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Abstract

Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution 

of signaling pathways, enabling cellular communications and responsiveness to both the 

intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well 

characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, 

ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in 

bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large 

variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another 

complication arises when bacterial pathogens invade a host and become exposed to different levels 

of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune 

responses to bacterial infections, and (3) become impaired during diseases. The invading 

pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular 

mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, 

processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as 

a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in 

regulating main events of host colonization and bacterial virulence, and (3) the molecular 

mechanisms of Ca2+ signaling in bacterial pathogens.
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33.1 Elevated External Calcium (Ca2+) Regulates Adaptation of Bacterial 

Pathogens to Their Host Environment

33.1.1 Host-Associated Ca2+

In order to survive, bacteria must sense the chemical landscape of their environment and 

respond to it by adjusting their biological activities. Bacterial pathogens have an additional 
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challenge of recognizing the transition between outside and inside the host and efficiently 

rearranging their gene expression to enable survival in the hostile host. The environment 

inside the host has a drastically different chemistry regulated by complex signaling systems, 

including one of the most versatile intracellular messengers, calcium (Ca2+).

Ca2+ signaling has been widely studied in eukaryotes [1, 2]. Ca2+ signaling is based on 

tightly regulated fluctuations in the levels of the ion in different cellular compartments, that 

trigger multiple molecular pathways. Whereas the cytoplasmic concentration of free Ca2+ is 

maintained at high nanomolar level, the extracellular concentration of the ion reaches 

millimolar levels [3–5] differing between different body fluids, tissues, and organs. Several 

examples are summarized in Table 33.1.

Since Ca2+ signaling regulates most essential cellular processes, slight abnormalities in Ca2+ 

homeostasis cause diseases or are a result of certain pathologies. For example, in cystic 

fibrosis (CF) [6, 7], different types of cells, including skin fibroblasts and bronchial 

epithelium cells, show elevated intracellular Ca2+ pools [8, 9]. In addition, abnormally 

elevated levels of Ca2+ were registered in multiple body fluids of CF patients (Table 33.1). 

Further, the elevation of cytosolic Ca2+ concentration was shown to trigger host immune 

responses against invading pathogens. For example, intestinal epithelial cells infected with 

Salmonella serotype Typhimurium require an increased cytosolic Ca2+ to express pro-

inflammatory chemokine IL-8 [10]. Elevated Ca2+ in CF sputum positively correlates with 

the release of IL-8 in the necrotic immune cells [11]. As a part of the innate immunity 

defense, production of antimicrobial peptides (AMPs) by epidermal keratinocytes in 

response to infection by Pseudomonas aeruginosa, Staphylococcus aureus and other 

pathogens is induced by elevated levels of Ca2+ [12]. Some of the AMPs, including a family 

of Ca2+ binding EF-hand S100 family, require Ca2+ for their interactions with targets [13].

Some bacterial pathogens are able to alter the hosts [Ca2+]in levels through activating Ca2+ 

flux across the plasma membrane and, releasing Ca2+ from the intracellular stores into the 

cytosol [10, 14–17]. These interactions can be mediated by bacterial surface associated 

proteins such as PilC of Neisseria meningitidis [17], FliC of P. aeruginosa and Salmonella 
[18], and FimH of Escherichia coli [19] or by secreted effectors, such as hemolysin A from 

S. aureus [20], pyocyanin and homoserine lactones from P. aeruginosa and Serratia 
liquefaciens [21–25]. Such alterations in the host Ca2+ have been shown to facilitate 

bacterial adherence and subsequent internalization into the host cells.

In plants, Ca2+ is one of the earliest signaling elements that coordinate adaptive immune 

responses to invading pathogenic bacteria. Cytoplasmic Ca2+ ([Ca2+]cyt) increases in 

response to infecting pathogens, such as P. syringae [46]. A sustained elevation of [Ca2+]cyt 

serves as an important early signal, which links the recognition of infection to downstream 

defenses including generation of reactive oxygen species (ROS) and oxidative burst [47, 48]. 

The ROS burst may lead to cell death preventing the pathogen establishment inside the plant 

[49].

Overall, Ca2+ is an essential component of the host environment that both responds to the 

presence of bacterial pathogens, and regulates specific defense mechanisms. Ca2+ levels in a 
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host may signal to the invading pathogens that they are entering a host and also indicate the 

status of immune protection in the host. Therefore, recognizing the host Ca2+ level can be 

beneficial to the invaders and trigger their adaptation to the host environment, and lead to 

their increased virulence and survival of the pathogen.

33.1.2 Ca2+ Triggers Life Style Switches in Bacterial Pathogens

Bacteria possess efficient regulatory systems that enable their adaptation to continuously 

changing environments. Regulation of gene expression is key for bacterial survival in a 

variety of environments. One particularly efficient and complex mechanism of surviving 

hostile environments is a switch between free-swimming or planktonic lifestyle to sessile 

life as surface-associated community, called biofilm. This transition is enabled by major 

molecular rearrangements ultimately enabling increased resistance, cell-cell communication 

and efficient metabolism [50, 51]. This mechanism is of particularly high importance to 

extracellular pathogenic bacteria colonizing host surfaces and surviving both host defenses 

and antimicrobial treatments.

There is a growing body of evidence that Ca2+ plays both a structural and a regulatory role 

in the transition to surface-associated biofilm lifestyle. Bacterial adhesion is the first step in 

biofilm formation, and itself is a survival mechanism, as nutrients, for example, tend to 

accumulate at surfaces [52]. The effect of Ca2+ on adhesion is partially due to electrostatic 

interactions, but also due to strong interactions of the surfaces with the cell structures, such 

as pili and fimbriae [53–55], and other macromolecules including teichoic acids, adhesins, 

lipopolysaccharide (LPS), and extracellular polysaccharides (EPS). It was shown that cell 

surface properties and their electrostatic interactions with the substratum contribute to Ca2+-

enhanced adhesion of non-motile and motile P. aeruginosa [56]. Ca2+- enhanced cell 

adhesion to diverse host molecules and in vitro substrates, as well as cell-cell aggregation, 

relies on the presence of type I and type IV pili in a number of pathogens, including Xylella 
fastidiosa, [53], P. aeruginosa [57], Vibrio vulnificus [58], and N. gonorrhoeae [59]. The 

Ca2+ regulation of the type IV pilus is determined by its binding to pilus-biogenesis factor, 

PilY1, enabling pilus extension and retraction [60]. This interaction is also required for the 

bacterium twitching motility. By interacting with type I pili and fimbriae, Ca2+ modulates 

invasion of bacterial pathogens, such as E. coli, into host cells [19, 61].

