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Abstract

Purpose

This study sought to assess the performance of the Fitbit Charge HR, a consumer-level

multi-sensor activity tracker, to measure physical activity and sleep in children.

Methods

59 healthy boys and girls aged 9–11 years old wore a Fitbit Charge HR, and accuracy of

physical activity measures were evaluated relative to research-grade measures taken dur-

ing a combination of 14 standardized laboratory- and field-based assessments of sitting,

stationary cycling, treadmill walking or jogging, stair walking, outdoor walking, and agility

drills. Accuracy of sleep measures were evaluated relative to polysomnography (PSG) in 26

boys and girls during an at-home unattended PSG overnight recording. The primary analy-

ses included assessment of the agreement (biases) between measures using the Bland-Alt-

man method, and epoch-by-epoch (EBE) analyses on a minute-by-minute basis.

Results

Fitbit Charge HR underestimated steps (~11.8 steps per minute), heart rate (~3.58 bpm),

and metabolic equivalents (~0.55 METs per minute) and overestimated energy expenditure

(~0.34 kcal per minute) relative to research-grade measures (p< 0.05). The device showed

an overall accuracy of 84.8% for classifying moderate and vigorous physical activity (MVPA)

and sedentary and light physical activity (SLPA) (sensitivity MVPA: 85.4%; specificity SLPA:

83.1%). Mean estimates of bias for measuring total sleep time, wake after sleep onset, and

heart rate during sleep were 14 min, 9 min, and 1.06 bpm, respectively, with 95.8% sensitiv-

ity in classifying sleep and 56.3% specificity in classifying wake epochs.
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Conclusions

Fitbit Charge HR had adequate sensitivity in classifying moderate and vigorous intensity

physical activity and sleep, but had limitations in detecting wake, and was more accurate in

detecting heart rate during sleep than during exercise, in healthy children. Further research

is needed to understand potential challenges and limitations of these consumer devices.

Introduction

It is widely recognized that physical activity and sleep are important determinants of health.

[1,2] However, the observed associations of physical activity and sleep vary considerably with

a variety of health outcomes. [3,4] Although some of this heterogeneity may result from true

biological mechanisms, the challenge of precisely measuring these complex habitual behaviors

is likely a major contributor. To determine temporal trends and further characterize dose-

response relationships with various health outcomes, objective and valid measures of physical

activity and sleep are necessary. [5,6]

Tools for the objective assessment of the frequency, intensity (or quality), and duration of

physical activity and sleep in adults and children have largely been developed for short-term

use (i.e., several days or weeks) within a research and clinical environment (see devices from

ActiGraph, GENEActiv, Philips Respironics, etc.). [7,8] However, recent advances in micro-

technology, data processing, wireless communication, and battery capacity have resulted in

the proliferation of low-cost, non-invasive, devices within the consumer space. These devices

have appealing designs and can easily and passively be used by consumers to track their physi-

cal activity and sleep over long periods of time, generating an unprecedented amount of data.

[9] In 2017, ~102.4 million such devices were shipped worldwide, and this number is predicted

to grow to 237.5 million by 2021. [10] Most devices contain Bluetooth connectivity that allows

users to automatically transmit data at varying resolutions to the cloud via mobile, web, or

computer applications, with minimal or no effort. Corresponding application programming

interfaces (API) and standardized OAuth procedures (i.e., a common, industry-standard pro-

tocol that enables data access delegation between applications and websites) enable researchers

to gain access to the data stored by manufacturers.

Most of the current commercial wearables have multi-sensor capabilities, which has led to

refinements in data integration for outcome processing and new opportunities to obtaining

data for multiple bio-domains within a single device. For example, the latest generation of con-

sumer-level activity trackers typically use triaxial accelerometry to measure movement (i.e.,

gravitational acceleration in the anterior-posterior [x], cranial-caudal [y], and medial-lateral

[z] planes) and photoplethysmography to measure heart rate (i.e., number of beats per minute)

and its variability. Other sensors are of increasingly used to measure a broad range of other

bio-signals (e.g., skin temperature) as well as environmental data (e.g., light exposure). Impor-

tantly, a combined sensing approach may theoretically address many of the limitations of

using one channel of information (e.g., either accelerometry or photoplethysmography alone).

[11,12] For example, heart rate monitors can accurately assess high intensity physical activity

that accelerometers measure poorly (e.g., cycling on a stationary bicycle), whereas accelerome-

ters can accurately assess low intensity physical activity that heart rate monitors measure

poorly (e.g., slow walking). [13] The combination of these data streams through branched

equation modeling and/or machine learned algorithms may result in more accurate measure-

ment of physical activity and sleep, [13,14] and allows for the assessment of newly developed
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metrics such as cardiorespiratory fitness, resting heart rate, heart rate variability, and sleep

stages. [15–17]

The easy-to-use nature of these devices led to their proliferation, with a growing use of

these commercial devices in health research. Despite their potential advantages, namely the

capability of targeting and collecting objective multidimensional data from millions of individ-

uals over time, several challenges and limitation should be addressed. For example, the propri-

etary nature of the algorithms presents some challenges in data assessment and interpretation.

Thus, we believe that within the current unregulated space for consumer wearable technology,

it is crucial to evaluate the capability and performance of these devices.

Independent evaluation of the accuracy of the metrics from consumer-level activity moni-

tors has increased recently. [18] However, our understanding of the performance of these

devices is still largely unknown. Whereas the vast majority of devices studied to date have

relied on accelerometry alone, one combined sensing device that has received substantial scru-

tiny is the Fitbit Charge HR. Fitbit Charge HR is the first device of the Fitbit family that has

multi-sensor capability; released in 2015, it is still used in its original (Charge HR) and updated

versions (Charge 2, Charge 3) in clinical and basic research studies. More than 40 studies have

independently assessed the validity of one or more metrics from the Fitbit Charge HR in

young and middle-aged adults. [19] The methodological rigor of these studies has varied

greatly in the use of both laboratory- and field-based assessments, choice of ground truth or

“gold standard” measures, and recruitment of a meaningful sample size. Despite these limita-

tions, a growing number of studies suggested that the Fitbit Charge HR provides acceptably

valid measurement across a variety of metrics. [15,20–23] However, few studies have been con-

ducted among children and/or adolescents. One study investigated physical activity measures

relative to accelerometers in children 10–18 years old with congenital heart disease, [24]

another investigated sleep relative to lab-based polysomnography (PSG) in healthy adolescents

older than 12 years old, [15] and another investigated energy expenditure relative to indirect

calorimetry in healthy adolescents older than 13 years old. [25] The results from these studies

are mixed, yet with increasing concern about the importance of physical activity and sleep

in youth, validated, cost-effective and appealing instruments are needed for studies of youth

health.

