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Abstract

We evaluate the impact of Gravity Recovery and Climate Experiment data assimilation (GRACE-

DA) on seasonal hydrological forecast initialization over the U.S., focusing on groundwater 

storage. GRACE-based terrestrial water storage (TWS) estimates are assimilated into a land 

surface model for the 2003-2016 period. Three-month hindcast (i.e., forecast of past events) 

simulations are initialized using states from the reference (no data assimilation) and GRACE-DA 

runs. Differences between the two initial hydrological condition (IHC) sets are evaluated for two 

forecast techniques at 305 wells where depth-to-water-table measurements are available. Results 

show that using GRACE-DA-based IHC improves seasonal groundwater forecast performance in 

terms of both RMSE and correlation. While most regions show improvement, degradation is 

common in the High Plains, where withdrawals for irrigation practices affect groundwater 

variability more strongly than the weather variability, which demonstrates the need for simulating 

such activities. These findings contribute to recent efforts towards an improved U.S. drought 

monitor and forecast system.

1. Introduction

In the past decade, the U.S. has faced a number of severe droughts (e.g., Famiglietti and 

Rodell, 2013), affecting many sectors, such as agriculture, ecosystem services, energy, 

human health, and water resources, and costing the country’s economy billions of dollars per 

year (NCDC, 2014). Drought is a recurrent climatic feature whose impacts are anticipated to 

worsen both in the U.S. and globally as a result of climate change and population increase. 

The Gravity Recovery and Climate Experiment (GRACE) mission (Tapley et al., 2004) 

enabled satellite-based monitoring of global water storage trends and extreme events, giving 

the scientific community unprecedented insights into terrestrial water storage (TWS) 

variations around the world (Rodell et al., 2018). GRACE-based TWS estimates have been 
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used in many drought-related studies worldwide (e.g. Long et al., 2013; Thomas et al., 2014; 

Getirana, 2016), which have shown it to be capable of detecting water storage deficits and 

trends related to drought and human consumption (e.g. Girotto et al., 2017). Recent studies 

using GRACE data have proven that assimilating GRACE-based TWS into land surface 

models (LSMs) has an important and lasting impact on modeled state and flux variables (e.g. 

Girotto et al., 2016; Kumar et al., 2016), while GRACE data themselves are enhanced 

through synthesis with high resolution meteorological data constrained by LSM physics 

(Zaitchik et al., 2008). In terms of extreme events, GRACE data assimilation (DA) has been 

shown to improve identification of droughts in parts of North America (Houborg et al., 

2012; Kumar et al., 2016), Europe (Li et al., 2012), Asia (Girotto et al., 2017) and globally 

(Li et al., 2019). Such studies demonstrated that GRACE-DA improves the simulations of 

water storage variability, in particular, groundwater.

A series of major drought events in the U.S. in the early 2000s made the development of an 

integrated drought early warning system for the U.S. a high priority (NIDIS, 2004). The 

flagship product of that effort, the U.S. Drought Monitor (USDM; Svoboda et al., 2002), has 

become the nation’s premier drought monitoring tool. However, the development of 

operational drought forecasts has been very limited. Notable exceptions are the NOAA 

Climate Prediction Center’s (CPC) U.S. Seasonal and Monthly Drought Outlooks, which are 

based on precipitation and temperature outlooks and modeled soil moisture. While these are 

a good start towards a national drought early warning system, the outlooks are unable to 

forecast groundwater storage (GWS) and deep soil moisture, which is a serious shortcoming, 

considering the importance of those resources for people, plants, and ecosystems and their 

value as indicators of drought (van Lanen and Peters, 2000; Thomas et al., 2014).