Ca2+ also enhances bacterial adhesion via large cell surface Ca2+-binding adhesins, such as 

SdrC and SdrD in S. aureus [62, 63] and BapA in Paracoccus denitrificans [64]. The former 

contain EF hand-like motifs that bind Ca2+ required for protein folding. The latter belongs to 

repeats-in-toxin (RTX) family, containing multiple nonapeptide Ca2+-binding domains, 

secreted via Type I Secretion System (TISS), and serving a variety of functions, including 

cell-cell or cell-surface interactions or contributing to protection against hostile 

environments by forming bacterial surface (S)-layers (reviewed in [65]). In Listeria 
monocytogenes, elevated Ca2+ has been reported to stabilize the complex between the 

adhesin InlA (Internalin A) and the human extracellular E-cadherin domain 1 (hEC1). Once 

inside the host cell, where Ca2+ concentrations are lower, the InlA-hEC1 complex 

dissociates, which facilitates the liberation of the bacteria from the host cell membrane into 
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the cytosol [66]. Ca2+ is required for multimerization of large adhesin LapF involved in 

colonization, microcolony formation, and biofilm maturation of P. putida [67–69].

Due to its interactions with surface proteins and by forming ionic bridges between 

negatively charged macromolecules, Ca2+ enhances cell aggregation and strengthens biofilm 

matrixes, including cell aggregation in oral Streptococci [70] and alginate cross-linking of P. 
aeruginosa biofilm matrix [71]. Ca2+ was also shown to bind extracellular DNA (eDNA), 

another important component of biofilm matrix, and this thermodynamically favorable 

binding increases bacterial aggregation in several Gram-positive and Gram-negative species, 

including S. aureus and P. aeruginosa. The authors concluded that Ca2+ did not affect DNA 

release [72]. However, this observation is likely species- and strain-specific [73], as Ca2+ 

was shown to induce production of P. aeruginosa pyocyanin, which promotes DNA release 

[74]. Furthermore, the presence of Ca2+ increased eDNA release, contributing to biofilm 

formation in Streptococcus mutans [75]. Ca2+ was also shown to increase the adhesive 

nature of P. fluorescence biofilm, but reduced its elastic properties [76].

In different bacterial species, elevated Ca2+ either stimulates or reduces biofilm formation. 

Positive regulation was observed in response to 1–10 mM Ca2+ in Pectobacterium 
carotovorum [77], Rhizobium leguminosarum [78], Pseudoalteromonas sp. [79], Shewanella 
oneidensis [80], P. aeruginosa [73], X. fastidiosa [81], V. cholerae [82], and V. fischeri [83]. 

This regulation was shown to be mediated by diverse mechanisms. For example, elevated 

Ca2+ activates the transcription of genes responsible for production of surface adhesins and 

EPS: alginate in P. aeruginosa [73] and P. syringae [84]; symbiosis polysaccharide (syp) or 

cellulose in V. fisheri. Ca2+-dependent hemophilic interactions of surface-associated 

adhesion SdrC promotes biofilm formation in S. aureus [62].

Negative regulation of biofilm by elevated Ca2+ was reported in S. aureus [85] and V. 
cholerae [86]. In V. cholerae, this regulation is mediated by negatively regulated two-

component system CarSR and vps (Vibrio polysaccharide) genes. However, V. cholerae also 

produces Vps-independent biofilm, which is preferred under high Ca2+ sea water conditions, 

where Ca2+ interacts directly with the O-antigen polysaccharide [87]. S. aureus produces 

several surface adhesins, such as clumping factors A and B (ClfA and ClfB) [88, 89] and 

biofilm-associated protein (Bap) [85]. These proteins contain Ca2+-binding EF-hand-like 

motifs, and binding the ion inhibits their role in cell adhesion and biofilm formation. A point 

mutation in protease aureolysin (aur) gene in one of S. aureus strains led to increased 

activity of ClfB, required for biofilm growth under Ca2+-depleted conditions [90].

Some factors contributing to biofilm formation are known to be regulated by cyclic-di-GMP 

(c-di-GMP) (reviewed in [91]) and quorum sensing (QS) (reviewed in [92]). This raises the 

possibility of interconnections between c-di-GMP, QS and Ca2+ regulatory networks that 

warrant further studies.

33.1.3 Virulence Factors Regulated by Ca2+

Factors that enable pathogenic bacteria to cause diseases can be broadly grouped into several 

categories, such as penetration, colonization, damage of host cells, evasion of host defenses, 

and proliferation, all ultimately contributing to the developing infections. Colonization 

King et al. Page 4

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



requires pathogens to establish interactions with host tissues by producing extracellular or 

cell-associated molecules. It may also involve communication between invaders themselves 

or those with commensals. The relationship between some of these factors and Ca2+ is 

discussed above. Here we outline virulence factors attributed to more invasive host-pathogen 

interactions that are directly or indirectly regulated by Ca2+.

Bacterial invasion is commonly facilitated by the production and secretion of molecules that 

cause enzymatic or non-enzymatic damage to the host cells [93, 94]. A number of secreted 

enzymes are known to be regulated by Ca2+ in bacterial pathogens. For example, in P. 
aeruginosa, Ca2+ promotes the production of extracellular proteases LasB, LasA, PrpL 

(protease IV), and AprA [73, 95–97]. In the case of elastase LasB, Ca2+ not only increases 

the production of the protein, but modulates its processing, export, stability and enzymatic 

activity [95, 98, 99]. The enzymatic activity covers a wide repertoire of substrates, including 

elastin, collagen, and human immunoglobulins, underlining the significance of the protein 

and its Ca2+ regulation in P. aeruginosa pathogenicity. The alkaline protease A (AprA) binds 

Ca2+ through its C-terminal RTX domain, enabling folding of both C- and N-terminal 

proteolytic domains, which is required for stable conformation and enzymatic activity of the 

protease [73, 80, 96]. Both AprA and LasB are capable of degrading exogenous flagellin 

monomers under Ca2+-replete condition, which prevents flagellin-mediated immune 

recognition and killing of P. aeruginosa via complement-mediated phagocytosis [99, 100]. 

The Ca2+-enhanced production of the two proteases with anti-flagellin activity provides a 

robust strategy for P. aeruginosa to escape the detection by the complement system.

Our earlier studies showed that production of pyocyanin, the extracellular redox cycling 

compound and a virulence factor of P. aeruginosa [101, 102] is up-regulated in response to 

elevated Ca2+ [73]. Pyocyanin is found in pulmonary fluids of CF patients and shown to 

disrupt Ca2+ homeostasis of the host epithelial cells [21, 103], potentially contributing to a 

further increase of extracellular host Ca2+ and therefore induction of Ca2+-regulated 

virulence.

