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Abstract

Structural Equation Modeling (SEM) is an increasingly popular method for examining 

multivariate time series data. As in cross-sectional data analysis, structural misspecification of 

time series models is inevitable, and further complicated by the fact that errors occur in both the 

time series and measurement components of the model. In this paper we introduce a new limited 

information estimator and local fit diagnostic for dynamic factor models within the SEM 

framework. We demonstrate the implementation of this estimator and examine its performance 

under both correct and incorrect model specifications via a small simulation study. The estimates 

from this estimator are compared to those from the most common system-wide estimators and are 

found to be more robust to the structural misspecifications considered.

Introduction

Cross-sectional statistical methods are often ill-equipped to assess psychological theories 

which describe phenomena as processes occurring within individuals. For this reason 

applied researchers are increasingly looking to supplement traditional nomothetic 

approaches with those capable of capturing the time-dependent variability inherent to many 

psychological processes. Of these methods dynamic factor models (DFMs) are one of the 

most well-developed for studying multivariate change at the individual level. Although we 

can trace the use of DFMs in psychological research back to P-technique factor analysis 

(Cattell, Cattell, & Rhymer, 1947) and the initial reactions to it (Anderson, 1963; Cattell, 

1963; Holtzman, 1963), the past two decades have seen increases in both the application of 

DFMs to substantive research questions, as well as methodological development efforts 

(Chow & Zhang, 2013; Molenaar, 2017).

A number of estimation methods have been proposed for obtaining the parameters of linear 

DFMs. The most common family of estimators is based on maximum likelihood (ML) 

principles. Of the approaches employed in the psychological literature for estimating DFMs 

the application of ML estimation procedures to autocovariance matrices arranged in block-

Toeplitz form is well-studied. Here, although ML routines are used the estimates themselves 

have been labeled “pseudo-maximum likelihood” (pseudo-ML; Molenaar & Nesselroade, 

1998) as sample lagged covariance matrices do not follow a Wishart distribution. Within the 
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structural equation modeling (SEM) framework, methods for obtaining true ML estimates 

based on (1) a raw data ML function (Hamaker, Dolan, & Molenaar, 2003; Singer, 2010; 

Voelkle, Oud, von Oertzen, & Lindenberger, 2012) where the observed-data log-likelihood is 

maximized directly and (2) the Expectation Maximization (EM) algorithm for maximizing 

the expected complete-data log-likelihood (Lee, 2010) have also been established.

A least squares family of estimators has also been considered by Browne and Zhang (2005, 

2007) who developed an OLS estimation method based on autocorrelation matrices for 

obtaining point estimates of DFM parameters and their associated standard errors (G. Zhang 

& Browne, 2010; G. Zhang, Browne, Ong, & Chow, 2014) and by Molenaar and 

Nesselroade (1998) who implemented the asymptotically distribution-free (ADF) method of 

Browne (1984). In terms of input matrices it should be noted that both the OLS and ADF 

approaches also utilize the block-Toeplitz form. Bayesian approaches using Gibbs sampling 

for both continuous (Justiano, 2004; Z. Zhang, Hamaker, & Nesselroade, 2008) and 

categorical (Z. Zhang & Nesselroade, 2007) indicators have also been studied. Finally, 

within the State Space modeling framework ML estimates can be obtained using the Kalman 

filter and smoother (KF; Kalman, 1960). Chow, Ho, Hamaker, and Dolan (2010) provide a 

comprehensive review of state-space approaches and their relation to SEM.

We seek to further complement this long tradition of SEM-based work on dynamic factor 

models by demonstrating how to specify and estimate dynamic factor models using Bollen’s 

(1996; 2001) Model Implied Instrumental Variable (MIIV) technique combined with a Two 

Stage Least Squares (2SLS) estimator. Among the advantages of the MIIV-2SLS are: (1) it is 

a limited information estimator and thus applicable to many models that cannot be estimated 

with the system-wide approaches discussed earlier, such as when the number of observed 

variables is greater than the number of available timepoints; (2) it is noniterative and hence 

computationally efficient; (3) it places less restrictive distributional assumptions on the 

errors or observed variables, (4) in the domain of limited information estimators it shares 

many of the properties of a system-wide ML estimator (e.g., consistency, asymptotic 

normality), (5) compared to system-wide estimators it is more robust to structural 

misspecification, and (6) it provides local (equation-level) diagnostics.

After providing a brief review of dynamic factor models, we will introduce the MIIV-2SLS 

approach in the context of dynamic factor models. We will review methods for obtaining ML 

and pseudo-ML estimates of the parameters of DFMs. Finally, we will examine the relative 

performance of the MIIV-2SLS, pseudo-ML, and KF estimators in the context of dynamic 

factor models. We will base these comparisons on simulation conditions designed to mimic 

properties encountered by substantive researchers, including structural misspecification.

Dynamic Factor Models

Broadly, DFMs are used to model multivariate time series data when latent or unobserved 

processes are hypothesized to drive change in a set of measured variables. Under differing 

labels two classes of DFMs have emerged in the psychological literature These classes have 

been alternatively referred to as Process Factor Analysis (PFA) and Shock Factor Analysis 

(SFA) models. In PFA models the change process itself occurs a the latent level - latent 
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states are hypothesized to both manifest and cause change, while for SFA models the 

common factors are conceptualized as random shocks that induce changes in an observed 

process differentially depending on their lag. Here the process is thought to occur at the 

manifest variable level. Defined in this manner for some finite lag each model brings unique 

advantages to the study of individual change and a thorough review of their similarities and 

differences can be found in Browne and Nesselroade (2005).