Numerous studies have explored the impact of initial hydrological conditions (IHCs) on 

seasonal forecasts (e.g. Shukla and Lettenmaier, 2011; Li et al., 2009). They have shown that 

IHC uncertainties generally outweigh forcing uncertainties thus dominating forecast errors 

up to about 1-month lead time. In a recent study, Wanders et al. (2019) showed that IHCs, in 

particular groundwater, can explain at least half of the variance in hydrological forecasts at 

lead times of up to three months. At longer lead times, forcing uncertainties become a more 

important contributor. Because deep soil moisture and GWS slowly change in response to 

meteorological conditions due to their substantial “memory”, they have great potential to 

inform seasonal predictions. Recognizing this potential, and building upon recent GRACE-

DA applications to improve our understanding of physical processes related to water storage 

variability, as well as studies showing the importance of IHC for seasonal forecasts, the goal 

of this study is to evaluate that potential by assessing the impact of GRACE-DA on seasonal 

drought forecasts over the contiguous U.S. (CONUS). Our hypothesis is that assimilating 

GRACE into an offline LSM (i.e., not coupled to the atmosphere) results in more accurate 

water storage states, in particular deep soil moisture and groundwater, as represented in an 

LSM, and that these assimilated states will then improve the IHC of seasonal drought 

forecast simulations with the same model. In order to test our hypothesis, we assimilate 

GRACE-based TWS into an LSM, then use the updated states derived from GRACE-DA as 

the IHC for seasonal drought hindcasts (i.e. forecasts of past events, or historical forecasts) 

up to 90 lead days in the future using near surface meteorological data from two different 

established seasonal forecasting techniques. Hindcasts are evaluated in terms of 
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improvement to forecasted groundwater, when compared with those initialized by the 

reference simulation, also called the open loop, or OL, simulation (i.e., no perturbation or 

assimilation applied).

2. Data and methods

GRACE-based TWS is assimilated into the Catchment Land Surface Model (CLSM; Koster 

et al., 2000), which is a physically-based numerical model that simulates the water and 

energy balance at and below the land surface in response to surface meteorology. Unlike 

models that simulate soil moisture content within a series of soil layers down to about two 

meters depth, CLSM simulates equilibrium water storage within the unsaturated and 

saturated zone down to the bedrock, with a variable saturation curve that describes the 

vertical distribution. The equilibrium vertical distribution of soil moisture includes an 

implicit water table, located at the depth of the equilibrium saturation and implying the 

presence of an unconfined aquifer (groundwater) that has time-varying water storage. 

Bedrock depths were derived from the Second Global Soil Wetness project (GSWP-2; 

Dirmeyer and Oki, 2002). In CLSM, TWS is defined as the sum of groundwater, soil 

moisture, snow water equivalent and canopy interception.

We assimilated monthly gridded 0.5-degree GRACE-based TWS anomalies derived from the 

University of Texas at Austin’s Center for Space Research (CSR) Mascon solution (Save et 

al., 2016). Even though the CSR GRACE masons are natively estimated at 120-km wide 

mascon blocks and resampled to a 0.5-degree grid, the actual resolution of its solution is 

about 250–300 km along the equator line. Mascon-based products have been shown to have 

a somewhat higher signal-to-noise ratio and reduced errors than products based on spherical 

harmonics (e.g., Rowlands et al., 2010; Save et al., 2016). GRACE data uncertainty has been 

estimated to be 1 cm equivalent water height, when averaged over areas larger than about 

4×l05 km2, and errors increase as the area observed decreases (Swenson et al., 2003). 

GRACE data was linearly interpolated to match the 0.125-degree model grid space and bias-

corrected to match the mean TWS simulated in the OL run. GRACE data processing was 

performed with the NASA Land surface Data Toolkit (LDT; Arsenault et al., 2018) and all 

model runs, as described below, were performed within the NASA Land Information System 

(LIS; Kumar et al., 2006).

a. Modeling configuration

As illustrated in the modeling flow chart provided in Fig. 1, we used two meteorological 

forcing datasets for the retrospective part of the analysis. One was the Princeton 

Meteorological Dataset (Sheffield et al., 2006), which is 1° gridded and spans 1948 to 2014 

with 3-hourly temporal resolution. The second was the North American Land Data 

Assimilation System phase 2 (NLDAS-2; Xia et al., 2012) dataset, which is 0.125° gridded 

and covers Central North America from 1979 to present, with hourly temporal resolution. 