Toxins represent one of the most powerful strategies of bacterial pathogens to conquer a 

host. Ca2+ modulates the production, secretion, and function of several toxins in a number of 

pathogens. In E. coli, Ca2+ is required for Hemolysin A (HlyA) binding to erythrocytes 

[104]. Binding Ca2+ causes conformational change in the toxin increasing its surface 

hydrophobicity and promoting the irreversible binding to the lipid bilayer of erythrocytes. 

This interaction preludes and ensures the lytic effect [105]. In V. cholerae, Ca2+ enhances 

bile salt-dependent activation of virulence. The mechanism relies on Ca2+ promoting the bile 

salt-induced activation of transmembrane virulence regulator TcpP, which then induces the 

production of major virulence factors, including toxin-coregulated pilus (TCP) [106]. The 

presence of Ca2+ has been reported to be essential for the toxicity of anthrax-edema toxin 

(composed of protective antigen and edema factor) produced by Bacillus anthracis [107]. 

The edema factor has adenylate cyclase activity synthesizing cAMP. Once in the host 

cytosol, the edema factor produces cAMP, which causes a rapid influx of Ca2+. The 

accumulation of cAMP in the cytosol requires the presence of extracellular Ca2+. As a 

potent inhibitor of immune response, accumulated cAMP leads to suppression of 
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proinflammatory cytokines, phagocytosis and bactericidal activity of leukocytes thereby 

facilitating the survival of bacteria in the host [107, 108].

On the other hand, elevated host Ca2+ may have a negative regulatory effect on virulence 

and thus contribute to host defenses. One example is a cell wall degrading enzyme 

endopolygalacturonase (PehA) that is down-regulated by high (10–30 mM) levels of Ca2+ in 

a plant pathogen Pectobacterium carotovorum. This prevents the pathogen from infecting the 

plant [109].

Overall, Ca2+ regulates many virulence factors of invading bacterial pathogens, which 

stresses the importance of a detailed understanding of Ca2+ regulatory pathways in these 

pathogens.

33.1.4 Ca2+-Regulated Secretion Systems

Most bacteria can respond to and manipulate their environment through the secretion of 

extracellular proteins. Bacterial secreted proteins are often involved in breakdown of 

macromolecules, such as polysaccharides or polypeptides to simple sugars or amino acids 

that the bacteria can take up and utilize as carbon, nitrogen, and energy sources. Secreted 

proteins may also act as virulence factors, as in the case for the proteases described above, 

LasA, LasB, PrpL, and AprA, which modulate immune effectors and degrade elastic tissues 

[73, 95, 96, 99, 100]. Pathogenic bacteria also use protein secretion to kill other cells, 

including eukaryotic cells [110] and, in some cases, competing bacteria within biofilm 

communities [111]. Extracellular Ca2+ concentration plays a direct or indirect signaling role 

in many of the bacterial protein secretion systems.

Bacteria use at least six different strategies to secrete proteins (termed: T1SS to T6SS) 

reviewed in [112]. The T1SS transports specific proteins directly from the cytoplasm to the 

extracellular medium, with no apparent periplasmic intermediate. The Ca2+ requiring 

protease, AprA [113], is secreted by the T1SS, composed of three components, AprDEF, 

which include cytoplasmic ATPase, an inner membrane protein component, and an outer 

membrane protein [114]. These proteins form a molecular complex, dedicated to the export 

of AprA [113]. AprA accumulates in the biofilms of P. aeruginosa under Ca2+-replete 

conditions, but not under Ca2+ − limiting conditions [73]. The other protease virulence 

factors described above that require Ca2+ for activity or structural integrity, LasA, LasB, and 

the PrpL [98], are secreted by the T2SS [115–117]. The T2SS is a general pathway for 

secretion of a variety of extracellular proteins. In the T2SS, proteins with N-terminal export 

signal peptides, are first exported to the periplasm by either the Sec export machinery or the 

twin-arginine translocation (TAT) system [118, 119]. Sec, exports proteins in an unfolded 

state, then folds the proteins into their three dimensional confirmation in the periplasm, with 

the help of proteins such as disulfide bond isomerase, DsbA. The TAT system exports folded 

proteins into the periplasm. Once in the periplasm, proteins are secreted across the outer 

member via the secretion apparatus. For example, in P. aeruginosa the secretion apparatus is 

composed of the Xcp proteins (XcpA and XcpP-Z) or the homologous system, Hxc 

(composed of HxcP-Z) [112]. In addition to secretion of enzymes into the extracellular 

medium, the T2SS also plays a role in generation of certain types of pili, the Type IV pilus, 

which plays role in bacterial attachment and movement along surface. In twitching motility, 

King et al. Page 6

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bacteria move along surfaces by extension and retraction of the pili, through polymerization 

and depolymerization of the pilin subunits. Some bacteria, including E. coli and several 

Vibrio spps, requires Ca2+ for structural integrity of the major pseudopilin subunit, GspG 

[120].

The type III secretion system (T3SS), encoded on pathogenicity islands of many pathogenic 

bacteria, delivers effector protein toxins directly into the cytosol of eukaryotic cells during 

infection. The toxins, including enzymes such as ADP-ribosyltransferases, phospholipases, 

or adenylate cyclases, disrupt such host cell activities as actin remodeling, and gene 

regulation [112]. Perhaps the most interesting role of Ca2+ in secretion of bacterial virulence 

factors is its direct role in expression regulation (activation or repression) of the genes 

encoding the secretion apparatuses. It has been known for many years that expression of the 

T3SS genes is induced by either host-cell contact or by chelation of Ca2+ from the medium 

(low [Ca2+]) [121, 122]. The T3SS forms a complex needle-like structure that is related to 

the bacterial flagella basal body [123]. The T3SS includes inner and outer membrane ring 

structures, and cytoplasmic protein components that dock to the inner membrane ring. The 

needle-like structure protrudes from the basal body, punctures the host cell membrane, and 

secretes toxins directly into the host cells. For this reason, the T3SS has also been termed the 

injectosome.

Regulation of expression of the T3SS gene clusters by host cell contact has been well 

characterized in P. aeruginosa [124, 125]. Transcription of the T3SS in P. aeruginosa is 

controlled by the transcriptional activator, ExsA, an AraC/XylS-type regulator. ExsA is 

inhibited by a cascade of protein-protein interactions that prevent ExsA binding to the DNA. 