Although we do find the distinction between these two classes valuable in that each provide 

a clear and distinct model of change, we are also dubious of reifying specific classes of 

models, which are themselves approximations of the process of interest. Equally as likely is 

that a given change process occurs solely at the latent or observed variable level is that it 

occurs at both, and these distinctions will rarely be clear from the data alone. For these 

reasons we define the DFM broadly in a manner that encompasses both model classes. 

Although we will not consider all variations of the DFM model allowed by this 

specification, we will introduce and assess the MIIV-2SLS estimator in situations where the 

data generating process contains components from each model.

Dynamic Factor Model Specification

With minor modifications we use the notation of Molenaar (2017) to specify a general form 

for the dynamic factor model:

yt = αy + ∑
u = 0

s
Λuηt−u + εt (1)

ηt = αη + ∑
u = 1

p
Φuηt−u + ∑

u = 1

q
Θuζt−u + ζt (2)

where (1) describes the observed variable or measurement model and (2) describes a vector 

autoregressive moving average (VARMA) latent time series. In the measurement model yt is 

a k × 1 vector of observations at time t, αy is a k × 1 vector of intercept terms, Λu is a 

sequences of k × m factor loading matrices up to order s, ηt is an m × 1 vector of latent 

factors at time t, and εt is a k × 1 vector of unique factors at time t, and ℂov εt = Ξ . For the 

latent variable time series ηt, αη is a m × 1 vector of intercept terms allowing the latent time 

series to have a non-zero mean, Φu is a series of m × m matrices up to order p containing the 

autoregressive and cross-regressive weights, Θu is a series of m × m matrices up to order q 

containing the moving average weights, and ζ(t) is a m × 1 vector of random shocks or 

innovations with ℂov ζt = Ψ. We also assume 

ℂov εt + l, εt′ = 0, ℂov εt + l, ζt′ = 0, and ℂov ζt + l′ , ζt′ = 0 for lag l ≠ 0. In addition we 

assume ℂov ηt, ζt′ = 0 for all t. We can condense this notation to DFM(p,q,s) indicating a 

dynamic factor model of autoregressive order p, moving average order q and containing 

lagged factor loadings up to order s.
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ML-Based Estimation of Standard Dynamic Factor Models

Standard dynamic factor analysis typically refers to the application of DFMs to weakly 

stationary time series measured at equadistant intervals. A process can be said to be weakly 

stationary if it satisfies the following three conditions: (1) the mean of the process is 

independent of t, (2) the variance of the process is independent of t, and (3) the 

autocovariance of the process at two points in the series, xt and xt − l depends only on their 

difference, or lag, l (Harvey, 1981). Although DFMs have been extended to handle 

nonstationary time series (see Chow & Zhang, 2013; Chow, Zu, Shifren, & Zhang, 2011; 

Molenaar, 1994; Molenaar, Gooijer, & Schmitz, 1992) and unequal measurement intervals 

(Voelkle & Oud, 2013), we limit our attention to the standard case. In this context modeling 

parameters are constrained to equality over time and this invariance is taken as a necessary 

condition for the stationarity assumption to hold. As ML and pseudo-ML estimation are the 

dominant approaches previously considered we highlight some notable aspects of each for 

single-subject dynamic factor models before introducing the MIIV-2SLS estimator.

Pseudo-ML.—The application of SEM software to block-Toepltiz autocovariance matrices 

is one of the most common methods for fitting dynamic factor models. A number of 

simulation studies have examined the nature of parameter estimates obtained from this 

approach (Chow et al., 2010; Hamaker, Dolan, & Molenaar, 2002; Hamaker et al., 2003; van 

Buuren, 1997; Voelkle et al., 2012; Z. Zhang et al., 2008). Results from these simulations 

have been mixed. For example, parameter estimates obtained from the pseudo-ML approach 

by Z. Zhang et al. (2008) showed mean absolute biases larger than the KF and least squares 

estimators, but smaller than those obtain from a Bayesian approach. A simulation conducted 

by Chow et al. (2010) showed larger biases for the structural weights and random shock 

variance and covariance parameters for the pseudo-ML approach compared to the KF. On 

the other hand, Hamaker et al. (2002) showed that for observed univariate time series 

measured without error pseudo-ML estimates were equivalent to ML estimates 

asymptotically for pure autoregressive processes, while decrements in efficiency and 

increases in bias were observed for models containing moving average parameters. 

Furthermore, the pseudo-ML approach is less prone to estimation problems such as 

nonconvergence relative to other full-information SEM-based approaches.

Full Information Maximum Likelihood.—Although not as widely recognized, it is also 

possible to obtain true ML parameter estimates for singe-subject dynamic factor models 

using SEM software (Hamaker et al., 2003; Singer, 2010; Voelkle et al., 2012). The only 

requirement for obtaining ML estimates is a fitting function which does not contain the log 

determinant of the sample covariance matrix, which is singular in the case of N = 1. The 

log |S| does not occur in the exact likelihood function (Bollen, 1989) or the case-wise full 

information maximum likelihood (FIML) fitting function commonly employed for handling 

missing data in many SEM programs. In addition to obtaining true ML estimates, this 

approach also brings a number of additional benefits which we mention but do not address 

further. There are, however, also limitations associated with the ML approach. One potential 

difficulty results from the computational demands associated with the storage and inversion 

of a model-implied covariance matrix (du Toit & Browne, 2007) which becomes 

prohibitively large as the number of time points increases. Singer (2010) traced many of the 
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convergence problems associated with ML to very large, and negative, complex eigenvalues 

in the theoretically positive semi-definite manifest variable covariance matrix. Preliminary 

results from the present authors suggested FIML was not feasible for investigating the 

estimation of structurally misspecified models due to exceedingly high rates of 

noncovergence and improper solutions.