NLDAS-2 was the primary dataset used in this study to force CLSM from 1979 to 2016. To 

compute drought indicator percentiles, for which a longer record is preferable, we generated 

a 67-year climatology of soil moisture and GWS from a CLSM simulation forced by the 

Princeton dataset. CLSM was spun up using the Princeton dataset for the entirety of its 

Getirana et al. Page 3

J Hydrometeorol. Author manuscript; available in PMC 2021 January 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



period and initial conditions for the subsequent 1948-2014 Princeton-forced long-term run 

were generated by averaging simulated states from the final 10 spin-up years, as suggested 

by Rodell et al. (2005). We removed inconsistencies between the two datasets by scaling the 

NLDAS-2 meteorological variables (precipitation, air temperature and humidity, solar 

radiation, wind speed and pressure) to match the Princeton monthly climatology using the 

overlapping period, from 1979 to 2014. The OL run was initialized from the Princeton-

forced long-term run using rescaled NLDAS-2 data for the 1979-2016 period. In turn, the 

initial conditions for the 2003-2016 GRACE-DA run were taken from the OL, and the 

rescaled NLDAS-2 forcing data were used again. Houborg et al. (2012) showed that, in 

order to better represent TWS dynamics and to accommodate significant GWS decline 

during exceptional droughts, CLSM depth to bedrock should be increased beyond the model 

default values. In this study, bedrock depths were increased by three meters throughout the 

domain. All model runs were performed at a 15-minute time step.

b. Data assimilation procedure

In order to deal with GRACE’S coarse spatial and temporal resolutions, a 3-D based 

Ensemble Kalman Smoother (EnKS; e.g., Evensen and Van Leeuwen, 2000) approach, as 

described in Zaitchik et al. (2008), was used to assimilate GRACE-based TWS into CLSM. 

The EnKS, as applied here, includes a 2-degree spatial correlation window and a monthly 

temporal window within which two passes are performed: 1) the first pass integrates a 

forecast step to generate the ensemble of CLSM-based TWS state terms (no assimilation); 

and 2) the second pass performs the assimilation update based on the relative weights of the 

model estimates and observations (i.e. in terms of their error covariance matrices), which are 

determined by the Kalman gain matrix. In the first pass, the CLSM TWS-based states are 

stored on the 5th, 15th and 25th of each month (approximately related to the overpass 

frequency of GRACE). In the second pass, the ensemble is reinitialized, and the monthly 

analysis increments are applied evenly across the month. Two CLSM prognostic soil 

moisture variables are perturbed with normally distributed additive perturbations, and three 

snow water equivalent state layers are perturbed with a lognormal, mean 1, multiplicative 

perturbation. We assumed that the contribution of surface water storage (SWS) variability to 

TWS over the U.S. is negligible (Rodell and Famiglietti, 2001). Getirana et al. (2017) 

concluded that this is true for the most part, however, in certain parts of the U.S. such as 

Minnesota and southern Florida surface water storage changes are a substantial component 

of TWS changes. The effect of not modeling surface water in CLSM is that TWS changes 

(the residual of the water budget or from GRACE-DA) that would be attributed to SWS in 

the real world are, in effect, integrated into and simulated as all other TWS components, i.e. 

snow, GWS and soil moisture. While this is not ideal, for the purposes of this study, whose 

primary goal is to improve drought/wetness forecasts, it is sufficient. Perturbations were also 

applied to three of the meteorological forcing fields: incoming longwave radiation (additive 

type), and incoming shortwave radiation and precipitation (both multiplicative perturbation 

type).

For the TWS observational standard error covariance, we applied a spatially uniform scalar 

value of 10 mm (Zaitchick et al., 2008). GRACE-DA was performed with an ensemble of 20 

members. Previous studies have shown that this ensemble size is enough to represent model 

Getirana et al. Page 4

J Hydrometeorol. Author manuscript; available in PMC 2021 January 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



uncertainty within a GRACE-DA framework (Zaitchik et al., 2008; Li et al., 2012; Kumar et 

al., 2016). It is important to note that our 3-D based EnKS does not account for the 

inherently low spatial resolution of the GRACE products used in this study. Our data 

assimilation simulations cannot, at this time, completely distill the spatially smooth GRACE 

TWS’ estimates to capture all local variability. More details on the GRACE-DA 

configuration and specific perturbation settings used in this study can be found in Kumar et 

al. (2016).

c. Seasonal forecasts

Daily hydrological hindcasts with up to 90 lead days were performed using near surface 

meteorological data from two data sources to force the model: NASA’s GEOS Seasonal-to-