The cascade involves interactions of ExsA, ExsD, ExsC, and ExsE. Expression of the T3SS 

genes is induced when ExsE is translocated from the cell through the T3SS, ultimately 

titrating the anti-activator, ExsD away from the ExsA and allowing transcription. If 

translocation of ExsE through the T3SS is functional (e.g. during host cell contact or at low 

Ca2+), transcription of the TS33 genes is activated. If ExsE builds up in the cell due to lack 

of host cell contact, then further transcription of the TS33 genes is inhibited.

Another role of Ca2+ in regulation of T3SS was recently shown to involve the Ca2+-sensor 

protein, LadS [126]. LadS is a hybrid membrane-bound sensor, containing both a histidine 

kinase domain and a periplasmic Ca2+-binding DISMED2 domain. Broder et al. [126] 

mutated potential Ca2+-binding residues in P. aeruginosa and found that the resulted T3SS 

gene expression became insensitive to Ca2+ conditions. Ca2+ binding to the LadS DISMED2 

domain is the first step in a regulatory cascade that responds to external Ca2+. The cascade 

involves two component system GacCS, two small regulatory RNAs, RsmY and RsmZ, and 

the RNA binding protein, RsmA. Ultimately, binding of RsmA to specific mRNA sequences 

results in gene regulation at the translational level [126].

Assembly of the T3SS is a dynamic process that responds to external Ca2+. Using Yersinia 
entercolitica, Diepold et al. [127] tagged components of the T3SS with fluorescent reporter 

proteins, so that they could image the membrane and cytosolic components. Using 

Fluorescence correlation spectroscopy, they calculated the diffusion rates of the T3SS 

cytoplasmic components under inducing (low Ca2+) and non-inducing (high Ca2+) 
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conditions, as they assembled. They found that the rate of diffusion of the cytoplasmic 

components changed with the external Ca2+ concentration and proposed this as a novel 

mechanism for the role of Ca2+ in regulation of T3SS assembly.

The switch between expression of T3SS (low Ca2+) to more recently discovered type T6SS 

[128] may correlate with the switch from acute to chronic infections of P. aeruginosa [126]. 

The T6SS also uses direct injection of effector proteins into other cells, which may be host 

cells, or other competing bacteria [111]. However, rather than being evolutionarily related to 

the flagella basal body, the T6SS appears related to bacteriophage tail-associated proteins 

[129]. The tail-spike is used to puncture the membranes of cells, and the effector molecules 

at the tip of the spike are injected directly into the cytosol. Regulation of expression of T6SS 

is not well characterized and the role of Ca2+ in regulation of T6SS is not well known. 

However, Allsopp et al. [130] using a transposon mutagenesis screening approach identified 

the RNA binding protein, RsmA as a primary component involved in the regulation of all the 

three T6SS gene operons of P. aeruginosa. Therefore, a common link in the inverse 

regulation of T3SS and T6SS involves the RNA binding protein RsmA.

33.2 Molecular Mechanisms of Ca2+ Responses in Pathogens

33.2.1 Two Component Systems

As discussed above, Ca2+ levels differ within a host, fluctuate during disease progression, 

and thus form a complex signaling landscape for invading pathogens. Therefore, sensing 

host Ca2+ is an important task enabling pathogens to efficiently adjust to the host 

environment by triggering the expression of genes responsible for virulence and resistance. 

Bacteria accomplish this in part by employing two-component regulatory systems (TCS). A 

traditional TCS consists of a sensor kinase and a response regulator. The sensor kinase is 

usually embedded into the inner membrane with the sensor region often facing the 

periplasm. Upon signal binding, the sensor kinase auto-phosphorylates followed by 

phosphorylating the response regulator, typically regulating transcription of a set of target 

genes [131–133].

Several Ca2+ sensing TCSs have been identified. Some of them are positively and some are 

negatively regulated by elevated Ca2+ (Table 33.2). To test whether the relationship with the 

ion is defined by the recognition sequence within the TCS sensor, we aligned the sensor 

sequences of the TCS experimentally shown to be regulated by Ca2+. Based on the Clustal 

Omega alignment, a maximum likelihood tree was constructed using MEGA4 algorithm 

[134, 135] (Fig.33.1). The distinct grouping of positively and negatively regulated sensors 

supports the idea of sequence-dependent relationship with Ca2+.

The TCSs that are negatively regulated by Ca2+ have been studied in more details. PhoPQ is 

a well-characterized TCS, found in a variety of Gram-negative pathogens, such as P. 
aeruginosa, E. coli, Yersinia pestis, Shigella flexneri and S. enterica [82, 131, 136–138]. 

PhoPQ systems regulate multiple virulence factors, resistance and motility. The PhoPQ 

regulon includes the SOS response of S. enterica [139], and the arn operon of P. aeruginosa, 

which is responsible for lipid A modifications and increased resistance to antimicrobial 

peptides [138, 140–144]. Interestingly, PhoPQ systems are also repressed by elevated Mg2+, 
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and two-distinct Mg2+ and Ca2+ binding regions were identified in PhoQ sensor of S. 
enterica [136]. These regions are conserved in other PhoQ homologs [145, 146]. While the 

PhoPQ systems share overall sequence similarly, they differ in their responses. Thus, 

mutating Ca2+-binding residues in PhoQ have less of an impact on transcriptional regulation 

in E. coli than in S. enterica [146]. PhoQ interactions with ligands also differ in different 

species: Mg2+ binds to PhoQ dimer causing destabilization and preventing signal 

transduction in P. aeruginosa PhoQ (PaPhoQ), but not in E. coli PhoQ (EcPhoQ) [137]. 

Finally, PhoQ may respond to additional ligands such as acetate in the E. coli PhoQ [147]. 

The TCS most closely grouped with PhoPQ is PehSR from a plant pathogen Pectobacterium 
carotovorum (Fig.33.1). This system regulates the production of a secreted 

endopolygalacturonase, PehA which is required for initial invasion of the pathogen into a 

host [109, 148–150]. Homologs of PehA, although not yet characterized, have been 

identified in another plant pathogen Erwinia chrysanthemi [151, 152].

Another TCS negatively regulated by elevated Ca2+ is CarSR from V. cholera [86]. CarSR 

regulates Vibrio polysaccharide (vps), the main matrix component of vps-dependent 

biofilms. Although elevated Ca2+ decreases the formation of vps- dependent biofilms, it 

increases the formation of vps-independent biofilm in V. cholerae, as well as production of 

bile-salt-dependent virulence factors required for colonization of the gut [82, 163, 164]. The 

mechanisms for this positive Ca2+ regulation of V. cholerae virulence are not known and 

potentially involve an alternative TCS that is positively regulated by Ca2+. To predict such a 

TCS, we performed BLASTP alignment of the sensor region from the positively regulated 

by Ca2+ P. aeruginosa CarS against the V. cholerae genome and identified a putative Ca2+ 

responsive sensor protein CSC11701.1. The close grouping of its sensor sequence with P. 
aeruginosa CarS and P. syringae CvsS supports its potentially positive regulation by Ca2+ 

(Fig.33.1).

