolute departure by the sum of I2 ℙ  and I2 G . Since 
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I2 ℙ − I2 G / I2 ℙ + I2 G = − I2 ℕ / I2 ℕ + 2I2 G , the ratio is zero, i.e. gyrotropy, if 

I2 ℕ = 0. If I2 ℕ ≠ 0, for extreme agyrotropy limit shown in Eq. (17), the maximum of the 

ratio is 1/3, therefore a factor of 3 is needed to “scale” this definition to [0, 1]. Another way 

to normalize I2 ℕ  is dividing it by I2 G , which yields the agyrotropy measure Q first 

proposed by Swisdak26:

Q =
I2 ℙ − I2 G

I2 G = −
−I2 ℕ
I2 G =

Pa2 + Pb
2 + Pc2

P⊥
2 + 2P P⊥

,

where I2 G = 1
2 tr G 2 − tr G2 = P⊥

2 + 2P P⊥. Since the principle minors of positive 

semidefinite ℙ requires I2 ℕ ≤ I2 G , we have Q ≤ 1. Replacing P⊥ by tr ℙ − P /2 in 

I2 G , we obtain I2 G = tr ℙ − P tr ℙ + 3P /4, and hence the expression in Swisdak 

(2016)26:

Q = 1 − 4I2 ℙ
tr ℙ − P tr ℙ + 3P . (21)

Thus we have shown that Q is in fact a I2-based measure.

When the pressure is field aligned, Q becomes

Q = P ⊥ 1 − P ⊥ 2 2/ P ⊥ 1 + P ⊥ 2 4P + P ⊥ 1 + P ⊥ 2 ,

which is dependent on P‖, a property that is not desirable. When P‖ ≫ P⊥, Q → 0 regardless 

of the value of P⊥1/P⊥2. This causes ambiguity, particularly between extreme agyrotropy 

where P⊥1/P⊥2 ≈ 0 or P⊥2/P⊥1 ≈ 0, and gyrotropy. We find this to be a generic problem for 

the relative agyrotropy measures defined by I2 since in the numerator I2 ℙ − I2 G  is 

independent of P‖, while the denominators – I2 ℙ  or I2 G  or their combinations, are all 

dependent on P‖. Since P‖ in general is not constant and varies with location, the spatial 

scaling of Q is consequently not uniform in space. In Fig. 3 different agyrotropy measures of 

field aligned pressure tensors are shown as functions of P⊥1/P⊥2 between 0 to 1. While A∅e 

and AG have the correct value of 1 for extreme agyrotropy, i.e, P⊥1/P⊥2 = 0, Q and Dng 

clearly decrease with the value of P‖/P⊥, and in both cases shown they are much smaller than 

1. Let P⊥1 = 0, P⊥2 = x and P‖ = αx, where x > 0 and α > 1, we have Q(P⊥1/P⊥2 = 0) = 

0.25/α. When α ≫ 1, we have Q → 0. This completely mixes up agyrotropy with gyrotropy.

Now we look at Dng. From the definition Dng = 2 ∑ijℕij
2 1/2/tr ℙ  , we have 

Dng = 8I2 ℕ 1/2/tr ℙ  given that ∑ijℕij
2 = 2I2 ℕ . It is clear that Dng is also I2 based like Q, 

except that it is normalized by tr ℙ = I1 ℙ . By this definition Dng is not strictly a measure 

of relative departure from gyrotropy. Similar to Q (see Fig.3), Dng also depends on P‖ when 

the pressure is field aligned, i.e.,
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Dng = P ⊥ 1 − P ⊥ 2
2

P ⊥ 1 + P ⊥ 2 P + P ⊥ 1 + P ⊥ 2
, (22)

causing unwanted ambiguity. Using I1 as normalization in fact also cause problem in cases 

when the pressure tensor is not field aligned. To illustrate this point, let us consider the 

maximum value of Dng. Since ℙ being positive semidefinite requires I2 ℕ ≤ I2 G, , we have 

Dng ≤ 8I2 G 1/2/tr G . We can see that instead of being a constant, the maximum value of 

Dng is a function of P‖ and P⊥, but these two values are spatial functions. This means the 

scaling of Dng at different locations is not uniform and is also a spatial function, rendering it 

difficult to have meaningful comparison of agyrotropic effect at different locations when the 

magnetic field and plasma are nonuniform.