In the present study, we assessed the Fitbit Charge HR’s accuracy to measure steps, heart

rate, energy expenditure, physical activity intensity, total sleep time, and wake after sleep onset

relative to research-grade measures in healthy boys and girls aged 9–11 years old through a

combination of laboratory and field tests. We assessed the Fitbit Charge HR performance for

measuring sleep in a subset of boys and girls during an unattended overnight at-home PSG

assessment.

Materials and methods

Participants

Potential participants were recruited from the San Diego Unified School District and the

greater San Diego area via in-class announcements and email listservs. Eligible participants

were 9–11 years old; able to understand English or Spanish; do light to moderate physical

activity for 60 minutes; and walk, jog, or run unassisted. Potential participants were excluded

if they had any functional limitation or medical condition prohibiting their ability to be physi-

cally active or used medications to alter body weight or metabolism. All study procedures were

approved by the University of California, San Diego Human Research Protections Program.

All participants provided written assent, with written consent to participate from their parent

or legal guardian. Participants were provided monetary compensation for their participation.
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Procedures and measures

Participants completed a 2- to 3-hour testing session at the Exercise and Physical Activity

Resource Center at University of California, San Diego. Prior to the start of testing, partici-

pants were asked to self-report their age, sex, and handedness. Weight (to the nearest 0.1kg)

and height (to the nearest 0.1cm) were measured using a calibrated digital scale and stadi-

ometer (Seca 703, Seca GmbH & Co. KG.). Participants were then fitted with a Fitbit Charge

HR on their non-dominant wrist. The Fitbit Charge HR is not considered to be a medical

device. It is made of a flexible, durable elastomer material similar to that used in many sports

watches, with a surgical-grade stainless steel buckle. It is lightweight, 0.83 cm wide, and fits

wrists that are 5.4 to 8.7 inches in diameter. The device contains a triaxial accelerometer, opti-

cal heart rate monitor, altimeter, and vibration motor. Precise performance specifications of

each sensor are not made available by the manufacturer. The devices used in this study were

initialized using generic, study-specific Fitbit accounts and non-identifiable participant infor-

mation (i.e., sex, height, weight, and handedness). At the time of testing, Fitbit accounts could

not be established with a user age less than 13 years old, so all accounts were established using

the age of 13. Data from the generic, study-specific Fitbit accounts were downloaded via Fita-

base (Small Steps Labs LLC, San Diego, CA), a third-party research platform designed to col-

lect Fitbit data at granularity useful to researchers (i.e., 1-minute epochs). The measures from

the Fitbit Charge HR examined in the present study include heart rate, caloric energy expendi-

ture, steps, physical activity intensity, and sleep.

Participants were also fitted with a portable three-lead electrocardiogram (ECG) used to

measure heart rate in beats per minute (bpm; Biopac Systems, Inc., Goleta, CA); a portable

indirect calorimeter used to measure caloric energy expenditure in kilocalories (kcal) and

physical activity intensity in metabolic equivalents of task (METs; Cosmed K4B2, Cosmed

Inc., Rome, Italy); and a person-worn video camera mounted on a harness such that it consis-

tently pointed at the participant’s feet and lower legs so that steps could be counted (GoPro

Hero, GoPro, Inc., San Mateo, CA). All devices were fitted according to manufacturer recom-

mendations, and recording start times were synchronized with the Fitbit Charge HR. The

devices collected data throughout the testing session, which consisted of 14 structured tasks

grouped into domains of sitting, stationary cycling, treadmill walking or jogging, stair walking,

outdoor walking, and agility drills (Table 1). The tasks were selected to represent the types of

physical activity and exercise that children the age of interest might do on a regular basis.

Data from the aforementioned devices were extracted by trained research staff and metrics

were aligned to the granularity of the corresponding Fitbit Charge HR metrics (i.e., minute-

level values). BPM from the ECG and METs from the indirect calorimetry were aggregated to

the minute-level after the removal of aphysiologic data (i.e., 1-second heart rates <50 bpm or

>220 bpm and 15-second METs <1 or >12). Physical activity intensity from indirect calorim-

etry was defined as sedentary <1.50 METs, light 1.50–2.99 METs, moderate 3.00 to 5.99

METs, and vigorous as�6.00 METs. [26] To determine step count, two trained research staff

members independently viewed videos of the testing sessions and counted the number of steps

a participant took and counts were averaged. For cases in which step counts varied by more

than 3%, a third trained research staff member counted and the values from the two closest

counts were averaged.

Upon completion of the testing session, participants were sequentially asked if they would

be willing to wear the Fitbit Charge HR at home during an unattended overnight polysomno-

graphic (PSG) assessment of their sleep performed according to the American Academy of

Sleep Medicine (AASM) guidelines. [27] Those who agreed had a trained technician arrive at

their home approximately one hour before their usual bedtime to prepare for the recording.
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They were then fitted with a portable PSG system that included electroencephalography (EEG;

2 leads: C3/4 referenced to the contralateral mastoids; sample rate 256 Hz with a band-pass fil-

ter of 0.3-35Hz), submental electromyography (EMG), bilateral electrooculography (EOG),

and ECG (Compumedics Somte´ PSG; Compumedics). Additional standard sensors were

used to record breathing pattern, blood oxygen levels, and leg movements to confirm that par-

ticipants did not suffer from sleep disorder(s). Participants (or their parents) selected lights-

out and lights-on times. To synchronize the Fitbit Charge HR with the PSG system, “sleep

mode” was initiated by pressing and holding the Fitbit Charge HR event-marker button for

more than 2 seconds when the technician manually started the PSG recording in the evening,

and again upon completion in the morning. The technician returned in the morning after the

assessment to recover the equipment and data.

Wake and sleep (N1, N2, N3 and REM) from PSG were scored by a trained sleep laboratory

technician in 30-second epochs according to AASM guidelines. [27] Standard sleep parame-

ters were calculated: Time in bed (TIB), defined as the period from self-reported lights-out

until PSG-defined final awakening; sleep onset latency (SOL), defined as the time from self-

reported lights-out until the first epoch of any sleep stage; total sleep time (TST) in minutes,

defined as all epochs of sleep during TIB; sleep efficiency (SE), as TST/TIB; wake after sleep

onset (WASO) in minutes, defined as all epochs of wake during the TIB period; time spent in

each stage of sleep (N1, N2, N3 and REM) in minutes.