State Space and Kalman Filter.—Methods for estimating dynamic factor models within 

the state-space modeling framework are increasingly popular and have fostered a number of 

promising extensions (Chow & Zhang, 2013; Chow et al., 2011). The State Space 

framework can also be used to obtain true maximum likelihood estimates. The mechanics of 

the KF and other associated filters and smoothers employed for estimating DFMs are beyond 

the scope of this paper. An introductory treatment of the relationship between the Kalman 

filter and smoother for those familiar with SEM-based modeling is given by Chow et al. 

(2010). Following Voelkle, Brose, Schmiedek, and Lindenberger (2014) we use the KF to 

obtain ML estimates since it circumvents many of the issues that arise with the row-wise 

likelihood expression discussed previously.

The MIIV-2SLS Approach

Bollen’s (1996; 2001) MIIV-2SLS estimator brings a number of advantages to the 

estimation of dynamic factor models. We will briefly discuss the properties of MIIV-2SLS 

most relevant to latent time series analysis before demonstrating the application of 

MIIV-2SLS to the specification and estimation of dynamic factor models.

MIIV-2SLS is a limited information estimator in that it estimates a subset of model 

parameters at a time, equation-by-equation. This stands in contrast to full-information 

estimators such as ML which simultaneously evaluate the entire system of equations, 

estimating all model parameters concurrently. A consequence of this difference is that 

limited information estimators tend to better isolate structural misspecifications, which are 

ubiquitous in practice. Misspecifications can result from the omission of paths or variables 

from a model, specification of the wrong functional form, or any situation where there is a 

failure to correctly map the true relationships between variables in a model. That full 

information estimators are less robust to structural misspecification follows logically. These 

estimators draw information from the entire system to estimate individual parameters, 

including any portion of the system which is incorrect. As a result errors from one part of 

the model can affect other areas, even those which are specified correctly. That the 

MIIV-2SLS estimator is more robust to structural misspecification than the maximum 

likelihood estimator is supported by recent simulation results (Bollen, Kirby, Curran, 

Paxton, & Chen, 2007; Nestler, 2014a, 2014b).

Overidentification tests are another valuable tool associated with the MIIV-2SLS approach. 

The structure of a given model implies that certain observed variables are uncorrelated with 

the composite error of an equation and some are not. The former are the Model Implied 

Instrumental Variables (MIIVs). In the context of MIIV-2SLS, overidentification tests 

evaluate the assumption that instruments for a given equation are uncorrelated with the 

composite disturbance for that equation. Overidentification tests are available for each 
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overidentified equation in the model. In terms of dynamic factor models more often than not 

all model equations will be overidentified. In the context of MIIV-2SLS, overidentification 

tests are tests of the current model specification as the model structure itself selects the 

MIIVs (Kirby & Bollen, 2009). For this reason overidentification tests can be used to 

identify problematic equations.

The MIIV-2SLS estimator is also noniterative and greatly increases computational 

efficiency. This quality is particularly relevant to DFA where problems with convergence are 

commonly encountered. A number of recent extensions have further increased the utility of 

MIIV-2SLS. These developments include the estimation of categorical endogenous variables 

(Bollen & Maydeu-Olivares, 2007; Jin, Luo, & Yang-Wallentin, 2016; Nestler, 2013); latent 

variable interactions (Bollen, 1995; Bollen & Paxton, 1998); second order growth curve 

models (Nestler, 2014b); higher order factor analysis (Bollen & Biesanz, 2002); 

specification error tests for nonlinearity and interactions (Nestler, 2015); testing the 

dimensionality of measures (Bollen, 2011) and generalized method of moments estimation 

(Bollen, Kolenikov, & Bauldry, 2014).

Transforming the DFM

To estimate the parameters of the DFM using MIIV-2SLS we must transform the latent 

variable model into an observed variable form. Similar transformations have been examined 

by Bollen (1996) and Molenaar (2003). For the purpose of introducing the MIIV-2SLS 

estimator to dynamic factor analysis we demonstrate this transformation using a latent 

autoregressive process with multiple indicators, arguably the most common dynamic factor 

model implemented in psychological applications. We note this model can be equivalently 

written as DFM(p, 0, 0) or PFA(p), where p is the autoregressive order of the latent time 

series. To estimate this model using the MIIV-2SLS estimator we must first scale the latent 

time series by setting the intercept to zero and factor loading to one in (1) for a single 

indicator per factor. We can then partition the indicators such that y = [y(s) y(n)]′ where y(s) 

contains the indicators used to scale ηt and y(n) contains the remaining nonscaling indicators. 

A consequence of this scaling choice is that we can now redefine the measurement equations 

for the scaling indicators such that each common factor can be expressed as the difference 

between its scaling indicator and unique factor.

Noting the mathematical relationship that follows from our scaling choice

yt
(s) = ηt + εt

(s) ηt = yt
(s) − εt

(s) (3)

we can rewrite the measurement model

yt
(n) = αy(n) + Λ(n)yt

(s) + εt
(n) − Λ(n)εt

(s) , (4)

and latent variable time series

yt
(s) = αη + ∑

u = 1

p
Φuyt−u

(s) + εt
(s) − ∑

u = 1

p
Φuεt − u

(s) + ζt (5)
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with the composite disturbance term u = εt
(s) − ∑u = 1

p Φuεt − u
(s) + ζt  inside the parentheses. 

In (5) we have recast the system of latent variable AR(p) time series (2) into a set of 

manifest ARMA(p,p) processes, where the moving average order is equal to the latent 

variable autoregressive order (Box, Jenkins, & Reinsel, 2008; Granger & Morris, 1976). 