A∅e is defined in a special coordinate formed by the local magnetic field and the two 

eigenvectors of the perpendicular part of the pressure tensor, and the measure is independent 

of P ′12 and P ′13 in Eq. (7). According to the definition of A∅e, tensor

ℙs =
P Pa Pb
Pa P⊥ 0
Pb 0 P⊥

(23)

is gyrotropic, i.e. A∅e = 0. In other words, gyrotropy corresponds to an infinite set (or 

equivalent class) of tensors with the same diagonal elements, thus the definition contradicts 

the commonly accepted notion of gyrotropy tensor. In the geometrical representation of the 

pressure tensor ℙs (with Pa ≠ 0 and Pb ≠ 0) corresponds to an ellipsoid whose principle axes 

tip away from the magnetic field, as shown in Fig. 4. Such pressure tensors are clearly non-

gyrotropic. A∅e = 0 simply defines a class of pressure ellipsoids whose cross sections 

perpendicular to the magnetic field are circular. Thus the definition of A∅e can not 

distinguish agyrotropic ℙs from real gyrotropic G.

We further examine the condition for A∅e = 0 to approximately correspond to gyrotropy. 

Without losing generality, we assume the principle axes of the pressure ellipse ℙs only tip 

away from the magnetic field in the xy-plane in the magnetic field-aligned coordinate as 

shown in Fig. 4. Then the axes of the ellipsoid can be found as

Ps, x = 1
2[ P + P⊥ + P − P⊥

2 + 4 Pa2 + Pb
2 ],

Ps, y = 1
2[ P + P⊥ − P − P⊥

2 + 4 Pa2 + Pb
2 ],

Ps, z = P⊥ .

We can see that only when 4 Pa
2 + Pb

2 ≪ P − P⊥
2 for |P‖ – P⊥| ≫ 0, or 

4 Pa
2 + Pb

2 ≪ P + P⊥
2 for P‖ ~ P⊥, ℙs reduces to the usual gyrotropic tensor. However, 

satisfying these conditions are not guaranteed in processes such as magnetic reconnection; 
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and in such cases A∅e = 0 does not define gyrotropy correctly and would miss important 

contributions from electrons whose orbits are not deformed only in the perpendicular plane. 

Thus A∅e in general is not a good agyrotropic measure.

The definition of A∅e is not constructed with any of the three rotational invariants in mind, 

and is more intuitive than other measures that applies to unconstrained pressure tensors. 

However, it is easy to show that A∅e is actually an I2-based construction. In fact, the I2-

based agyrotropy measure Q is reduced to A∅e (ignoring the factor of 2 from the original 

definition) when P‖ = 0. In other words, A∅e is a degenerate case of Q when P‖ can be 

ignored.

D. Comparison of AG, Q, Dng and A∅e in Simulations of Magnetic Reconnection

In this section we analyze three particle-in-cell (PIC) simulations performed with the p3d 
code30 to compare how well AG, Q, Dng and A∅e can track or “illuminate” electron 

diffusion structures of magnetic reconnection. We demonstrate in these simulations that AG 
is a robust indicator of the EDR. Q and Dng also appear to track the EDR reasonably well, 

because while Q and Dng are biased measures of agyrotropy, they only fail catastrophically 

under extreme conditions that are not met in these simulations. On the other hand, A∅e 

peaks well outside the EDR in both 2D and 3D force-free magnetic reconnection 

simulations, thus the simulations provide a concrete example to show that A∅e should not 

be used as an EDR indicator as it was originally intended.

Comparisons of different agyrotropy measures using magnetic reconnection simulations 

with Harris current sheet has been made previously26. In the following we only use a 2D 

Harris current sheet reconnection simulation to demonstrate the performance of AG. The 

domain size of the simulation is 16di × 8di, where di = c/ωpi,0 is the ion inertial length, and 

ωpi,0 = (4πn0e2/mi)1/2. In Fig 5, we show AG and Q in the Harris current sheet reconnection. 