An atypical TCS, CiaHR, was identified in Streptococcus mutans. CiaHR con- tains a third 

component, CiaX, a small protein, which upon binding Ca2+, interacts with the sensor 

portion of CiaH and prevents the phosphor-relay. The system was shown to regulate 

antibiotic resistance, biofilm formation, eDNA uptake, as well as stress response [161, 165–

167]. Interestingly, CiaH grouped closely with the positively regulated sensors, indicating a 

possibility that CiaH itself may be regulated by Ca2+. In addition, S. mutans biofilm 

formation and eDNA release can be positively regulated in response to Ca2+ via the TCS 

VicKR [91, 159, 168, 169]. However, VicK is more distantly related to the positively 

regulated Ca2+ sensors, which could be attributed to its potential to respond to other stimuli 

(Fig.33.1).

The TCS that are positively regulated by elevated Ca2+ were shown to be involved in 

regulating virulence and resistance factors in response to Ca2+. Earlier, our group identified 

a TCS that is positively regulated by Ca2+ in P. aeruginosa. It was named it Calcium 

Regulated Senor/ Regulator, CarSR [153]. This system regulates at least two identified 

targets, CarO and CarP, involved in Ca2+–induced production of virulence factors pyocyanin 

and pyoverdine and contributes to the regulation of the intracellular Ca2+ homeostasis and 

tolerance to elevated Ca2+. Recently, another Ca2+-induced TCS was found in plant 

pathogen P. syringae, named Calcium, Virulence, and Swarming Sensor and Regulator, 
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CvsSR. CvsSR is required for P. syringae pathogenicity in plants by enhancing transcription 

of genes for T3SS and small RNAs while repressing alginate and flagella biosynthesis [84]. 

In E. coli, synthesis of the polyhydoxybutyrate polyphosphate (PHB-PP) Ca2+ channels is 

positively regulated by the AtoSC TCS. These non-proteinaceous Ca2+ channels play a role 

in eDNA uptake and folding of the outer membrane protein OmpA [154, 170, 171]. In 

addition, AtoSC regulates other processes, such as motility in response to acetoacetate, 

histamine, and spermidine [155–157]. This may be reflected in its distant grouping from 

CarSR and CvsSR (Fig.33.1).

In summary, bacterial pathogens utilize multiple TCS to recognize changes in the 

environmental Ca2+ and adjust their transcriptional activity. These systems are versatile as 

they evolved to enable bacterial adaptations to multi-variant environments. Understanding 

the regulation by TCS is challenged by several factors: the presence of multiple systems in 

one organism, sensors responding to different stimuli, and additional components involved 

in signal recognition [172–175]. Different TCS may also cross-talk enabling multiple signals 

to control similar responses, as in the case of SypFG, proposed to mediate Ca2+ induction of 

biofilm formation in V. fischeri [83]. The sensing portion of SypF, however, was not required 

for Ca2+ induction, and involved an alternative sensor kinase RscS phosphorylating SypF in 

response to Ca2+ [83]. A much better understanding of the TCS signaling networks triggered 

by Ca2+ is needed to fully appreciate their role in Ca2+-mediated communication between 

invading pathogens and their hosts.

33.2.2 Ca2+ Sensors

In eukaryotes, members of the calmodulin superfamily are the best studied Ca2+ sensors 

[176, 177]. Calmodulin (CaM) contains two canonical EF-hand motifs coordinating Ca2+ 

binding [178, 179]. Upon binding Ca2+, CaM undergoes conformational changes enabling 

binding and activating diverse target proteins [180]. Therefore, searches for components of 

Ca2+ signaling networks in bacteria have focused on proteins with EF hands [181]. In 

addition, proteins that play roles in translocating or buffering Ca2+ have been studied [182–

188]. A number of calmodulin-like proteins have been reported based on their sequence and 

structure similarity to CaM and binding to anti-calmodulin antibodies. Several of these Ca2+ 

sensors are summarized in Table 33.3. The first proposed bacterial Ca2+ sensor was CasA, 

from Rhizobium etli. CasA has three pairs of EF hand domains, similarly to eukaryotic 

calbindin and calretinin [189]. CasA mediates Ca2+-dependent symbiotic relationship 

between R. etli and its plant host. Our group identified a homolog of CasA in P. aeruginosa 
and named it EfhP (EF-hand protein) [190]. EfhP is required for maintaining Ca2+

in 

homeostasis and involved in Ca2+ regulation of P. aeruginosa virulence. Our current studies 

verified the ability of this protein to selectively bind Ca2+ and undergo Ca2+–dependent 

conformational changes supporting its role as a Ca2+ sensor (Kayastha et al. in preparation). 

Another EF hand protein, proposed to function as a Ca2+-sensor, is CabD from 

Streptomyces coelicolor. CabD contributes to Ca2+ regulation of aerial mycelium formation. 

CabD has high- and low-affinity Ca2+-binding sites, suggesting their distinct roles in 

mediating Ca2+-regulatory and buffering roles, respectively [177].

King et al. Page 10

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CaM-like proteins have been reported in Mycobacteria and are suggested to play a role in 

sensing Ca2+ [199]. The CaM-like protein, Rv1211 of M. tuberculosis binds Ca2+ through 

its single EF hand domain and stimulates the activities of NAD kinase and 

phosphodiesterase (PDE), targets that are similar to those of eukaryotic CaM. Reduced 

expression of this protein has been shown to impair M. tuberculosis growth and survival in 

macrophages, suggesting its importance during infection [192, 193]. A homologous CaM-

like protein from M. smegmatis has been shown to stimulate phosphodiesterase activity and 

regulate the metabolism of phospholipids [200] supporting the role of this protein as a Ca2+ 

sensor.

Protein S from Myxococcus xanthus is a member of ßγ-crystalline family. This protein 

shares structural similarity to CaM and binds Ca2+, which is required for the protein 

assembly on the surface of the spores [201]. A more recent report showed that the protein’s 

Ca2+-binding site forms a high charge density pocket similar to that in calsequestrin and 

human Hsp70. However it is still not clear whether the Ca2+-induced conformational 

changes in protein S play roles in signaling events [191].