Here the moving average weights are functions of the autoregressive weights, composite 

disturbance variances and lagged covariances, while the autoregressive weights remain the 

same between the latent VAR(p) model and the manifest VARMA(p,p) series. The 

transformation of structural models with white-noise error terms into models where the 

disturbance is no longer white-noise is common in the time series literature (Bowden & 

Turkington, 1990). In addition to making the model estimable this transformation explicitly 

allows for the possibility of correlation between the regressor and the error, a realistic 

concern in the presence of lagged endogenous variables. Here, we are not concerned with 

estimating the MA parameters and treat them as nuisance parameters. Our main objective is 

to instead obtain consistent estimates of Φ from the latent variable model in light of these 

composite disturbances. Although not common in the psychometrics literature, the 

estimation of AR parameters in the presence of moving-average measurement error is 

common in signal processing and system identification (Stoica, Friedlander, & Soderstrom, 

1987; Stoica, Soderstrom, & Friedlander, 1985).

To further illustrate this transformation of (4) and (5) we can write the observed form of a 

DFM(1, 0, 0) as

yt
(s)

yt
(n) =

αη

αy(n) +
Φ

Λ(n) yt − 1
(s) +

I (I − Φ) 0 I
0 −Λ(n) I 0

εt
(s)

εt − 1
(s)

εt
(n)

ζt

. (6)

The transformations above have translated the structural relations from the original dynamic 

factor model into a system of estimating equations. Consolidating the composite disturbance 

we can further simplify our notation to express this system as y = Zθ + ũ where y is a 

stacked vector containing y(s) and y(n), Z is block-diagonal and contains all relevant 

regressors from yt − u
(s) , θ contains the free parameters in Φ and Λ and ũ contains the 

composite error terms for each equation. It is worth noting that for any equation i, the ith 
block of Z contains the scaling indicators for any lagged or contemporaneous latent variable 

appearing on the right hand side of equation i and the corresponding θi will contain any 

estimated factor loadings or autoregression coefficients belonging to equation i. Furthermore 

we can define ũ in terms of the correlated-shock ξt + εt
(s) − ∑u = 1

p Φjεt − j
(s)  or independent-

shock (ξt + ∑u = 1
p Θuξt − j

(s) ) ARMA(p,p) representation (Browne & Nesselroade, 2005). The 

difficulty in estimating θ from y = Zθ + ũ results from the composite disturbance term ũ 
which by construction will have a nonzero correlation with variables in Z. To overcome this 

difficulty we can use the limited information MIIV-2SLS estimator described below.
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Model-Implied Instrumental Variables

The 2SLS estimator was developed specifically for cases such as the one described above, 

where the equation error correlates with one or more explanatory variables in the model. 

2SLS requires instrumental variables (IVs) for consistent estimation of θ. For the matrix of 

IVs for equation i, Vi, to be valid the following conditions must be satisfied: (a) 

ℂov Zi, Vi ≠ 0, (b) rank of ℂov Vi, Zi  must be greater than or equal to the number of 

columns in Zi, (c) ℂov Vi  is nonsingular, and (d) ℂov(ui, Vi) = 0.

When Condition (a) is only marginally satisfied this is referred to as the “weak instruments” 

problem. In this situation the actual sampling distributions of conventional statistics such as 

hypothesis tests, confidence intervals, and standard errors will generally be nonnormal, 

leading to unreliable inferences (Stock, Wright, & Yogo, 2002). Weak instrument 

diagnostics are described elsewhere (e.g., Stock, et al., 2002; Bollen, 2012) and these 

diagnostics apply here as well. Condition (c) can be assessed by checking to see if the 

sample IV covariance matrix has an inverse. Satisfaction of (d) requires all IVs to be 

uncorrelated with the composite disturbance for a given equation and this can be assessed 

empirically using overidentification tests such as Sargan’s χ2, which we describe in detail 

below. Unlike the majority of applications where IVs are drawn from a set of unmodeled 

external variables (or auxiliary instruments, see Bollen (2012)) the current procedures draw 

instruments from the pool of observed variables satisfying condition (d) based entirely on 

the model specification. Thus the MIIV-2SLS estimator is a model-based method for 

selecting instrumental variables and violation of (d) is a rejection of the model structure 

itself. In this case, the researcher will need to respecify the model. Although locating the 

source of a structural misspecification is always a challenge, research on the robustness to 

structural misspecification might help to eliminate those parts of the model that could not 

influence the test statistic. See Bollen (2001) and Bollen, Gates, and Fisher (2018). In 

addition, it is possible to calculate the Sargan test statistic for subsets of MIIVs for an 

equation so as to better isolate the source of the problem.

MIIV Selection for the DFM.—To illustrate the selection of MIIVs we first look at the 

measurement model for the DFM. Let the nonscaling indicator yj, t
(n) be the jth element of y(n). 

The equation for yj
(n) will include the composite disturbance term u = εj, t

(n) − λjk
(n)εk, t

(s) . Any 

valid instrumental variables νl will satisfy the following moment conditions: 

ℂov νl, εj, t
(n) = 0, and ℂov νl, εk, t

(s) = 0. If the factor complexity of yj, t
(n) is greater than one, as 

can occur when specifying a dynamic factor model with lagged factor loadings, 

uniquenesses associated with the additional factors must also have a covariance of zero with 

the instrument. For some arbitrary lag l, if yj
(n) also loads on ηk, t − l, the scaling indicator 

yk, t − l
(s)  will no longer be an eligible MIIV due to εk, t − l

(s) . From these moment conditions it 

is clear MIIVs for the measurement equation yj, t
(n) can be obtained from any observed 

variable whose error does not correlate with ej, t
(n) or ek, t

(s)  and any scaling indicator 

yk
(s), when λjk

(n) = 0.
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For the latent variable model, let yj, t
(s) be the jth structural equation in y(s) with composite 

disturbance term u = εj, t
(s) − ∑u = 1

p ϕjk, t − uεk, t − u
(s) + ζj, t . Any valid instrumental variables νl

for the jth latent variable equation will satisfy the following moment conditions: 

ℂov νl, ζj, t
(s) = 0, ℂov νl, εj, t

(s) = 0, and ϕjk, t − uℂov νl, εk, t − u
(s) = 0. For single-indicator time 

series models a parsimonious solution for identifying IVs is to simply use lagged values of 

the endogenous variables. More specifically, the moving average structure of the disturbance 

in ũ implies that E uyk, t − u
(s) = 0 only if u ≥ p . In fact, for single indicator ARMA (p,q) 

models it has been shown that estimates obtain from lagged endogenous variables 

corresponding to yt − u + 1 are the most asymptotically efficient of all possible lagged 

instrumental variables (Dolado, 1990). This is intuitive as we would expect the correlation 

between yt and yt − u + 1 to decay with increasing lags.