It is not surprising that both measures trace the EDR in a similar fashion. The value of Q is 

smaller than AG due to the effect of P‖ which we found to be larger than the perpendicular 

components of the pressure tensor. In Fig. 6, A∅e behaves similarly to AG1/3 (We compare 

AG1/3 with A∅e because the two quantities have similar values in Harris current sheet thus 

offer better visual comparison). In the previous studies, it is found that A∅e behaves 

similarly to Q1/2 in Harris current sheet magnetic reconnection simulations with or without 

guide field26. This is because Harris current sheet reconnection is essentially a 2D 

configuration even with a uniform guide magnetic field, and in non-turbulent Harris current 

sheet reconnection A∅e can behave relatively well in tracing current sheet and diffusion 

regions26. Dng also can track these structures.

The initializations of the pair of force-free current sheet reconnection simulations are the 

same except that one is in 2D while the other in 3D. In the 3D simulation, strong turbulence 

around the x-line develops at the late stage due to the nonlinear growth of Buneman 

instability, while in the 2D simulation turbulence cannot develop because the Buneman 

instability only grows in the direction perpendicular to the reconnection plane. The domain 

size for the 2D simulation is 4di × 2di while the 3D simulation domain is 4di × 2di × 8di. 

The simulation time is presented in the unit of ion cyclotron time Ωi0
−1 = mic/eB0, and n0 and 
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B0 are the asymptotic density and magnetic field. The guide field is Bg = 5B0. Both 

simulations have total simulation time Ωi0t = 4. The small box simulations can demonstrate 

clearly the structure of the EDR. The detailed analysis of these simulations can be found in 

previous publications31,32.

Force-free current sheet reconnection intrinsically is a 3D configuration in which 

nonuniform guide magnetic field is the largest at the current sheet. Moreover, turbulence can 

also cause more complex non-Larmor electron orbits. Whether the measurement can catch 

the turbulence effects is an important factor to evaluate the robustness of the method to 

measure agyrotropy. In Fig.7, the out of plane electron current density jez at Ωi0t = 4 from 

both the 2D and 3D magnetic reconnection simulations are shown. The current sheet in the 

3D magnetic reconnection is much broader than that in the 2D magnetic reconnection due to 

the turbulence scattering32. We also show both AG and Q in the 2D and 3D simulations in 

Fig. 7. The values of Q and AG are relatively small and Q behaves very similarly to AG. 

Both AG and Q reach their maxima around the x-line and show two peaks. In the 2D 

simulation, the EDR is short in the x-direction and is very narrow with dimensions Δx × Δy 
≈ 0.5di × 0.1di. In the 3D simulation, the EDR becomes longer and broader with Δx × Δy ≈ 
1di × 0.5di.

In Fig. 8, Dng appear similar to AG1/3 as expected. On the other hand, A∅e peaks well 

outside the EDR, thus clearly misses the EDR and part of the separatrix in both 2D and 3D 

force-free reconnection simulations. This makes A∅e an ineffective indicator of the EDR.

In 3D force-free simulation, turbulence broadens the EDR and the current sheet. The effect 

is traced by AG in Fig. 8, demonstrating agyrotropy can be used to trace turbulence in 

reconnection. Turbulence broadening and the enhancement of the current sheet are 

fundamentally important in magnetic reconnection because they could play important roles 

in fast magnetic reconnection16,32. Using agyrotropy measure to diagnose turbulence has 

several advantages: 1) the dimensionless measurements can be compared directly between 

observations and simulations; 2) The stochastic motion of particles is directly associated 

with turbulence and thus the agyrotropy measurement is a useful indicator of turbulence 

effects. If we combine the agyrotropy measurement with magnetic field and other physical 

quantities, we may better diagnose the role of turbulence in magnetic reconnection.

III. CONCLUDING REMARKS

Various physical processes in magnetic reconnection and plasma turbulence cause the 

electron orbits to significantly deviate from the usual guiding center behavior, leading to 

agyrotropy of their velocity distribution function. Quantification of agyrotropy effect on the 

pressure tensor has important applications in space and plasma physics. For example such 

measures are used to study the EDR in magnetic reconnections and in current sheets. 

However, the multitude of existing measures causes confusion and raises the question of 

how good these measures are, how many ways agyrotropy can be defined, and what is the 

best way to measure agyrotropy. In this paper we have attempted to answer these questions.
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After considering the basic properties an agyrotropy measure should have, we show that the 

simplest way to measure agyrotropy is to use the rotational invariants of the pressure tensor. 