PSG 30-second epochs were aggregated to the minute-level as follows: two consecutive PSG

30-second epochs scored as N1, N2, N3 or REM, were coded as sleep. If one or both of the con-

secutive PSG 30-second epochs were scored as wake, that minute was coded as wake. [28,29]

The corresponding minute-level metrics from the Fitbit Charge HR were defined as ‘sleep’,

‘restless’, and ‘wake’. ‘Restless’ and ‘wake’ were combined and treated as wake, thus enabling

Table 1. Laboratory and field tests conducted for comparison of the Fitbit Charge HR and research-grade measures.

Category # Activity Time Description

Sitting 1 Quiet 5 minutes Sitting quietly

2 Music 5 minutes Listening to music

3 Game 5 minutes Playing iPad game

Effort Time Description

Stationary Cycling 4 Moderate (0.8W/kg) 6 minutes Cycling @ 55+ rpm

5 Vigorous (1.2W/kg) 6 minutes Cycling @ 55+ rpm

Speed Time Description

Treadmill Walking or Jogging 6 3 mph 6 minutes Walking on a treadmill

7 4 mph 6 minutes Running/fast walking on a treadmill

8 3 mph with backpack 6 minutes Walking on a treadmill with backpack weighing 10% of body weight

Direction Flights Description

Stair Walking 9 Up 5 Going up stairs

10 Down 5 Going down stairs

Course Length Description

Outdoor Walking 11 Uphill 200m Walking up a marked 200m uphill

12 Flat 400m Walking a marked 400m flat course

13 Downhill 200m Walking down a marked 200m downhill

Course Time Description

Agility Drills 14 Ladder Drills 5 minutes Agility Ladder Drills

Flag/Cones Drills Shuttle runs and agility drills

https://doi.org/10.1371/journal.pone.0237719.t001
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the calculation of TST, and WASO. PSG-device comparisons were performed for TST, SOL

and WASO.

Sample size and analyses

Sample sizes in validity studies vary greatly. In the present study, the primary aim was to deter-

mine the agreement between measures. Thus, we aimed to include approximately 60 partici-

pants in the physical activity and exercise portion of the study, which would result in 95%

confidence intervals around the limits of agreement equal to 0.44 standard deviations of the

differences between measurements. Due to time and cost constraints, a subset of 26 partici-

pants from the physical activity sample completed the sleep portion of the study. This is a simi-

lar size to that used in other validity studies that included PSG. [15,30,31]

The agreement between measures from the Fitbit Charge HR and corresponding research-

grade measures were examined using the Bland-Altman method. The mean of differences for

each of the measures being compared (i.e., the average ‘bias’) were calculated along with 95%

confidence intervals calculated as the mean difference ±1.96 times the standard error of the

differences. Positive bias indicated that the Fitbit Charge HR underestimated the metric of

interest compared to research-grade tools, whereas negative bias indicated that the Fitbit

Charge HR overestimated these metrics. The limits of agreement were defined as the mean of

the differences ±1.96 times the standard deviation of the differences. A Bland-Altman plot of

the mean of the differences by the means of the measures, along with the limits of agreement,

was used for visual judgment of how well the methods of measurement agree. Mean absolute

percentage error (MAPE) was calculated as the average of absolute differences between the

measures, divided by the relevant research-grade measure, multiplied by 100. Accuracy and

corresponding Cohen’s kappa, sensitivity, and specificity were calculated for categorical values

of physical activity intensity (i.e., sensitivity: ability of the device to correctly classify moderate

and vigorous activities; specificity: ability of the device to correctly classify sedentary and light

activities) and sleep states (i.e., sensitivity: ability of the device to correctly classify PSG sleep

epochs; specificity: ability of the device to correctly classify PSG wake epochs). Assumptions of

the normality of underlying raw data were evaluated by inspection of Q-Q plots of residuals,

and they were found to be normally distributed. Additionally, paired-sample t-tests were cal-

culated to assess if differences in measures were statistically significant (p-value less than 0.05)

and linear regression was used to explore the association between the amount of bias and the

magnitude of measurement.

Results

Participant characteristics

A convenience sample of 60 participants was recruited for participation in the study. No

participant assessed for eligibility was excluded. However, after 1 participant completed the

testing, there was an error in syncing their Fitbit that resulted in minute-level data being

unavailable. The exact source of the error is unknown, but it was likely due to incorrect initiali-

zation of the Fitbit. The participant was excluded from all analyses. Additional exclusions were

task specific and reasons included participant’s legs being too short to comfortably reach the

pedals of the cycle ergometer, ECG electrodes falling off, the facemask of indirect calorimeter

becoming loose, or unusable video footage. Participant numbers by task, as well as descriptive

statistics (means and standard deviations) for each of the measures of interest are provided in

the supplemental results (see S1 File). The mean (standard deviation [SD]) age of participants

was 9.9 (0.7) years, and 52.5% were female. Mean (SD) height was 1.4 (0.1) meters and weight

was 36.8 (8.8) kilograms.
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Steps

Excluding those tasks completed while sitting and on the cycle ergometer, the Fitbit Charge

HR underestimated step count by a mean of 11.8 steps per minute (95% CI [8.11; 15.59]; p

<0.001) compared to direct observation, with 1 participant falling outside the agreement limits

(upper: 39.7, lower: -16.1, see Fig 1A). The largest disagreement was during fast (4.0 mph)

treadmill walking/jogging (Fitbit underestimated mean: 20.5, upper limit: 60.6, lower limit:

-19.6), and the smallest disagreement was while walking up stairs (Fitbit underestimation

mean: 3.11, upper limit: 31.37, lower limit: -25.14). The mean absolute percentage error

between the two measures was 9.9%. There was a negative association between the amount of

bias and mean steps (β = - 0.9, p<0.001).

Heart rate

Throughout all 14 tasks the Fitbit Charge HR underestimated heart rate by a mean of 3.58

beats per minute (95% CI [1.42; 5.74], p< .001) compared to the ECG, with 4 participants fall-

ing outside the agreement limits (upper: 19.66, lower: -12.50, see Fig 1B). The largest disagree-

ment was during light cycling (Fitbit underestimated mean: 11.4, upper limit: 43.3, lower

Fig 1. Bland-Altman plots for average steps (A), heart rate (B), energy expenditure (kcal) (C) and METs (D) per minute. The central dotted line

represents the Bland-Altman biases; the thin dotted lines represent the Bland-Altman agreement limits.

https://doi.org/10.1371/journal.pone.0237719.g001
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limit:-20.6) and the smallest disagreement was during agility skills (Fitbit overestimated mean:

-.72, upper limit: 29.56, lower limit: -31.01). The mean absolute percentage error was 3.3%.