A drawback of this approach, however, is that although yt − u + 1
(s)  is certainly a MIIV, as its 

adequacy is implied at least partly by the MA(p) disturbance structure, it is not actually in 

the estimating model and therefore its use requires pruning the number of timepoints 

included in the analysis. For multiple indicator time series models another source of MIIVs 

for yj, t
(s) comes from the set of nonscaling endogenous indicators. Although any lagged 

scaling indicator yk, t − u
(s)  with a nonzero auto- or cross-regression weight ϕjk, t − u will not be 

an eligible MIIV, the nonscaling indicators of ϕjk, t − u ≠ 0, nonscaling indicators of ηk, t − u
may be especially appropriate as there is some evidence to suggest estimates are superior 

when IVs span the factor space for a given equation (Cudeck, 1991). It is also likely these 

variables are highly correlated with yk, t − u
(s) , and their implementation does not require any 

additional pruning of the sample size. An additional benefit of using non-scaling indicators 

is they will result in estimates which are more robust to omitted cross-regressive relations.

Degree of Overidentification.—In addition to determining the instrument validity 

implied by the DFM specification above we must also consider the number of MIIVs used in 

estimation. Condition (b) is often referred to as the rank condition and implies a necessary 

condition worth introducing, the order condition. The order condition states the number of 

instruments in Vi must be greater than or equal to the number of endogenous regressors in 

Zi. When the rank condition is satisfied and the number of MIIVs for a given equation is 

equal to the number of endogenous regressors to be estimated that equation is said to be 

exactly identified. The degree of overidentification for each equation is equal to the number 

of MIIVs for that equation minus the number of endogenous regressors. As will often be the 

case with DFMs, the model specification will lead to more MIIVs than endogenous 

regressors, resulting in many overidentified equations. In the case of the DFM considered in 

our simulation study, for example, equation-specific degrees of overidentification implied by 

the model specification range from 2 to 15.

Evidence from the econometric literature has shown the bias of the 2SLS estimator is 

minimal in large samples but tends to increase with the degree of overidentification when the 

sample is small (Hall, 2005; Mikhail, 1972). This can be especially true when the 
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contribution of additional MIIVs to the first stage regression R2 is minimal (Bollen, 2012, p. 

59). A similar pattern has been observed for the MIIV-2SLS estimator (Bollen et al., 2007). 

It is important to remember that even though the model specification may imply a large 

number of valid instruments (Condition (d)), those instruments will differ in how strongly 

they relate to the endogenous variables in that equation. In some cases it is possible to have a 

number of MIIVs which are only weakly correlated with the endogenous regressors. For this 

reason it is important to mention strategies for pruning excess MIIVs when necessary.

In the present context two viable options for pruning instruments were available, however, 

due to space considerations only the latter is considered here. The first method involves 

using variable selection methods in the first stage regression to identify the smallest set of 

instruments that jointly explain the most variation in the endogenous regressors while 

satisfying (d) (Serena & Jushan, 2009). A simpler option, and the one used in this paper, is 

to select a degree of overidentification (e.g. one) and then select MIIVs. For example, the 

nonscaling indicators of the same lagged latent variable are good potential MIIVs in that 

they should be moderately to highly correlated with the scaling indicator of the same latent 

variable. It is worth mentioning the pruning of MIIVs discussed here applies to the 

estimation of DFM model parameters only, and not to the model specification testing which 

will be discussed later. In the case of evaluating model specification the full set of MIIVs is 

recommended for detecting misspecifications.

The MIIV-2SLS Estimator

With instruments in hand we now define the limited information MIIV-2SLS estimator in the 

context of generalized method of moments (GMM) estimation. GMM estimation is based on 

the idea that parameters θ from an overidentified model are related to a set of data X through 

a series of orthogonality conditions on the population moments, E g xi; θ = 0 (Hansen, 

1982) for equation i. Here we can define the vector gi() as

gi = g xi; θi = Vi yi − Ziθi (7)

where Vi (T × # of MIIVs), yi (T × 1), and Zi (T × # of endogenous covariates) are the 

instrumental, outcome, and explanatory variable quantities associated with equation i. To 

further simplify our notation we can define 

SV iyi = T −1∑t = 1
T V it′ yit and SV i′Zi = T −1∑t = 1

T V it′ Zit as the sample moments corresponding 

to σV i′yi and ΣV i′Zi, respectively. The goal in estimation is to choose θi such that g(xj; θi) or 

more specifically the distance between SV iyi and SV i′Ziθi is as close to zero as possible. Note 

that in an overidentified equation it is not possible to identify θi such that g(θi) = 0. In this 

case we instead minimize the joint distance between the sample orthogonality conditions 

using a symmetric, positive-definite weight matrix W, 

T SV i′yi − SV i′Ziθi ′W SV i′yi − SV i′Ziθi . The choice of W leads to a number of different GMM 

estimators, however, for the remainder of this paper we will focus on the weight matrix 

(W = T (V′V)−1) which gives the 2SLS estimator for equation i. Interested readers should see 