Interannual Forecast System (Borovikov et al., 2017) Version 1 and the Ensemble 

Streamflow Prediction (ESP; Day, 1985). The purpose of including GEOS and ESP was to 

determine the applicability and robustness of using GRACE-DA for seasonal groundwater 

forecasts combined with different atmospheric forecast techniques. GEOS is a dynamically-

based seasonal forecast system composed of multiple members designed to generate skillful 

meteorological predictions. The GEOS hindcast ensemble used in this study consists of its 

first seven members. ESP is a statistical technique based on historical meteorological data, 

and is intended to provide a “null” atmospheric forecast, in which the ensemble of 

meteorological fields represents a probability-weighted sampling from the historic record. 

NLDAS-2 historical meteorological data, from 1982 to 2016 (excluding the particular 

hindcasted year), is used to generate ESP hindcasts, consisting of consists of a 35-member 

ensemble. Hindcasts were initialized every 1st of March and May over the 2003-2016 period 

using states from the OL and GRACE-DA runs as the IHCs. Both months were selected 

because in much of the U.S. (1) they represent the end of the wet period, (2) they are near 

the start of the growing season, and (3) March is an important starting point for streamflow 

and flood predictions. GRACE-DA-based IHCs were generated by first averaging the 20-

member DA ensemble, then using that average to initialize each member used in each 

forecast technique. This means that, for each hindcast run, all members were initialized with 

the same IHC. IHCs are composed of water storage components (in the surface and in the 

different soil layers) and soil temperature. Hindcasts were evaluated by deterministic means, 

i.e., using the forecasted ensemble means. Briefly, as illustrated in Fig. 1, a total of eight 

model runs were performed: (i) spin up (1948-2014) and (ii) long-term (1948-2014) runs 

forced with the Princeton meteorological dataset; (iii) OL (1979-2016) and (iv) GRACE-DA 

(2003-2016) runs forced with rescaled NLDAS-2 meteorological dataset; and NLDAS-2-

based ESP and GEOS hindcasts initialized with states from the (v and vi) OL and (vii and 

viii) GRACE-DA runs.

d. Groundwater observations

The impact of GRACE-DA-based IHC on seasonal forecasts was evaluated at 305 wells 

drawn from records of daily measurements of depth-to-water-table were available. These 

data were collected and provided by the U.S. Geological Survey (USGS) and the Illinois 

State Water Survey (http://www.isws.illinois.edu/warm). The 305 well locations used here 

were culled from a larger dataset following the criteria that the wells must be installed in 

unconfined aquifers and not directly affected by pumping or injections (Rodell et al., 2007; 
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Houborg et al., 2012; Girotto et al., 2016; Kumar et al., 2016). In addition to using available 

meta-data, relevant literature, geological maps, and satellite imagery to make these 

determinations, we chose groundwater time series that displayed a clear seasonal cycle 

(which is often not present in confined aquifer time series) and lacked sudden water table 

declines that might be associated with pumping (Girotto et al., 2016). Specific yield values 

identified in previous studies (Rodell et al., 2007; Houborg et al., 2012; Li and Rodell, 2014; 

Girotto et al., 2016; Kumar et al., 2016) were used to convert the depth-to-water to 

equivalent height of water, in mm, which can be directly compared to simulated groundwater 

storage.

e. Evaluation procedure

The accuracy of simulated GWS time series is quantified using the temporal correlation (r) 

and the root mean square error (RMSE) between simulation (s) and observation (o). RMSE 

is defined as follows:

RMSE =
∑t = 1

nt (st − ot)2

nt

∕21
(1)

where t is the time step and nt the period length.

Following Kumar et al. (2014), we used the normalized information contribution (NIC) 

metric applied to the RMSE and r in order to determine any improvement that GRACE-DA-

based IHC contributes to seasonal GWS hindcasts compared to those initialized with the OL 

run. Their respective NIC values are defined below:

RMSENIC = (RMSEOL − RMSEDA)
RMSEOL

(2)

rNIC = (rDA − rOL)
(1 − rOL) (3)

Both metrics range from −∞ to 1, where values above zero indicate improvement, below 

zero indicates degradation, and zero means no added skill.