There was a negative association between the amount of bias and mean heart rate (β = -0.3,

p< .05).

Energy expenditure

Throughout all 14 tasks the Fitbit Charge HR overestimated energy expenditure by a mean of

0.34 kcal per minute (95% CI [-.54; .14], p<0.01) compared to the indirect calorimeter, with 3

participants falling outside the agreement limits (upper: 1.14, lower: -1.82, see Fig 1C). The

largest overestimation was during ladder drills (mean: -1.88, upper limit: -3.58, lower limit:

-0.22) and the smallest disagreement was during music listening (mean: 0.12, upper limit: 0.63,

lower limit: -0.39). The mean absolute percentage error between the two measures was 11.4%.

There was a negative association between the amount of bias and mean energy expenditure

(β = -0.3, p = .05).

METs

Throughout all 14 tasks the Fitbit Charge HR underestimated by a mean of 0.55 METs per

minute (95% CI [.23; .88], p<0.01) compared to the indirect calorimeter, with 3 participants

falling outside the agreement limits (upper: 2.97, lower: -1.85, see Fig 1D). The largest disagree-

ment was during moderate cycling (Fitbit underestimated mean: 2.84, upper limit: 5.46, lower

limit: .21) and the smallest disagreement was during uphill walking (Fitbit underestimated

mean: 11.4, upper limit: 43.3, lower limit: -20.6). The mean absolute percentage error between

the two measures was 11.8%. There was no association between the amount of bias and mean

METs.

Physical activity intensity

Throughout all 14 tasks the Fitbit Charge HR had an overall accuracy of 84.8% in classifying

sedentary or light activity and moderate or vigorous activity (i.e., 2,935 minutes correctly clas-

sified out of 3,463 total minutes; Cohen’s kappa = 0.65), a sensitivity of 85.4% in identifying

moderate or vigorous activity (i.e., 2,084 minutes correctly classified out of 2,439 total minutes

of moderate or vigorous activity), and a specificity of 83.1% in identifying sedentary or light

activity (i.e., 851 minutes correctly classified out of 1,024 total minutes of sedentary or light

activity).

Sleep/wake pattern and heart rate during sleep

A total of 26 participants (13 female) were invited to participate in the at-home sleep portion

of the study in the order in which they completed the physical activity portions of the study.

Three participants were excluded from the sleep analysis and 4 from the HR analysis during

sleep due to PSG device malfunction (i.e., device did not record and store data properly for an

unknown reason), short sleep time (3 standard deviations outside the group mean), or failure

in the alignment of the Fitbit Charge HR to PSG, resulting in a final sample of 23 (sleep) and

22 (HR).

From PSG, participants spent 553±59 (mean ± SD) min in bed, with a SOL of 22 ± 10

min, a WASO of 20 ± 11 min, and sleep efficiency of 93 ± 2%. They had 4 ± 1% of time in N1

sleep, 33 ± 10% in N2 sleep, 42 ± 11% in N3 sleep, and 21 ± 5% in REM sleep. The Fitbit

Charge HR underestimated PSG TST (mean ± SD of bias: 14 ± 18 min; p = 0.001) and

overestimated PSG WASO (mean ± SD of bias: -9 ± 13 min; p = 0.003). A maximum of 2
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participants exceeded the Bland-Altman plot agreement limits for these measures (see Fig 2).

There were no associations between the amount of bias and mean PSG TST and WASO.

From the epoch-by-epoch analysis at the minute level, the Fitbit Charge HR had an overall

accuracy of 92.1% in classifying awaking and sleep (i.e., 11,676 minutes correctly classified

out of 12,674 total minutes; Cohen’s kappa = 0.53), a sensitivity of 95.7% in identifying sleep

(i.e., 11,010 minutes correctly classified out of 11,503 total minutes of sleep), and a specificity

of 56.9% in identifying awaking (i.e., 666 minutes correctly classified out of 1,171 total min-

utes of awaking).

Mean participant HR from ECG was 72.60 ± 7.07 bpm, and 71.54 ± 7.04 bpm from the Fit-

bit Charge HR. The Fitbit Charge HR underestimated ECG HR (mean ± SD of bias: 1.06 ±
0.75 bpm; p<0.001), with one participant falling outside of falling outside the agreement limits

(upper: 2.55, lower: -0.42, Fig 3).

Fig 2. Bland-Altman plots for Total Sleep Time (TST), Sleep Onset Latency (SOL), and Wake After Sleep Onset

(WASO). The central dotted lines represent the Bland-Altman biases; the thin dotted lines represent the Bland-Altman

agreement limits. �PSG is considered the gold standard for sleep assessment, therefore, mean bias was plotted against

the PSG measurement alone and not the average of measures from PSG and the Fitbit Charge HR.

https://doi.org/10.1371/journal.pone.0237719.g002
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Discussion

The use of consumer-level activity trackers in health research is increasing. To date, more

than 400 research studies have utilized Fitbit devices. [19] However, the performance of

these devices is still largely unknown. The present study provided performance outcomes

for the accuracy of Fitbit Charge HR in estimate measures of physical activity and sleep

against research-grade evaluation, across different tasks and conditions in a sample of

healthy children.

For physical activity, the Fitbit Charge HR underestimated steps, heart rate, and METs, and

overestimated energy expenditure, with no more than 4 participants falling outside of the

Bland-Altman agreement limits. Estimates of bias varied across tasks, but on average, the

mean absolute percentage error was less than 12%. Interestingly, while previous studies did

not observe proportional bias in Bland-Altman analyses of energy expenditure among adults,

[32] in the present study we observed small but statistically significant associations between

each measure and the magnitude of the measure, with the exception of METs. Additional

research is needed to determine if this systematic bias exists in other samples of children and if

a linear calibration equation might improve the accuracy of these measures.

The measurement of physical activity intensity is particularly important in health research,

because the volume of moderate and vigorous activity is a strong predictor of morbidity and

mortality at all stages of life. According to national and international guidelines, children and

adolescents should accumulate at least 60 or more minutes of moderate to vigorous physical

activity daily to experience health benefits, including improved bone and muscle strength,

weight control, and psychological well-being. [33] Thus, to accurately quantify adherence to

guidelines, valid measurement of moderate and vigorous activity is required. In the present

study, the Fitbit Charge HR showed an overall accuracy of 85.4% in distinguishing moderate

and vigorous activity from sedentary and light activity, that was similar to research-grade

accelerometry. Specifically, when compared to activity intensity determined using similar indi-

rect calorimetry methods to those used in the present study, the commonly used ActiGraph

and Actical accelerometers have an accuracy in classifying moderate and vigorous activity

among children that ranges from 83% to 86%. [34] It is important to highlight that aforemen-

tioned research-grade accelerometers must be hip-worn to measure physical activity intensity,

whereas the Fitbit Charge HR is worn on the wrist. Wrist-based physical activity measurement

has been shown to be more acceptable to participants than hip-based measurement and allows

for the measurement of 24-hour activity, including sleep, as opposed to only daytime activity.