Recently, a hybrid histidine kinase LadS was shown to trigger a Ca2+-induced switching 

between acute and chronic type of virulence in P. aeruginosa [198]. As discussed above, 

LadS belongs to a unique class of bacterial sensors that possess histidine kinase, seven 

transmembrane, and the periplasmic DISMED2 domain. The latter was shown to bind Ca2+ 

via Asp80 and Asp90 residues and activate the kinase activity leading to phosphorelay 

cascade [197, 198]. In contrast to typical sensors of TCS that phosphorylate partnered 

response regulators, LadS phosphorylates the TCS GacSA and thus activates GacS/Rsm 

pathway responsible for the global regulation of chronic infection-type virulence and 

tolerance [88]. In silico analysis of the sequence conservation of LadS showed that this 

protein is unique to Pseudomonas. Interestingly, during searches for homologous DISMED2 

domains among selected bacterial pathogens, we identified several proteins including 

putative alkaline phosphatase synthesis sensors CJK91172.1 and CJK40304.1, and a 

membrane protein with GGDEF domain, CJK88170.1, in S. pneumoniae. The GGDEF 

domain is known to act as a diguanylate cyclase responsible for synthesis of cyclic-di-GMP, 

a second messenger mainly regulating biofilm formation [202]. In addition to DISMED2 

domain, these proteins contain the two residues (Asp80 and Asp90) required for Ca2+ 

recognition, suggesting they may sense and respond to Ca2+.

Pathogenic bacteria possess Ca2+-sensing proteins that play an important role in modulating 

their pathogenicity. However, despite evidence of the significance of Ca2+ regulation in 

bacterial physiology and virulence, the knowledge on Ca2+ sensors and regulators in bacteria 

is still limited. Further studies are needed to determine whether these proteins sense the 

changes in the intracellular Ca2+ and thus enable Ca2+ to serve as second messenger.

33.3 Components of Intracellular Ca2+ Signaling in Pathogenic Bacteria 

Mediating Ca2+ Regulation of Virulence

A number of studies have shown that bacterial metabolic processes respond to elevated Ca2+ 

(reviewed in [203–205]). Some of these processes are regulated by extracellular Ca2+ levels 
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and are mediated by TCS. However, other processes may respond to the transient changes in 

the intracellular Ca2+ (Ca2+
in), thus implicating Ca2+ as a second messenger. Although the 

latter still requires experimental proof, here we discuss the components of Ca2+
in signaling 

network that have been shown to play a role in Ca2+ regulation, supporting the idea of a 

regulatory role of Ca2+
in in bacteria.

Similarly to eukaryotic cells, bacteria maintain their basal [Ca2+]in at high nanomolar level 

and generate transient changes in [Ca2+]in in response to diverse stimuli [206–210]. These 

stimuli include a variety of extracellular factors, such as Ca2+
ex, pH, mechanical stimulation, 

intermediates of carbohydrate metabolism, and oxidative stress; all factors potentially to be 

encountered upon entering a host [206, 208, 210–213]. A number of proteins have been 

shown to contribute to the maintenance of Ca2+
in homeostasis and to the generation of 

Ca2+
in fluctuations [203, 206]. However, it is still not clear whether bacteria have an 

intracellular source of Ca2+ for these fluctuations (e.g. a compartment for storing and 

releasing Ca2+ into the cytoplasm) or if they rely on influx of extracellular Ca2+. E. coli 
accumulates Ca2+ in the periplasm to millimolar levels when grown in the presence of 

millimolar extracellular Ca2+ [207]. It is possible that the periplasmic Ca2+ may be released 

into the cytoplasm and used for generating intracellular Ca2+ transients. However, further 

mechanistic studies are imperative.

33.3.1 Ca2+ Channels

Several types of Ca2+ transporters have been identified in bacteria. The transporters 

contribute to the regulation of virulence and host-pathogen interactions. First, the poly-β-

hydroxybutyrate polyphosphate (PHB-PP) in E. coli forms non-proteinaceous Ca2+ channels 

and translocates Ca2+ into the cytoplasm [214]. In addition, PHB-PP channels are required 

for Ca2+-dependent genetic competence, which plays a key role in uptake of foreign DNA, 

eventually enhancing bacterial adaptation to the host environment and resistance [215]. The 

production of the corresponding PHB-PP synthases was shown to be induced by elevated 

extracellular Ca2+ and several other stimuli via Ca2+-dependent TCS AtoSC [154].

Another type of Ca2+ channels, a pH-dependent Ca2+ leak channel, YetJ was identified in B. 
subtilis [216]. This protein contains a BAX-1 inhibitor domain homologous to the one in a 

Ca2+ leak channel found in the endoplasmic reticulum (ER) membrane. Eukaryotic channels 

containing transmembrane BAX inhibitor-1 motif (TMBIM) mediate Ca2+
in homeostasis 

and apoptosis [217]. Interestingly, this highly conserved domain has been identified in a 

number of bacterial proteins. Initially, this domain was identified in E. coli protein YccA, 

and was shown to play a role in biofilm maturation [99]. While more research is needed to 

determine the roles of YetJ and YccA in B. subtilis and E. coli physiology, our group 

recently identified another homolog of the channel in P. aeruginosa [Guragain et al. in 

preparation]. We named it CalC for Ca2+ Leak Channel and determined that the protein is 

responsible for generating transient changes in [Ca2+] in the P. aeruginosa cytoplasm in 

response to extracellular Ca2+. Transcriptional profiling of the mutant strain with disrupted 

calC revealed that the responses to elevated Ca2+ were impaired, particularly for genes 

encoding virulence factors and biofilm determinants [Guragain et al. in preparation]. This 

work provides experimental proof of the regulatory role of Ca2+
in transients in bacterial 
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responses to Ca2+. Furthermore, homology searches identified a number of putative BAX-1 

Ca2+ leak channels in bacterial pathogens including S. pneumoniae, P. carotovorum, 

Coexiella burnetti, S. enterica, and H. pylori, indicating the conserved nature of the Ca2+ 

leak channel in bacterial pathogens, and possibly suggesting a role in the pathogenic life 

style.

Mechanosensitive channels (MSC) are large, non-selective channels that usually allow the 

passage of ions in response to mechanical or osmotic stress (reviewed in [205, 218, 219]). 

MSC are found in a variety of different bacteria including human and plant pathogens [220–

222]. In B. subtilis, MSC SpoVAC releases Ca-dipicolinic acid complex, which is required 

for spore formation [223]. Mechanical stress in E. coli was shown to cause an increase in 

[Ca2+]in leading to altered gene expression [212]. However, the MSC, MscL in this organism 

did not impact Ca2+ in homeostasis [224], raising a possibility of an alternative Ca2+ channel 

responding to mechanical stress. Our studies with P. aeruginosa identified several Ca2+ 

transporters including a putative MSC encoded by PA4614, which contributed to the 

restoration of the [Ca2+]in basal level and the regulation of Ca2+-induced swarming motility 

[206].