Drought detection skills were spatially evaluated using the probability of detection (POD), 

false alarm rate (FAR) and spatial correlation (rs). POD and FAR are defined as:

POD = a
a + c (4)

FAR = b
b + d (5)

where a is the number of drought pixels correctly detected by forecasts, b stands for the 

number of false alarms (drought pixels detected but not observed), c is the number of 
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drought pixels not detected, and d is the sum of pixels when neither observations nor 

forecasts occurred.

3. Results and Discussion

a. GRACE-DA impact on groundwater variability

The standard deviation ratio, translating changes in average GWS amplitudes simulated by 

both GRACE-DA and OL, shows impacts of data assimilation on groundwater variability, as 

shown in Fig. 2. Most changes are due to lower TWS amplitudes observed by GRACE, as a 

result of a coarser spatial resolution that smoothens out high variability at finer scales. 

Decreased amplitudes are mostly noticeable in the Eastern, Southern and parts of Mid-west 

U.S. Increased amplitudes are observed in parts of the Western U.S., Texas, and the Great 

Plains.

b. Added skill with GRACE-DA-based initialization

Figs. 3 and 4 maps and summarizes the differences in groundwater hindcast skill between 

the GRACE-DA and OL initialized experiments, evaluated at the 305 well locations. This is 

illustrated in terms of normalized improvements in RMSE (RMSENIC, in Fig. 3) and 

correlation coefficient r (rNIC, in Fig. 4) for three-month hindcasts initialized on March 1 

and May 1 for the 2003-2016 period. An overall improvement is observed at a large majority 

of wells where in situ observations are available. Improvements in RMSE values for ESP 

and GEOS hindcasts ranged between 74% and 77% of wells when initialized with GRACE-

DA. Half of the wells had an RMSENIC equal or above 0.19-0.25, depending on the forecast 

technique. Correlation generally improves, but at a lower rate (58-60% of wells), with a 

median improvement of 0.03-0.09. As one can see in the figure, RMSE improves quite 

homogeneously throughout the U.S., but r improvements are inconsistent, and some 

locations show substantial degradation.

To further investigate how GRACE-DA-based IHC impact hindcasts over the United States, 

we divided the domain into six regions, as delineated in the maps in Figs. 3 and 4. The 

regions are: Northeast, Southeast, Midwest, Great Plains, Northwest and Southwest. Scatter 

plots in Figs. 3 and 4 show median values of RMSENIC and rNIC (x-axis) as a function of 

percentage of locations with improved skill (y-axis) within each region for hindcasts 

initialized on March 1 and May 1. Hence, a symbol representing a region with overall 

improved skill appears in the upper-right quadrant. Regions located in other quadrants have 

either negative median metrics, or fewer than half the wells improved, or both. All hindcast 

experiments (i.e., both forecast techniques and initialization months) present RMSENIC 

values located in the upper-right quadrant for all regions, representing overall improvement 

in seasonal groundwater hindcasts. The exception is the Great Plains, where little or no 

improvement was shown, as evidenced by the low rNIC values. A likely explanation is that 

groundwater pumping to support irrigated agriculture, which is widespread in the Great 

Plains but not represented in the model, exerts substantial control over the water table 

variations.
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We note that DA improves RMSE relative to OL to a much larger extent than it improves 

correlation. This is because the range of TWS variability is conserved in GRACE 

observations, resulting in significant DA updates to the simulated TWS amplitudes and 

trends. This benefit could, conceivably, be achieved through other methods with the aid of 

GRACE data, such as model calibration or rescaling. Rescaling techniques such as 

cumulative distribution function (CDF)-matching between the simulated and observed TWS 

have previously been used with GRACE-DA (e.g., Girotto et al., 2016). The key motivation 

for using that approach was to preserve the soil moisture climatology of the model, so that 

coupled land-atmosphere applications are not impacted by climatological changes to soil 

moisture and land-atmosphere fluxes. The downside of such CDF-matching is that the utility 

from assimilation is limited to the corrections to temporal anomaly information, in other 

words, the assimilated observations are not allowed to improve the range of variability of the 

simulated soil moisture or groundwater, which could be important for water resources and 

other applications. Indeed, prior studies (Draper et al. 2009, Kumar et al., 2015; Lee and Im, 