[7,35]

Fig 3. Bland-Altman plots for nocturnal Heart Rate (HR). The thick dotted lines represent the Bland-Altman bias;

the thin dotted lines represent the Bland-Altman upper and lower agreement limits.

https://doi.org/10.1371/journal.pone.0237719.g003
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The Fitbit Charge HR performance in detecting common sleep metrics, such as TST and

WASO, relative to unattended at-home PSG in this group of healthy children showed mean

biases of less than 15 min, with no more than 2 participants falling outside the Bland-Altman

agreement limits, and with no significant bias for SOL. While the device underestimated HR

during the night, the average bias was about 1 bpm, which was similar to the average HR bias

(< 1 bpm) found in 12–21 y old healthy adolescents in whom the same device model was

tested against standard ECG during sleep. [36] Although in the current study the Fitbit Charge

HR performance was only compared to PSG (as opposed to actigraphy), the ability of the Fitbit

Charge HR to detect sleep parameters, relative to PSG, was similar to previous reports of

research-grade actigraphy performance in children. [37] In that study, authors analyzed in-lab

overnight sleep in 115 children and adolescents (3–18 y old). Similar to our results, motion-

based actigraphy devices overestimated PSG WASO and underestimated PSG TST in school-

age children (6–12 y); however, the devices’ performance depended on several factors includ-

ing sensitivity threshold, scoring algorithm, developmental age group, and sleep disordered

breathing status. [37]

In our study, EBE analysis on a minute-by-minute basis indicated that the Fitbit Charge

HR was able to identify sleep and wake epochs with 92% accuracy. The Fitbit Charge HR cor-

rectly identified 96% of sleep epochs. However, in concordance with research-grade actigra-

phy, [38] the Fitbit Charge HR had a lower specificity, accurately detecting wake epochs at a

rate of 56%. Validation studies of actigraphy in children have generally reported a similar pat-

tern of high sensitivity and relatively lower specificity (for a review, see [8]). Our findings are

also consistent with other validation studies examining the use of Fitbit devices in healthy ado-

lescent [15,39] and adult samples. [16,40] For example, Fitbit Charge HR showed a specificity

of 42% in a sample of 12–21 y old healthy adolescents, [36] while a similar Fitbit model (Fitbit

Charge 2) showed a specificity of 61% in a sample of 19–61 y old adults. [41]

Importantly, when PSG is not accessible, clinical grade actigraphy is currently considered

an accepted alternative for measuring sleep in non-laboratory settings. Actigraphy has been

widely adopted in research, and it relies on openly validated standard algorithms. Due to a

simple rationale (motion = wake, motionless = sleep), its performance in sleep/wake assess-

ment is largely predictable and characterized by a well-known limitation in the assessment of

motionless wake (poor specificity). [29] Despite in its infancy, the new generation of consumer

sleep trackers has the ability of differentiating sleep stages (‘light’, ‘deep’, ‘REM’) in addition to

tracking sleep and wake. This is possible due to the measure and use of cardiac function data

and other features, in addition to motion, showing sleep stage differentiation. [43] This imple-

mentation is particularly relevant, allowing for the tracking of sleep composition across peri-

ods of maturation such as during childhood and adolescence.

However, despite the theoretical advantages in combining cardiac function data and

motion for sleep/wake assessment (particularly in the classification of motionless wake),

low specificity seems to still be a limitation of multi-sensor sleep trackers (see for review).

[29,42,43] The level of accuracy that we will be able to reach by using peripheral physiology

and motion and advancing signal processing, to estimate EEG-based sleep macrostructure, is

still unknown. Currently, the performance of standard actigraphy and commercial wearable

technology is not dissimilar when both devices are evaluated in the same study and compared

against PSG. [43] Considering factors like devices cost, implementation, data accessibility,

multi-sensors capability, and multi-systems integration, consumer wearable technology may

offer an appealing solution for measuring sleep on a large scale.

While there is increasing study of physical activity and sleep in youth using consumer-level

activity trackers, few studies to-date have used these objective measures to examine the links

between physical activity, sleep, and other behavioral and neuropsychological indicators of
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well-being or dysfunction. The Adolescent Brain Cognitive Development (ABCD) study is a

multi-site study following over 11,800 9- to 10- year-olds prospectively into young adulthood

to increase our understanding of brain development, health, and psychosocial functioning in

youth that is utilizing the device validated within the present study. [44] This study provides

the opportunity to use a relatively inexpensive, consumer-level activity tracker to examine the

diverse biological and environmental mechanisms contributing to physical activity and sleep,

as well as the impact of physical activity and sleep on mental and physical health throughout

development. The literature to-date demonstrates relationships between poor sleep quality

and quantity, and large weekend-weekday differences in sleep and increased substance use

among adolescents. [45,46] Insomnia has also been associated with poor mental health out-

comes, including depression and suicidal ideation among youth. Low physical activity and

high amounts of sedentary activity are associated with poorer physical health, including obe-

sity and related medical disorders such as diabetes mellitus type 2, and psychosocial dysfunc-

tion. [47] However, a dearth of prospective studies on these reciprocal relationships makes the

potential contribution of ABCD key to understanding the bidirectional relationships between

physical activity, sleep, and health across development.

The present study has several important strengths and adds significantly to existing

research on this topic. First, we used a relatively large sample of boys and girls who completed

a variety of laboratory-, field-, and home-based tasks. Most validation studies of consumer-

level activity monitors are restricted to laboratory-based assessments only. [15,20–23] The

tasks that participants completed were selected to reflect activities that 9- to 11-year-old chil-

dren might typically do throughout the day, and they included a variety of ambulatory and

non-ambulatory activities across the range of intensity classification from sedentary to vigor-

ous. In addition, we evaluated multiple measures from one device, the Fitbit Charge HR,

which was worn as instructed by the manufacturer. Many previous validation studies have

attempted to validate multiple devices simultaneously (i.e., multiple devices were worn on the

same wrist at the same time), and therefore, they may be inherently flawed due to the fact that

devices were not worn according to manufacturers’ specifications. Lastly, our criterion mea-

sures for physical activity are commonly used in physical activity and exercise research, and

for sleep, we used unattended at-home PSG.