Hayashi (2011) for a general treatment of the various single and multiple equation GMM 
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estimators associated with W and Bollen et al. (2014) for a MIIV-GMM estimator for latent 

variable models. After identifying the MIIVs for a given equation, a unique solution to the 

objective function given above can be obtained by solving for θi

θi = SXiV i′ SV iV i
−1 SXiV i

−1SXiV i′ SXiyi . (8)

As mentioned previously, in standard dynamic factor analysis it is a necessary, but not 

sufficient, condition for stationarity that modeling parameters be time-invariant. Expanding 

our notation to the full system of equations we can write the MIIV-2SLS estimator capable 

of handling cross-equation equality restrictions as

θ
γ

= SXV′ SV V
−1 SXV R′
R 0

−1 SXV′ SXy
q

(9)

where θ again contains all the estimated structural parameters, SXV is a block diagonal 

matrix containing the equation-specific covariances of each RHS (Right Hand Side) 

endogenous variables with each MIIV, SVV is a block diagonal MIIV covariance matrix, and 

SXy is a block diagonal matrix containing the equation-specific covariances of each RHS 

endogenous variables with the dependent variable. The (# of restrictions × 1) vector q and 

the (# of restrictions × # of estimated coefficients) restriction matrix R are used to impose 

the cross-equation equality constraints implied by the dynamic factor model. Each row of R 
and element of q can represent a linear equality restriction made on the coefficient vector. If 

the ith row of R does not contain a restriction or represents an equality restriction only 

i.e., λ21, t − 1 = λ21, t  then qi = 0. If a subset of coefficients are instead fixed to a constant 

i.e., λ21, t − 1 = λ21, t = 2  then the corresponding element of q would be set equal to 2. A 

vector of estimated Lagrangean multipliers, γ . is also produced as a result of these 

restrictions but will not be discussed further here.

Overidentification Tests for MIIV-2SLS

An advantage of the MIIV-2SLS approach for estimating DFMs is the availability of 

overidentification tests when the model specification leads to an excess of instruments. For 

dynamic factor models any non-scaling lagged indicators will be valid MIIVs, making the 

availability of excess instruments likely for identified models. These tests can be used to 

assess the assumption of orthogonality between residuals and instruments i.e. E(V′u) = 0 .
Rejection of the null implies a problem with the logic underlying the choice of instruments 

(Woolridge, 2010), and importantly in the context of MIIV-2SLS this logic is the model 

specification itself. Therefore, overidentification tests can serve dual functions in SEM, 

identifying misspecified models and also diagnosing specific structural misspecifications 

through the examination of restrictions leading to the problematic instruments.

Kirby and Bollen (2009) examined the performance of overidentification tests commonly 

employed in simultaneous equation models with observed variables in the context of latent 
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variable structural equation models. In their simulations Sargan’s χ2 (Sargan, 1958) test 

performed well compared to the other tests considered:

Sχ2 =
T SV i′yi − SV i′Ziθi ′SV V

−1 SV i′yi − SV i′Ziθi
σii

(10)

where all quantities are as previously defined. The null hypothesis of Sargan’s test is that all 

MIIVs are uncorrelated with the equation’s composite disturbance. The alternative 

hypothesis is that at least one MIIV correlates with the disturbance. If we reject the null, 

then this is evidence that there is a specification error in the structure that led us to select the 

MIIVs. For this reason it is advisable to include all valid instruments when using Sargan’s 

test. Of course, just like the χ2 test used in ML estimators in SEM, we need to keep in mind 

that the statistical power of the test increases with additional timepoints, in addition to other 

factors, so that high statistical power might lead to the rejection of MIIVs that are only 

weakly correlated with the error.

Monte Carlo Simulations

Monte Carlo simulations were conducted to examine the finite-sample properties of the 

MIIV-2SLS estimator for dynamic factor models. Comparisons of MIIV-2SLS were made to 

the pseudo-ML and ML (via KF) estimates under varying time series lengths (T = 50, 100, 

200, 500) with and without structural misspecifications. Within each simulation condition 

the finite-sample properties of Sargan’s χ2 overidentification test were also examined to 

determine its utility in diagnosing the structural misspecifications. In addition to the 

simulations presented below additional simulations were conducted to assess the generality 

of our results under alternative model specifications. As the pattern of results proved similar 

across the two simulations we have included results from the latter in Appendix A.

Data Generation

Continuous multivariate latent time series were generated in accordance with equation (2). 

Random shock vectors ξt were generated from N(0, Ψ) . Subsequently, the observed 

multivariate time series, yt = 1, yt = 2, …, yt = T , were generated according to (1). The vector 

of measurement errors at each time point were generated from N(0, Ξ) . As in Z. Zhang et al. 

(2008) and Voelkle et al. (2012) a burn-in of 1,000 time points was used to attenuate any 

persisting effects of the initial parameters. 500 datasets were generated for each block of the 

simulation design. The individual model specifications used to generate and fit individual 

datasets will be described in detail below.

As previously mentioned we are concerned with the application of dynamic factor analysis 

to covariance-stationary processes such that E yt = E yt′  and ℂov yt, yt + u′ = ℂov yt′, yt′ + u′

for u = ±0, ±1, ±2,.... Therefore, for each condition elements of the autoregressive weight 

matrix, Φ, were chosen both to span a range of plausible coefficient values, but also to 

ensure the generated time series are stationary. The stability conditions for a VARMA(p, q) 

process require that all eigenvalues of Φ have modulus less than 1 (Lutkepohl, 2007). If this 

requirement holds, the process can be considered covariance-stationary.
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Model Specification

The following data generating parameters were employed across all simulation conditions