2015) have shown that this approach severely limits the potential benefit gained from 

assimilating soil moisture, not to mention the fact that it eliminates the potential of DA to 

diagnose, quantify and correct biases. In addition, CDF-matching was also shown to 

introduce large statistical errors when unmodeled features are present in the observations 

and if sufficient temporal specificity is not included in the computation of the CDFs (Kumar 

et al., 2015; Yin and Zhan, 2018). While CDF-scaling is commonly used as an a priori bias 

correction approach, these limitations highlight that it is not necessarily a technically more 

correct approach than the method we use. Further, other studies (Zaitchik et al., 2008; 

Houborg et al., 2008; Li et al., 2012, 2019; Kumar et al., 2016) have established that our is 

valid and is useful in developing meaningful and physically consistent improvements from 

the assimilation of GRACE observations.

In this application, groundwater trends and variability are significantly improved in all U.S. 

regions. Fig. 5 plots the OL and DA groundwater time series along with hindcasts initialized 

on May 1 from both of those runs and using the original and ESP-downscaled GEOS 

forecast meteorological forcing. The largest changes owing to DA are seen in the Northeast, 

Midwest and the Great Plains, while changes are smaller or less consistent in the other three 

regions. The types of changes include increases or decreases in amplitude and/or increases 

or decreases in the intensity of the wet or dry extremes. For example, DA generally increases 

the amplitude of both seasonal and interannual groundwater variability in the Great Plains, 

while it tempers the extremes in the Northeast. In all cases the hindcasts initialized by the 

DA simulation remain close to the DA simulation throughout the three months, which is 

positive, given that the DA simulation is the closest thing we have to “truth”, though not 

surprising.

c. Groundwater memory in seasonal forecasts

We also examined RMSENIC and rNIC values for individual lead months and regions, for 

each forecast technique and initialization month, as shown in Fig. 6. In general, the benefits 

of GRACE-DA-based IHC decline from hindcasts lead month zero to one and one to two, 

particularly in regions with high RMSE or correlation values. That makes intuitive sense, 

because the groundwater information imparted by GRACE-DA fades over time, causing the 
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hindcasts initialized with GRACE-DA and OL to converge. However, groundwater’s 

substantial memory allows GRACE-DA initialization to improve the hindcasts for at least 

three months. Both RMSENIC and rNIC values are positive at the end of the third lead month 

for most regions. Once again, little skill is seen in the Great Plains region for all forecast 

techniques, metrics and lead months. The Northeast, Southeast, and Northwest regions 

display positive RMSENIC, but negative rNIC in some scattered months. This could be a 

result of insufficient frequency of observations (at some wells in these regions there is only 

one observation per month) or a systematic bias related to the simplified groundwater 

dynamics used in CLSM.

d. Drought severity forecast skill

Finally, we evaluated how GRACE-DA-based IHC impacts forecasts of drought severity 

indexes in terms of improvements in detecting extreme droughts relative to the USDM 

reference. USDM drought severity index maps are drawn by a team of authors using 

observation and model-based information on precipitation, temperature, soil moisture, 

surface water, snowpack, vegetation, and other indicators as well as drought impact reports. 

Outputs from a similar GRACE-DA system are also made available for the generation of the 

USDM maps and, as a consequence, this is not a completely independent evaluation. USDM 

maps droughts in five categories of varying intensity: D0 (abnormally dry, percentile ≤30%), 

D1 (moderate drought, percentile ≤20%), D2 (severe drought, percentile ≤10%), D3 (extreme 

drought, percentile ≤5%), and D4 (exceptional drought, percentile ≤2%). Maps are published 

online each week, typically on Wednesdays, and represent drought conditions from one to 

two days prior to the release date. Drought severity maps, following the same USDM 

categories, were derived from our model runs using the climatology derived from the 

Princeton-based long-term run.

Fig. 7 shows drought intensity maps at the end of three consecutive months (May, June and 

July) in 2014, during which a major drought was developing in California and parts of 

Nevada, and another one weakening in the Southern U.S., covering parts of Texas, 

Oklahoma, Colorado and Kansas, as reported by USDM. Because USDM maps are largely 

based on precipitation and soil moisture indexes, they are not perfectly analogous to our 

GRACE-DA-based groundwater drought indexes perfectly match with them, but there 

should be large scale, general agreement. Although the OL is capable of detecting both of 

the D4 exceptional droughts, it overestimates their extents throughout the Northwestern U.S. 