The findings of the present study should be considered within its limitations. First, little to

no consensus exists for the ideal combination of laboratory-, field-, and home-based tasks for

assessing the validity of an activity tracker. Similarly, consensus is lacking regarding the opti-

mal physical activity measures for criterion measures. Given the lack of gold standard mea-

sures for physical activity, it is not possible to truly know the source of bias (e.g., bias in steps

could be due to poor human interpretation of what constitutes a step). Further, the Fitbit

Charge HR was not designed for use in children, and because the algorithms used to derive the

various metrics are proprietary, we are unable to determine how differences in anthropometry

and heart physiology influence accuracy. Regarding sleep, although unattended at-home PSG

is feasible, technically adequate, and well-tolerated in school-aged children when performed

under research conditions, [48] and may be used in wearable validation studies, in-lab PSG is

the true gold standard for assessing the performance of sleep-tracking technology. [29,42]

Controlled laboratory investigations using gold standard PSG assessment in a larger sample of

children, including those with clinical sleep disturbances, are needed, which would also allow

testing for potential factors (e.g., sex, age, sleep disruption) that could affect device perfor-

mance. Also, in wearable validation studies, PSG-derived sleep outputs have been suggested

as the ‘true standard’ in Bland-Altman plots. [29,42] However, an ongoing and unsolved issue

in consumer wearable technology validation is that AASM visual sleep scoring rules are sub-

jected to human interpretation, challenging the concept of PSG sleep as the true reference for
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comparison. [29] Given the frequently observed relationship between sleep disruption and

consumer sleep-tracking technology performance (greater PSG-device biases with greater

amount of PSG wake), [43] our study results can only be extended to healthy children. In addi-

tion, a methodological limitation needs to be considered. The procedure adopted for convert-

ing 30-s PSG epochs into 1-min epochs, necessary to match the Fitbit 1-min sleep scoring,

may have resulted in an overinflating of the amount of PSG wake, potentially impacting the

assessment of the Fitbit performance in wake detection. [29] Additionally, the development of

consumer-level activity trackers is outpacing the ability to independently validate them, and it

remains unknown if these results extend to future iterations of the same device. Lastly, there is

variability in the analytic approaches used in validation studies of this type. While our analyses

centered on Bland-Altman methods that are often robust even when the distribution of differ-

ences is not normal, the normality hypothesis was not formally evaluated.

Conclusions

Cost-accessible, comfortable activity trackers that provide objective measurements among

children are critically important to understanding the influence of physical activity and sleep

on health. This is among the first studies to systematically evaluate the validity of a common

multi-sensors consumer-level activity tracker to measure physical activity and sleep in chil-

dren. The results of the present study provide researchers, clinicians, and consumers alike with

estimates of accuracy and bias in multiple physical activity and sleep metrics across a variety of

tasks. On balance, the ease of use, low cost, and palatability to youth make these multi-sensors

consumer devices as promising tools for the study of youth physical activity, sleep, and health.

More effort in evaluating challenges and limitation in using this technology is clearly needed.

Supporting information

S1 File.

(DOCX)

S1 Data.

(CSV)

S2 Data.

(CSV)

S3 Data.

(CSV)

Acknowledgments

We thank all participants and their families for their trust and ongoing participation in the

ABCD study. We also thank the researchers and health professionals involved in data collec-

tion at the Exercise and Physical Activity Resource Center at University of California, San

Diego.

Author Contributions

Conceptualization: Job G. Godino, David Wing, Ian M. Colrain, Kevin Patrick, Susan F.

Tapert.

Data curation: Job G. Godino, David Wing, Massimiliano de Zambotti, Sarah Inkelis, Carina

Pautz, Guillaume Chevance.

PLOS ONE Performance of a commercial activity tracker in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0237719 September 4, 2020 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237719.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237719.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237719.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237719.s004
https://doi.org/10.1371/journal.pone.0237719


Formal analysis: Job G. Godino, Massimiliano de Zambotti, Guillaume Chevance.

Funding acquisition: Susan F. Tapert.

Investigation: Job G. Godino, David Wing, Massimiliano de Zambotti, Sarah Inkelis, Carina

Pautz, Michael Higgins, Jeanne Nichols.

Methodology: Job G. Godino, Sarah Inkelis, Carina Pautz, Michael Higgins, Jeanne Nichols,

Ty Brumback.

Project administration: Job G. Godino.

Supervision: David Wing.

Visualization: Massimiliano de Zambotti.

Writing – original draft: Job G. Godino, David Wing, Massimiliano de Zambotti, Fiona C.

Baker, Kara Bagot, Sarah Inkelis, Carina Pautz, Michael Higgins, Guillaume Chevance,

Susan F. Tapert.

Writing – review & editing: Job G. Godino, David Wing, Massimiliano de Zambotti, Fiona C.

Baker, Kara Bagot, Sarah Inkelis, Carina Pautz, Michael Higgins, Jeanne Nichols, Ty Brum-

back, Guillaume Chevance, Ian M. Colrain, Kevin Patrick, Susan F. Tapert.

References
1. Hallal PC, Bauman AE, Heath GW, Kohl HW, Lee I-M, Pratt M. Physical activity: more of the same is

not enough. Lancet [Internet]. 2012 Jul 21 [cited 2013 Feb 28]; 380(9838):190–1. Available from: http://

www.ncbi.nlm.nih.gov/pubmed/22818932

2. Luyster FS, Strollo PJ, Zee PC, Walsh JK, Boards of Directors of the American Academy of Sleep Medi-

cine and the Sleep Research Society. Sleep: a health imperative. Sleep [Internet]. 2012 Jun 1; 35

(6):727–34. Available from: https://academic.oup.com/sleep/article-lookup/doi/10.5665/sleep.1846

PMID: 22654183

3. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: Sur-

veillance progress, pitfalls, and prospects. Lancet [Internet]. 2012 Jul 21 [cited 2013 Mar 4]; 380

(9838):247–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22818937

4. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: A systematic

review and meta-analysis of prospective studies. Sleep. 2010; 33(5):585–92. https://doi.org/10.1093/

sleep/33.5.585 PMID: 20469800

5. Wareham N, Rennie K. The assessment of physical activity in individuals and populations: Why try to

be more precise about how physical activity is assessed? Int J Obes. 1998; 22(Supplement 2):S30–8.