33.3.2 Ca2+ Pumps

Elevated levels of free Ca2+
in can be toxic to bacterial cells, and the recovery to the basal 

[Ca2+]in is critical for re-sensitizing cells for the next wave of [Ca2+]in signaling. Therefore, 

the mechanisms of Ca2+ efflux are of high importance for cellular survival and for Ca2+
in 

regulation. Underlining their physiological significance, multiple families of efflux 

transporters have evolved and been shown to play a role in bacterial physiology and 

virulence (reviewed in [203]). The first group includes two types (P and F) of ATPases that 

couple Ca2+ export to ATP hydrolysis [60, 225, 226]. These proteins are highly conserved 

and were identified in diverse bacterial pathogens. In addition to translocating Ca2+, or likely 

because of it, some of these proteins are important in diverse bacterial processes related to 

survival in a host. For example, CaxP plays a role in host colonization by S. pneumoniae 
[227], CtpE of M. smegmatis contributes to cell surface integrity [228], and PA3920 and 

PA2435 of P. aeruginosa mediate Ca2+ regulation of swarming motility [206]. The second 

group includes ion exchange transporters coupling Ca2+ export to co-transport of other ions. 

Although many of these transporters have been identified in bacterial pathogens (reviewed in 

[203]), there is little evidence yet about their role in virulence.

33.3.3 Predicting Novel Components of Ca2+ Signaling Network

To expand our knowledge on the components of Ca2+
in signaling network in pathogenic 

bacteria, we aimed to predict novel Ca2+-recognizing or translocating proteins based on their 

homology to well-characterized components of eukaryotic Ca2+ network. For this, we 

selected well-characterized eukaryotic Ca2+-binding proteins, whose homologs in bacteria 

have not been reported. All sequence alignments were carried out using NCBI BLASTP [76, 

229]. CarR, a Ca2+ sensor that is a G protein-coupled receptor, plays an essential role in 

fluctuating intracellular Ca2+ homeostasis in response to minute changes in [Ca2+]ex and 

other stimuli [230–234]. The protein contains three cooperative Ca2+ binding sites. To our 

surprise, four (underlined) out of five (in bold) residues required for Ca2+ binding 
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(RXXEXXEEAEERD) were found in a large number of bacterial proteins involved in a 

variety of life-sustaining functions, including recruitment of replisome in S. aureus [235], 

cell division protein FtsA in E. persicina [236], putative Rhs toxin and DNA recombination 

regulation system in E. coli [237–239], and putative pili assembly gene in Enterobacter 
cloacae. Another eukaryotic Ca2+ signaling protein is RyR1, which is a Ca2+ channel known 

to release Ca2+ stored in the sarcoplasmic reticulum into the cytoplasm [240]. Sequence 

homology searches against bacterial genomes identified only a small fragment of the protein 

as aligning with bacterial proteins. This region happened to be located within the lining of 

the pore required for Ca2+ sensitivity [240–242]. Four (underlined) out of five residues 

E3893, H3895, E3967, Q3970, T5001 required for Ca2+ binding were found with similar 

spacing in several putative ABC transporters of pathogenic bacteria, including S. aureus and 

S. pneumoniae. We also detected these residues in putative bestrophin transporters of many 

bacterial species including P. aeruginosa and E. coli, in an orphan transcriptional regulator 

unique to a P. aeruginosa clinical isolate, and in several enzymes including a putative purine 

phosphatase of P. aeruginosa. The discovery of a putative Ca2+ binding site in bacterial 

bestrophin channels is particularly interesting, since human bestrophin is a Ca2+-gated 

potassium channel [243]. However, the only characterized bacterial bestrophin channel (in 

K. pneumoniae) was shown to not require Ca2+ for its function [244] nor did it contain the 

Ca2+-binding site found in the human bestrophin. This raises a possibility of two types of 

bestrophin channels in bacteria, Ca2+-dependent and Ca2+-independent. Interestingly, the 

eukaryotic bestrophin has been demonstrated to possess multiple splicing variants: with and 

without Ca2+ binding region [245]. Overall, these findings suggest that a significantly 

greater number of bacterial processes are likely regulated by Ca2+ than already known. The 

fact that most of these predicted Ca2+- binding proteins were detected in bacterial pathogens 

suggests the importance of Ca2+ regulation in their physiology and, possibly, interactions 

with hosts, whose vital processes are regulated by Ca2+.

33.4 Concluding Remarks

Bacteria have very dynamic and complex responses to Ca2+. Over the past 10 years, the 

evidence that bacteria utilize Ca2+ for signaling has grown, yet important pieces are still 

missing. An area that needs study is on intracellular Ca2+ signaling. While a number of Ca2+ 

sensors and Ca2+-dependent regulatory systems have been shown to regulate essential 

functions, most of the findings are of correlative nature with no direct experimental evidence 

linking the changes in the intracellular Ca2+ to the regulation of transcription or translation. 

Even less is known about how the amplitude and the frequency of intracellular Ca2+ signals 

modulate the response. An interesting aspect is the conservation of many Ca2+-binding 

domains in eukaryotes and bacteria indicating an evolutionary lineage between Ca2+ 

signaling networks in these domains of life. One technical problem, that is worth 

mentioning, is the disregard for the presence of Ca2+ in commonly used rich bacteriological 

growth media, such as LB or BHI. Consequently, Ca2+ regulation of the resultant bacterial 

phenotypes may be underestimated. Overall, Ca2+ signaling in bacteria is an exciting and 

quickly developing field, which is providing not only the fundamental understanding of 

bacterial life and evolution but also generating insights into the regulation of bacterial 

pathogenicity.
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Fig. 33.1. Molecular Phylogenetic analysis of Ca2+regulated TCS.
To analyze the sequences of Ca2+ regulated TCS sensors, we first determined the sensor 

regions by selecting the periplasmic loop of the proteins based on TMHMM analyses. After 

the 11 sequences were aligned, all positions containing gaps and missing data were 

eliminated. The phylogenetic relationship of the sensor regions was inferred by using the 

Maximum Likelihood algorithm based on the JTT matrix-based model [1] in MEGA7 [2]. 