It also shows an extended drought of intensities varying from D0 to D3 over a large portion 

of the Central and Northeastern U.S. Also, the OL mistakenly shows the intensification of a 

large exceptional drought taking place in the Central U.S, not reported by USDM. On the 

other hand, assimilating GRACE data results in a much better agreement with USDM, when 

compared to OL, eliminating both unreported exceptional droughts in Central and 

Northeastern U.S. That improvement directly impacts the forecasted drought maps. Both 

ESP and GEOS are positively affected by the GRACE-DA-based initialization, with impacts 

observed throughout the 3-month hindcasts. However, one can notice that GEOS diverges at 

the end of the second and third months, showing an expanding exceptional drought in the 

Northwestern U.S., which could be a result of an inaccurate meteorological forecast in that 

year, or a product of climatological drift in the GEOS forecast system. Simulation drift is 
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often observed in seasonal forecasts, and can be a product of model parameterizations, 

integrating errors in atmospheric dynamics, ocean response to an error in initial atmospheric 

conditions, or other sources (e.g., Smith et al., 2013; Hermanson et al., 2018).

Drought detection skill was quantitatively evaluated for the three dates shown in Fig. 7 using 

POD, FAR and rs. Extreme (D3) and exceptional (D4) drought events combined, 

corresponding to the 5th percentile, were used as threshold for computing POD and FAR. 

Spatial correlation was computed using all drought severity indexes. GRACE-DA-based 

hindcasts show a positive impact on spatial correlation for all three dates, with a rs increase 

varying from 0.14 to 0.23, and averaging 0.18 for all three dates. The probability of 

detection of extreme and exceptional drought events (indices D3 and D4) slightly degrades 

with both forecast techniques at the end of the first month, but improves later on, with an 

average POD improvement of 0.03. Hindcasts initialized with GRACE-DA show little 

reduction in false alarms. Fig. 8 summarizes the improvements in skill detection for the three 

dates. For comparison reasons, results from the retrospective runs (GRACE-DA – OL) are 

also provided.

4. Final discussion

Herein, we leverage the use of the information contained in GRACE to improve IHCs for 

seasonal forecasts through data assimilation techniques. Our hypothesis was that 0.125° 

gridded groundwater storage states resulting from this new GRACE-DA-based enhanced 

prediction system would better match observations, thus enhancing the skill and the 

potential applications value of seasonal drought forecasts. Our results confirm this 

hypothesis, as quantified in terms of improvements in both seasonal forecast skill metrics at 

hundreds of wells throughout the U.S. and spatial agreement with the U.S. Drought Monitor. 

We also found that a GRACE-DA-based IHC improves both forecast techniques (ESP and 

GEOS), which could be evidence that the skill added by GRACE-DA, as observed in this 

study, could be generalized for a wider range of forecast techniques.

We acknowledge that neglecting anthropogenic impacts, such as irrigation, is a major 

limitation in the GRACE-DA scheme applied to CLSM in this study. Such activities may 

cause major changes in water cycle components, in particular, soil moisture and GWS 

variability, which are observed by GRACE, but not represented by the model (Girotto et al., 

2017). Although we have made a significant effort to remove wells impacted by water 

pumping in order to perform an unbiased evaluation, we recognize that some groundwater 

observations might not have been filtered out. This is likely one of the causes for the poor 

results in the Great Plains, where groundwater is the major source for irrigation. Nie et al. 

(2018) have shown that accounting for groundwater pumping in the Great Plains improves 

the representation of TWS variability by LSMs and agreement with GRACE. Another 

plausible explanation for these differences in irrigated areas is that GRACE-DA might not 

properly attribute mass change to the different soil layers (i.e., surface soil moisture, root-

zone soil moisture and groundwater). That issue could be addressed with multisensor DA, 

taking into account soil moisture (e.g., Girotto et al., 2019). Neglecting surface water storage 

variability is another limiting factor in our GRACE-DA scheme. For smaller rivers, 

groundwater and surface water can be treated as a single TWS component, since surface 
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water occurs where the water table intersects the land surface (Winter et al., 1998; Rodell et 

al., 2007). As demonstrated by Getirana et al. (2017), SWS may impact TWS in the tropics 

and large rivers flowing in high latitudes and arid regions. Although the authors show little 

SWS impact on TWS variability in the U.S., regions located near major rivers, such as the 

Mississippi River, have a non-negligible impact from river dynamics. In this sense, further 

investigation considering surface water in a GRACE-DA application is required.