6. Lynch J, Smith GD. A life course approach to chronic disease epidemiology. Annu Rev Public Health

[Internet]. 2005 Jan [cited 2014 Oct 17]; 26:1–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

15760279

7. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity

research. Br J Sports Med [Internet]. 2014 Apr 29 [cited 2014 Jun 12];1–5. Available from: http://www.

ncbi.nlm.nih.gov/pubmed/24782483

8. Meltzer LJ, Montgomery-Downs HE, Insana SP, Walsh CM. Use of actigraphy for assessment in pediat-

ric sleep research. Sleep Med Rev [Internet]. 2012 Oct; 16(5):463–75. Available from: http://www.ncbi.

nlm.nih.gov/pubmed/22424706

9. Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by

wearable sensors. Neurorehabil Neural Repair [Internet]. 2015 [cited 2015 Jan 7]; 25(9):788–98. Avail-

able from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4098920&tool=

pmcentrez&rendertype=abstract

10. Ubrani J, Llamas R, Shirer M. Wristwear Dominates the Wearables Market While Clothing and Earwear

Have Market-Beating Growth by 2021, According to IDC [Internet]. International Data Corporation.

2017 [cited 2018 Jan 29]. https://www.idc.com/getdoc.jsp?containerId=prUS42371617

11. Brage S, Westgate K, Franks PW, Stegle O, Wright A, Ekelund U, et al. Estimation of free-living energy

expenditure by heart rate and movement sensing: A doubly-labelled water study. PLoS One. 2015; 10

(9):1–19.

PLOS ONE Performance of a commercial activity tracker in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0237719 September 4, 2020 14 / 16

http://www.ncbi.nlm.nih.gov/pubmed/22818932
http://www.ncbi.nlm.nih.gov/pubmed/22818932
https://academic.oup.com/sleep/article-lookup/doi/10.5665/sleep.1846
http://www.ncbi.nlm.nih.gov/pubmed/22654183
http://www.ncbi.nlm.nih.gov/pubmed/22818937
https://doi.org/10.1093/sleep/33.5.585
https://doi.org/10.1093/sleep/33.5.585
http://www.ncbi.nlm.nih.gov/pubmed/20469800
http://www.ncbi.nlm.nih.gov/pubmed/15760279
http://www.ncbi.nlm.nih.gov/pubmed/15760279
http://www.ncbi.nlm.nih.gov/pubmed/24782483
http://www.ncbi.nlm.nih.gov/pubmed/24782483
http://www.ncbi.nlm.nih.gov/pubmed/22424706
http://www.ncbi.nlm.nih.gov/pubmed/22424706
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4098920&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4098920&tool=pmcentrez&rendertype=abstract
https://www.idc.com/getdoc.jsp?containerId=prUS42371617
https://doi.org/10.1371/journal.pone.0237719


12. Brage S, Ekelund U, Brage N, Hennings M a, Froberg K, Franks PW, et al. Hierarchy of individual calibra-

tion levels for heart rate and accelerometry to measure physical activity. J Appl Physiol [Internet]. 2007

Aug [cited 2013 Jul 16]; 103(2):682–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17463305

13. Brage S, Brage N, Franks PW, Ekelund U, Wong M-Y, Andersen LB, et al. Branched equation modeling

of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physi-

cal activity energy expenditure. J Appl Physiol [Internet]. 2004 Jan [cited 2011 Jun 29]; 96(1):343–51.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/12972441

14. Thompson D, Batterham AM, Bock S, Robson C, Stokes K. Assessment of low-to-moderate intensity

physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with

branched-equation modeling. J Nutr. 2006 Apr; 136(4):1037–42. https://doi.org/10.1093/jn/136.4.1037

PMID: 16549471

15. de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick K, et al. Measures of sleep and

cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents.

Physiol Behav. 2016 May; 158:143–9. https://doi.org/10.1016/j.physbeh.2016.03.006 PMID: 26969518

16. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™
compared with polysomnography in adults. Chronobiol Int [Internet]. 2018 Apr; 35(4):465–76. Available

from: http://www.ncbi.nlm.nih.gov/pubmed/29235907

17. Klepin K, Wing D, Higgins M, Nichols J, Godino JG. Validity of Cardiorespiratory Fitness Measured with

Fitbit Compared to VO2max. Med Sci Sports Exerc [Internet]. 2019 May 17;(In press). Available from:

http://www.ncbi.nlm.nih.gov/pubmed/31107835

18. Wright SP, Hall Brown TS, Collier SR, Sandberg K. How consumer physical activity monitors could

transform human physiology research. Am J Physiol Regul Integr Comp Physiol [Internet]. 2017 Mar 1;

312(3):R358–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28052867

19. Small Steps Labs LLC. Fitbit Research Library [Internet]. 2017 [cited 2017 Jul 10]. https://www.fitabase.

com/research-library/

20. Wang R, Blackburn G, Desai M, Phelan D, Gillinov L, Houghtaling P, et al. Accuracy of Wrist-Worn

Heart Rate Monitors. JAMA Cardiol [Internet]. 2016; 313(6):625–6. Available from: http://jamanetwork.

com/journals/jamacardiology/article-abstract/2566167

21. Lee J-M, Kim Y, Welk GJ. Validity of Consumer-Based Physical Activity Monitors. [Internet]. Vol. 46,

Medicine and science in sports and exercise. 2014 [cited 2014 Jun 5]. 1840–8 p. Available from: http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4192284&tool=pmcentrez&rendertype=abstract

22. Kooiman TJM, Dontje ML, Sprenger SR, Krijnen WP, van der Schans CP, de Groot M. Reliability and

validity of ten consumer activity trackers. BMC Sports Sci Med Rehabil [Internet]. 2015; 7(1):24. Avail-

able from: http://www.biomedcentral.com/2052-1847/7/24

23. Wang L, Liu T, Wang Y, Li Q, Yi J, Inoue Y. Evaluation on Step Counting Performance of Wristband

Activity Monitors in Daily Living Environment. IEEE Access [Internet]. 2017; 5:13020–7. Available from:

http://ieeexplore.ieee.org/document/7967642/

24. Gardner RF, Voss C, Dean PH, Harris KC. Validation of the Fitbit Charge Heart Rate™Device To Moni-

tor Physical Activity in Children With Congenital Heart Disease. Can J Cardiol [Internet]. 2016; 32(10):

S130. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0828282X16303968

25. LaMunion SR, Blythe AL, Hibbing PR, Kaplan AS, Clendenin BJ, Crouter SE. Use of Consumer Moni-

tors for Estimating Energy Expenditure in Youth. Appl Physiol Nutr Metab [Internet]. 2019 Jul 3;

6:1873–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31269409

26. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Ninth

Edit. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2014. 1–480 p.

27. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, et al. AASM Scoring Manual

Updates for 2017 (Version 2.4). J Clin Sleep Med [Internet]. 2017 May 15; 13(5):665–6. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/28416048

28. Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of

methodological issues. Sleep [Internet]. 1994 Apr; 17(3):201–7. Available from: http://www.ncbi.nlm.

nih.gov/pubmed/7939118

29. De Zambotti M, Cellini N, Goldstone A, Colrain IM, Baker FC. Wearable Sleep Technology in Clinical

and Research Settings. Med Sci Sports Exerc. 2019;

30. Farabi SS, Quinn L, Carley DW. Validity of Actigraphy in Measurement of Sleep in Young Adults With

Type 1 Diabetes. J Clin Sleep Med [Internet]. 2017 May 15; 13(5):669–74. Available from: http://www.

ncbi.nlm.nih.gov/pubmed/28162146

31. Roane BM, Van Reen E, Hart CN, Wing R, Carskadon MA. Estimating sleep from multisensory arm-

band measurements: validity and reliability in teens. J Sleep Res [Internet]. 2015 Dec; 24(6):714–21.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/26126746

PLOS ONE Performance of a commercial activity tracker in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0237719 September 4, 2020 15 / 16

http://www.ncbi.nlm.nih.gov/pubmed/17463305
http://www.ncbi.nlm.nih.gov/pubmed/12972441
https://doi.org/10.1093/jn/136.4.1037
http://www.ncbi.nlm.nih.gov/pubmed/16549471
https://doi.org/10.1016/j.physbeh.2016.03.006
http://www.ncbi.nlm.nih.gov/pubmed/26969518
http://www.ncbi.nlm.nih.gov/pubmed/29235907
http://www.ncbi.nlm.nih.gov/pubmed/31107835
http://www.ncbi.nlm.nih.gov/pubmed/28052867
https://www.fitabase.com/research-library/
https://www.fitabase.com/research-library/
http://jamanetwork.com/journals/jamacardiology/article-abstract/2566167
http://jamanetwork.com/journals/jamacardiology/article-abstract/2566167
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4192284&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4192284&tool=pmcentrez&rendertype=abstract
http://www.biomedcentral.com/2052-1847/7/24
http://ieeexplore.ieee.org/document/7967642/
http://linkinghub.elsevier.com/retrieve/pii/S0828282X16303968
http://www.ncbi.nlm.nih.gov/pubmed/31269409
http://www.ncbi.nlm.nih.gov/pubmed/28416048
http://www.ncbi.nlm.nih.gov/pubmed/7939118
http://www.ncbi.nlm.nih.gov/pubmed/7939118
http://www.ncbi.nlm.nih.gov/pubmed/28162146
http://www.ncbi.nlm.nih.gov/pubmed/28162146
http://www.ncbi.nlm.nih.gov/pubmed/26126746
https://doi.org/10.1371/journal.pone.0237719


32. Dooley EE, Golaszewski NM, Bartholomew JB. Estimating Accuracy at Exercise Intensities: A Compar-

ative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices. JMIR mHealth

uHealth [Internet]. 2017; 5(3):e34. Available from: http://mhealth.jmir.org/2017/3/e34/ PMID: 28302596

33. Physical Activity Guidelines Advisory Committee. 2008 physical activity guidelines for americans.

Washington, DC; 2008.

34. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of

physical activity for children. J Sports Sci [Internet]. 2008; 26(14):1557–65. Available from: http://www.

ncbi.nlm.nih.gov/pubmed/18949660

35. Tudor-Locke C, Barreira T V, Schuna JM, Mire EF, Chaput J-P, Fogelholm M, et al. Improving wear

time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Child-

hood Obesity, Lifestyle and the Environment (ISCOLE). Int J Behav Nutr Phys Act [Internet]. 2015; 12

(1). Available from: http://www.ijbnpa.org/content/12/1/11

36. de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick K, et al. Measures of sleep and

cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents.

Physiol Behav [Internet]. 2016 May 1; 158(Imc):143–9. Available from: http://linkinghub.elsevier.com/

retrieve/pii/S0031938416300932

37. Meltzer LJ, Walsh CM, Traylor J, Westin AML. Direct comparison of two new actigraphs and polysom-

nography in children and adolescents. Sleep [Internet]. 2012 Jan 1; 35(1):159–66. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22215930

38. Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev [Internet].

2011 Aug [cited 2014 Oct 2]; 15(4):259–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

21237680

39. Meltzer LJ, Hiruma LS, Avis K, Montgomery-Downs H, Valentin J. Comparison of a Commercial Accel-

erometer with Polysomnography and Actigraphy in Children and Adolescents. Sleep [Internet]. 2015

Aug 1; 38(8):1323–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26118555

40. Montgomery-Downs HE, Insana SP, Bond JA. Movement toward a novel activity monitoring device.

Sleep Breath [Internet]. 2012 Sep; 16(3):913–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

21971963

41. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™
compared with polysomnography in adults. Chronobiol Int. 2018;

42. Depner CM, Cheng PC, Devine JK, Khosla S, de Zambotti M, Robillard R, et al. Wearable technologies

for developing sleep and circadian biomarkers: a summary of workshop discussions. Sleep. 2020;

43. de Zambotti M, Cellini N, Menghini L, Sarlo M, Baker FC. Sensors Capabilities, Performance, and Use

of Consumer Sleep Technology. Sleep Medicine Clinics. 2020.

44. Bagot KS, Matthews SA, Mason M, Squeglia LM, Fowler J, Gray K, et al. Current, future and potential

use of mobile and wearable technologies and social media data in the ABCD study to increase under-

standing of contributors to child health. Dev Cogn Neurosci [Internet]. 2018 Aug; 32:121–9. Available

from: http://linkinghub.elsevier.com/retrieve/pii/S1878929317300786 PMID: 29636283

45. Fakier N, Wild LG. Associations among sleep problems, learning difficulties and substance use in ado-

lescence. J Adolesc [Internet]. 2011 Aug; 34(4):717–26. Available from: http://www.ncbi.nlm.nih.gov/

pubmed/20952052

46. Pasch KE, Laska MN, Lytle LA, Moe SG. Adolescent sleep, risk behaviors, and depressive symptoms:

are they linked? Am J Health Behav [Internet]. 2010; 34(2):237–48. Available from: http://www.ncbi.

nlm.nih.gov/pubmed/19814603
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