We have ruled out any measure based on the trace of pressure tensor I1. We found that all 

three previously defined agyrotropy measures are constructed based on I2 – the sum of the 

principle minors. We show that for field-aligned pressure tensor, all the I2-based measures 

except for A∅e are dependent on P‖, which is unphysical, and the dependence causes bias 

and ambiguity between extreme agyrotropy and gyrotropy. In addition, the normalization of 

Dng causes its scaling to depend on the local magnetic field and plasma properties, 

regardless of whether the pressure is field-aligned. A∅e is found to be the degenerate case of 

Q when P‖ = 0. However, instead of having a unique gyrotropic tensor for given parallel and 

perpendicular components, A∅e = 0 defines a family of tensors, most of which are not 

gyrotropic. This leads to the measurement of the departure from gyrotropy uncertain in 3D 

problems where pressure tensors are generally not field aligned. In addition, the definition in 

general does not account for all the effects of agyrotropy on the pressure tensor.

We introduce a new independent agyrotropy measure AG, which is defined based on I3. We 

show the properties of AG as well as those of other I2-based agyrotropic measures in Table I 

and AG clearly compares favorably. In this study we have examined the possible measures 

of the departure from gyrotropy based on all the rotation invariant operators of the pressure 

tensor. Our study has eliminated both I1 and I2-based measures, leaving us with the only I3-

based measure AG.

Using PIC magnetic reconnection simulations, we demonstrate that AG traces the EDRs and 

separatrices in reconnections in both Harris and force-free current sheets. Both Q and Dng 

also show their highest values in the EDR. While AG, Q, and Dng agree qualitatively in these 

simulations, we must emphasize that the non-uniform scaling of Q and Dng makes 

quantitative analysis difficult. In space observations the magnetic field and plasma are highly 

nonuniform, to use agyrotropy quantitatively in analysis of data, a uniform scaling is 

essential. On the other hand, while A∅e can trace the EDR in Harris reconnection, it fails to 

trace the EDR and part of the separatrix in force-free reconnection simulations. This 

demonstrates the fundamental difference between the electron dynamics in Harris and force-

free current sheets. These simulations highlight the importance of accounting for all effects 

of electron agyrotropy on the pressure tensor when defining a measure.
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FIG. 1. 
The ellipsoid of a gyrotropic pressure tensor in its principle coordinate with one axis parallel 

to the local magnetic field. The lengths of the three axes of the ellipsoid are 1/ P , 1/ P⊥
and 1/ P⊥ .
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FIG. 2. 
An Illustration of current sheet.
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FIG. 3. 
agyrotropy measures as a function of P⊥1/P⊥2 when one principle axis of ℙ is aligned with 

magnetic field. AG (black solid line) and A∅e (red solid line) are independent of P‖ while Q 
and Dng show strong dependence on P‖.
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FIG. 4. 
The ellipsoid of agyrotropic pressure tensor in a magnetic field aligned coordinate showing 

the principle axes of the ellipsoid tipping away from the magnetic field. Since the two 

perpendicular pressure component are equal, this tensor is considered under the definition 

A∅e.
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FIG. 5. 
AG and Q in Harris current sheet magnetic reconnection. Both have values significantly 

higher in the EDR than elsewhere, but the values of Q are generally smaller than AG.
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FIG. 6. 
AG1/3 and A∅e in Harris current sheet magnetic reconnection. Both quantities clearly 

illuminate the EDR.
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FIG. 7. 
Electron currents and agyrotropy measures in the 2D and 3D simulations of force-free 

magnetic reconnection with a strong guide field (§IID). Top panels: the out-of-plane current 

density jez at Ωi0t = 4. Bottom panels: AG and Q at Ωi0t = 4.
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FIG. 8. 
A∅e, Dng and AG1/3 in force-free reconnection simulations.
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TABLE I.

Comparison of Different agyrotropy Measures

AG Q Dng A∅e

Rotation Invariant I3 I2 I2 I2

Unique Gyrotropy Defined Y Y Y N

Field aligned measure independant of P‖ Y N N Y

Uniform Scaling Y N
a N Y

Trace EDR in Harris reconnection Y Y Y Y

Trace EDR in Force-free reconnection Y Y Y N

a
The scaling depends on P‖ when the tensor is field aligned.
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