Although the long latency was an issue for generating GRACE Level-3 products (typically 

2-5-month latency), one of our assumptions is that the long memory of groundwater and 

deep soil moisture allows GRACE-DA to be used to generate improved initial conditions for 

seasonal forecasts. The longer memory is demonstrated by the non-zero GRACE-DA impact 

on groundwater hindcasts at the end of the third lead month of our experiments, as shown in 

Fig. 6. With GRACE Follow On (GRACE-FO) data available from May 2018 to present and 

the development of new low-latency GRACE hydrology products (Sakumura et al., 2016) 

that would make TWS estimates available within two to six weeks from the raw data 

acquisition, we should be able to overcome the long latency issue. The GRACE-FO-based 

extreme event monitoring and forecast system is underway and will provide seasonal 

forecasts operationally (i.e., once a month), taking advantage of these low latency TWS 

products. We expect that these advances will have immediate impact on continuing and 

future work developed by U.S. institutions, such as the Army Corps of Engineers, the 

National Drought Mitigation Center, the U.S. Drought Monitor, and NOAA’s National 

Weather Service, being used as an additional source of information for drought monitoring 

and seasonal hydrological forecasts.
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Figure 1. 
Modeling flow chart. Experiments are ordered with roman numerals.
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Figure 2: 
Groundwater storage standard deviation [mm] derived from CLSM open loop (OL) and 

GRACE data assimilation (GRACE-DA) runs for the 2003-2016 period, and the standard 

deviation ratio [%], represented as [(GRACE-DA/OL)-1].
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Figure 3: 
GRACE-DA impact on the seasonal hindcast initialization using surface meteorological data 

from ESP and GEOS historical forecasts. On the right: spatial distribution of RMSENIC 

values derived from daily 3-month groundwater hindcasts initialized in May and March over 

the 2003-2016 period. In the bottom left of each map, the median value and number of wells 

with improved (↑) and degraded (↓) metrics. On the left: median (x axis) and percentage of 

wells with positive NIC values (y axis) computed for daily 3-month hindcasts initialized in 

May and March for each U.S. region (Northeast, Southeast, Midwest, Great Plains, 

Northwest and Southwest).
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Figure 4: 
As in Fig. 3, but for rNIC values.
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Figure 5: 
Daily groundwater variability averaged for six U.S. regions. Dotted lines represent OL and 

GRACEDA retrospective runs and bold lines are three-month ESP and GEOS hindcasts 

initialized on May 1.
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Figure 6: 
Impact of initializing groundwater storage seasonal forecasts with GRACE-DA, for each 

lead month and region, for the 2003-2016 period. The impact is defined as the normalized 

information contribution (NIC) of the RMSE and correlation r.
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Figure 7: 
U.S. drought intensity maps during major droughts in the Western and Southern U.S. 

between May and July 2014. From the top: U.S. Drought Monitor, retrospective OL and 

GRACE-DA runs, and ESP and GEOS hindcasts initialized with the May 1st GRACE-DA 

states. USDM estimates correspond to drought intensity in June 3rd, July 1st, and August 5th, 

and the other experiments are snapshots at the dates displayed on the top of each column.
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Figure 8: 
Differential spatial correlation (Δrs), probability of detection (ΔPOD) and false alarm rate 

(ΔFAR) of drought severity index maps for three dates in 2014, as shown in Fig. 7. POD and 

FAR thresholds were defined as the extreme (D3) and exceptional (D4) drought events 

combined, corresponding to the 5th percentile. Values correspond to the improvement in 

skills when ESP and GEOS forecast techniques are initialized with GRACE-DA (i.e., 

GRACE-DA – OL). Differential values for the retrospective runs (Retr) are also shown for 

comparison purposes. Improvement is represented by positive values for rs and POD, and 

negative values for FAR.
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