Φ = 0.7 −0.2
−0.2 0.5 , Λ = Λ0Λ1 =

1.0 0 0 0
1.0 0 0 0
1.0 0 0.5 0
0 1.0 0 0
0 1.0 0 0
0 1.0 0 0

, Ψ = 0.36 0.18
0.18 0.36 ,

with diagonal uniqueness covariance matrix Ξ = diag[0.3, 0.3, 0.3, 0.3, 0.3, 0, 3] . Here we have 

included both cross-regressive relationships among the latent variables, as well as a lagged 

factor loading, to demonstrate estimation of a DFM model with components from common 

to the PFA and SFA model classes. In addition, this model allows us to examine the 

consequences of model misspecifications which are likely to occur in practice : omission of 

latent variable cross-regressions and lagged factor loadings. To assess the performance of 

each estimator we considered three different use cases: (1) the correct model in terms of free 

and fixed parameters was fit to the data, (2) a model where a single lagged factor loading, 

λ33, is incorrectly omitted, and (3) the case where Φ is diagonal, the small lagged cross-

regressive paths, ϕ21 and ϕ21, are incorrectly omitted from the model specification. An 

important consequence of these choices is that we can assess the effect of each type of 

misspecification on the different estimators.

Model Estimation

Pseudo-ML estimates were obtained using the structural equation modeling software lavaan 

(Rosseel, 2012). State space estimation using the Kalman filter and smoother in combination 

with an Expectation-Maximization algorithm was implemented using MARSS (Holmes, 

Ward, & Wills, 2012). To estimate the model described above the standard state space model 

specification was modified to allow for the observed indicators to depend on lagged states 

(Nimark, 2015, p.10). MIIV-2SLS search and estimation procedures were conducted using 

MllVsem (Fisher, Bollen, Gates, & Rönkkö, 2017).

MIIVs

To maintain consistency across all simulation conditions, including each model 

specification, the identical set of MIIVs was used to estimate the parameters of each DFM. 

Based on previous simulation results we chose to use a single degree of overidentification 

for all equations in the correctly specified model. Although the equation-specific degree of 

overidentification implied by the model exceeds one across all equations it is only required 

we have as many instruments as endogenous covariates. In the case of the correctly specified 

model this means we employed two MIIVs for the y equations with a complexity of one, and 

three MIIVs for the y3, η1 and η2 equations. In the model where Λ33 is incorrectly omitted 

from the model specification there is one less RHS variable, leading to an additional degree 

of overidentification for that equation. In addition, for the case where the cross-regressive 

paths ϕ21 and ϕ12 are mistakenly omitted, both latent variable equations no longer include a 

cross-lagged path and thus each of those equations will also have one additional degree of 
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overidentification. In all cases the MIIVs themselves are identical across these 

parameterizations.

For the measurement model equations we chose MIIVs from the lagged versions of non-

scaling indicators originating from the same factor. For example, for the y2,t equation we 

used y3,t − 1 and y3,t − 2 as MIIVs. This choice makes sense for the DFM model because it is 

robust to both the possibility of autoregressions among the measurement errors and lagged 

factor loadings. For the latent variable model we chose MIIVs from the set of lagged non-

scaling indicators. For example, for the η1, t equation, which included the predictors η1, t − 1 

and η2, t − 1, we chose two non-scaling indicators of the lagged dependent variable, y2, t − 1 

and y3, t − 1 and one indicator from η2, t − 1, y6, t − 1. This choice also makes sense in the 

context of DFMs because it means the set of MIIVs will not change based on any omitted 

latent variable relations. To evaluate model specification using Sargan’s test all valid MIIVs 

were employed for each equation.

Measures

To compare the performance of each estimator we examined the relative bias and efficiency 

within each simulation condition. Mean relative bias was calculated as 

∑k = 1
N (θak − θa)/θa /N where θa is the data generating parameter in a given simulation 

condition, θak is the estimate for parameter a in the kth Monte Carlo replication, and N is the 

total number of replications. Second, we examined the variability associated with each 

model parameter using the standard deviation of θa within a single block of the simulation, 

SD(θa) . To evaluate the finite sample properties of Sargan’s χ2 overidentification test in 

diagnosing structural misspecification two situations were considered: (1) how often does 

Sargan’s χ2 test incorrectly identify a correctly specified equation as misspecified, and (2) 

how often does Sargan’s χ2 test correctly identify an equation when it is misspecified. In 

both circumstances we used an α of 0.05.

Results

Improper Solutions.—Improper solutions were defined as correlations whose absolute 

magnitude was greater than 1, negative variance parameters, or autoregressive coefficients 

implying a non-stationary solution. Any dataset on which an estimator did not converge or 

produced an improper solution was dropped from the analysis. The MIIV-2SLS estimator 

produced 9 improper solutions, while the pseudo-ML estimator produced 12, both at the 

smallest sample size, T = 50. The pattern of improper solutions for the KF estimator was 

more complicated. For the correctly specified model, the KF did not converge for 21 datasets 

at T = 50, 7 datasets at T = 100, and 2 datasets at T = 500. For the model where the lagged 

factor loading λ33 was incorrectly omitted the KF estimator did not converge for 22 datasets 

at T = 50, 19 at T = 100, 10 at T = 250, and 3 at T = 500. For the model where ϕ21 and ϕ12 

were incorrectly omitted from the model specification, the KF did not converge in 8 datasets 

at T = 50. To make comparisons across the estimators and model specifications only those 

datasets on which all estimators converged with no improper solutions were used. This left 

440 datasets at T = 50, 476 datasets at T = 100, 489 datasets at T = 250, and 497 datasets at 

T = 500 to be used for comparing the point estimates and efficiency. One side effect of this 
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choice is that performance for the KF estimator may appear better than otherwise as we have 

trimmed the most problematic cases for that estimator specifically. For the evaluation of 

Sargan’s test all 500 datasets were used for each simulation block.