The tree with the highest log likelihood (−2667.30) is shown. The tree is drawn to scale, 

with branch lengths measured in the number of substitutions per site
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Table 33.1

Examples of free Ca2+ levels in human body fluids

Body fluid [Ca2+] References

Joint fluids 4 mM [26]

Plasma 1.3–1.5 mM [23, 27–29]

Serum 0.7 to 1.4 mM. [23, 30–34]

Saliva (in CF patients) 0.3 mM (4.8 ± 0.7 mM) [35–1]

Nasal secretions (in CF patients) 3.1 ± 1.6 mM (4.7 ± 2.2 mM) [42–4]

Sputum (in CF patients) l.l mM (2.5mM) [11]

Urine 1.6–5 mM [45]

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

King et al. Page 29

Ta
b

le
 3

3.
2

Se
ns

or
s 

fr
om

 tw
o-

co
m

po
ne

nt
 r

eg
ul

at
or

y 
sy

st
em

s 
(T

C
S)

 r
eg

ul
at

ed
 b

y 
C

a2+

N
am

e
G

en
B

an
k 

ID
St

im
ul

i
C

a2+
-d

ep
en

de
nt

 r
eg

ul
at

or
y 

ta
rg

et
s

R
eg

ul
at

ed
 P

he
no

ty
pe

O
rg

an
is

m
R

ef
er

en
ce

s

Po
si

tiv
el

y 
R

eg
ul

at
ed

 b
y 

E
le

va
te

d 
C

a2+

C
ar

S
A

A
G

06
04

4.
1

C
a2+

ca
rP

, c
ar

O
V

ir
ul

en
ce

P.
 a

er
ug

in
os

a
[1

53
]

C
vs

S
A

A
O

56
85

8.
1

C
a2+

hs
pR

, a
lg

U
B

io
fi

lm
 f

or
m

at
io

n,
 c

el
lu

lo
se

 p
ro

du
ct

io
n,

 v
ir

ul
en

ce
, T

3S
S

P.
 s

yr
in

ga
e

[8
4]

A
to

S
A

E
H

68
82

7.
1

C
a2+

 S
pe

rm
id

in
eH

is
-t

am
in

eA
ce

to
ac

et
at

e
A

to
 o

pe
ro

n
Sy

nt
he

si
s 

of
 P

H
B

-P
P,

 m
ot

ili
ty

E
. c

ol
i

[1
54

–1
57

]

V
ic

K
PN

M
00

56
4.

1
C

a2+
, M

n2+
, s

uc
ro

se
at

lA
 o

pe
ro

n
eD

N
A

 r
el

ea
se

, r
es

po
ns

e 
to

 h
os

t i
m

m
un

ity
, a

tta
ch

m
en

t, 
an

d 
bi

of
ilm

 f
or

m
at

io
n

S.
 m

ut
an

s
[9

1,
 1

58
, 1

59
]

N
eg

at
iv

el
y 

R
eg

ul
at

ed
 b

y 
E

le
va

te
d 

C
a2+

Ph
oQ

A
IB

53
82

1.
1

M
g2+

,C
a2+

, a
ce

ta
te

L
PS

 m
od

if
ic

at
io

n
E

. c
ol

i
[1

37
, 1

47
]

Ph
oQ

P0
D

M
80

.1
M

g2+
,C

a2+
L

PS
 m

od
if

ic
at

io
n,

 S
O

S 
re

sp
on

se
S.

 e
nt

er
ic

a
[1

36
, 1

45
, 1

60
]

Ph
oQ

A
E

U
17

99
2.

1
M

g2+
,C

a2+
L

PS
 m

od
if

ic
at

io
n

P.
 a

er
ug

in
os

a
[1

37
, 1

41
, 1

43
]

Pe
hS

B
A

J1
19

71
.1

C
a2+

pe
hA

V
ir

ul
en

ce
P.

 c
ar

ot
ov

or
um

[1
48

]

C
ia

H
P0

A
4I

6.
1

C
a2+

ci
aX

C
a2+

 m
ed

ia
te

d 
ce

ll 
fu

nc
tio

ns
 a

nd
 b

io
fi

lm
 p

ro
du

ct
io

n
S.

 p
ne

um
on

ia
e

[1
61

]

C
ar

S
2,

61
4,

77
3

C
a2+

vp
s

V
ps

-d
ep

en
de

nt
 b

io
fi

lm
s,

 a
nt

ib
io

tic
 r

es
is

ta
nc

e
V

. c
ho

le
ra

e
[8

6,
 1

62
]

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

King et al. Page 30

Table 33.3

Ca2+ Sensors

Protein name/
GenBank ID Organism Function/Properties Domain References

EfhP P. aeruginosa Regulates Ca2+ induced virulence and 
intracellular Ca2+ homeostasis

One pair of EF hands Kayastha et al. (in 
preparation)

AAG07494.1

CasA R. etli Mediates Ca2+ dependent symbiosis with 
leguminous host

Three pairs of EF hands [189]

AF288533

CabD S. coelicolor Affects formation of aerial mycelium Two pairs of EF hands [177]

3AKA_A

Protein S M. xanthus Required for assembly of spore coat Beta-gamma crystalline fold [191]

WP_020477824

CAMLP M. tuberculosis Activates NAD kinase and 
phosphodiesterase upon Ca2+ binding

Single EF hand motif [192, 193]

NP_215727

CAMLP M. smegmatis Activates phosphodiesterase Single EF hand motif [194]

AY319523.1

CALP B. subtilis Activates phosphodiesterase in Ca2+ 

dependent manner
[195]

YP_004243569

CLP B. pertussis Activates adenylate cyclase in Ca2+ 

dependent manner
[196]

LadS P. aeruginosa Ca2+ dependent phosphor-relay to GacSA Histidine kinase, 7 
transmembrane, DISMED2

[197, 198]

AAG07361

Adv Exp Med Biol. Author manuscript; available in PMC 2020 September 04.


	Abstract
	Elevated External Calcium (Ca2+) Regulates Adaptation of Bacterial Pathogens to Their Host Environment
	Host-Associated Ca2+
	Ca2+ Triggers Life Style Switches in Bacterial Pathogens
	Virulence Factors Regulated by Ca2+
	Ca2+-Regulated Secretion Systems

	Molecular Mechanisms of Ca2+ Responses in Pathogens
	Two Component Systems
	Ca2+ Sensors

	Components of Intracellular Ca2+ Signaling in Pathogenic Bacteria Mediating Ca2+ Regulation of Virulence
	Ca2+ Channels
	Ca2+ Pumps
	Predicting Novel Components of Ca2+ Signaling Network

	Concluding Remarks
	References
	Fig. 33.1
	Table 33.1
	Table 33.2
	Table 33.3