Percentage of Relative Bias.—The percentage of relative bias across all estimators and 

simulation conditions is presented in Table 1. For the correctly specified model, the absolute 

percentage of relative bias for the factor loadings did not exceed 2% for the KF and 

MIIV-2SLS estimators across all time series length. Likewise, the relative bias for the factor 

loadings did not exceed 5% for the pseudo-ML estimator, suggesting trivial levels of bias for 

the measurement model parameters across estimators. In general, the pattern of results for 

the time series model parameters was also similar across estimators. For example, all 

estimators exhibited a decreasing negative bias for the autoregressive coefficients as time 

series lengths increased. The pattern for the cross-regressive coefficients was not consistent 

in regards to sign, but compared to the autoregressive coefficients showed a smaller 

magnitude of relative bias, which also decreased with longer time series lengths.

For the first misspecified model, the MIIV-2SLS coefficient estimates are largely immune to 

the omitted lagged factor loading, λ33. In fact, the λ31 parameter was the only DFM 

parameter whose estimates were affected by the misspecification, resulting in a larger 

positive bias. Here the effect of a misspecification in the measurement model is isolated to 

the measurement model, and more specifically to the equation in which the misspecification 

occurs. The system-wide estimators (pseudo-ML and KF) show an even larger average 

positive bias in the estimates of λ31 as a result of this misspecification. For all estimators this 

increase is relatively stable across time series lengths. In the system-wide estimators, 

however, the effect of the misspecified factor loading is not isolated to the misspecified 

equation. As a result of omitting λ33 both regression coefficients for the η1 equation showed 

a substantial increase in bias. Estimates of the autoregressive relationship ϕ11 became 

positively inflated, while estimates of the negative cross-regressive coefficient ϕ12 became 

smaller in magnitude, adjusting to the omitted positive loading.

For the second misspecified model, where ϕ12 and ϕ21 are incorrectly omitted, the 

MIIV-2SLS measurement model estimates are unaffected by the misspecification. For the 

system-wide estimators, coefficient estimates for the lagged factor loading λ33 show a small 

decrease in magnitude. Effects of this misspecification on the latent variable model are more 

pronounced. For the MIIV-2SLS estimator the autoregressive coefficients become 

increasingly negatively biased. Here the positive autoregressive relationship is becoming 

smaller to compensate for the omitted negative cross-lagged relationship. On the other hand, 

for the system-wide estimators, estimates of ϕ11 and ϕ22 become larger in response to the 

omitted negative relationships. The increase in bias associated with the system-wide 

estimators is roughly twice as large as that of the MIIV-2SLS.

Standard Deviation of Coefficient Estimates.—Efficiency of the estimators across all 

model specifications was assessed using the standard deviation of parameter estimates 

within each simulation block (see Table 2). No meaningful changes in efficiency were 

observed across the different model specifications so only the results for the correctly 
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specified model are reported. The pattern of variability within each estimator was similar, 

with increasing time series lengths resulting in less variable point estimates. Across 

estimators, variability was smallest for the KF, followed by the pseudo-ML and MIIV-2SLS 

estimators, although these difference are more pronounced at shorter time series lengths. 

This finding is consistent with previous results for instrumental variable estimators which 

have shown that small degrees of overidentification combined with small sample sizes can 

result in more variable estimators.

Sargan’s χ2 Test.—Results for Sargan’s test are given in Table 3. For the correctly 

specified model the proportion of overidentification tests rejecting the null hypothesis 

ranged from 0.03 to 0.08 suggesting the test performs well in terms of Type I error across 

the sample sizes considered here. For the model with the omitted lagged factor loading λ33
the overidentification test should indicate a problem with the y3 equation, as the lagged y1 

variable is incorrectly included in the MIIV set. At the smaller sample sizes, T = 50,100, the 

test rejects approximately 20% and 32% of datasets at an α = 0.05. This suggests at smaller 

time series lengths the test will not always detect a misspecified equation if one is present. 

At the larger time series lengths the test performs considerably better, detecting the 

misspecified equation in 74% of the datasets at T = 250 and 98% at T = 500. For the model 

with omitted cross-regressive coefficients, the η1 equation would incorrectly include y4, and 

the η2 equation would incorrectly include y1, as MIIVs. At time series lengths of T = 50, T 
= 100, and T = 250 the test rejects far below the nominal rates, suggesting the test may have 

low power for detecting the omission of small cross-lagged relations. At the larger sample 

size of T = 500, the test accurately detects a problem with the η1 equation in 57% of 

datasets, and the η2 equation in 88%.

An Empirical Example

To demonstrate estimation of a DFM using the MIIV-2SLS estimator we used data from 

Subject 1 described by Lebo and Nesselroade (1978). The data include 112 daily ratings on 

six items labelled cheerful, happy, content, tired, sluggish, and weary. The first three items 

are hypothesized to represent well-being and the second three items fatigue. The scaling 

indicator for each latent variable should be chosen based on theory. If no theory is available 

to guide this choice scaling indicators can also be chosen based on empirical information. 

Here, we choose the scaling indicator for each latent series as the indicator with the largest 

R2 (cheerful, R2 = 0.86 and tired, R2 = 0.93). Another consideration would be the 

correlation of the scaling indicator with the model-implied instruments; larger correlations 

would lead to stronger instruments and better performance.

In this example MIIV-2SLS point estimates were obtained using all model-implied 

instruments. This specification allows us to simultaneously compare the estimated 

coefficients with results from local overidentification tests. To begin our analysis we adopt a 

model specification similar to that used by Ram, Brose, and Molenaar (2013) for these data, 

a bivariate DFM with both lagged and cross-regressive effects among the latent variable time 

series (Model 1). Point estimates and associated test statistics for all models presented in 

Table 4. For this model we observe one significant Sargan’s χ2 test statistic, χ2(9) = 24.4, p 
< 0.01, for the sluggish equation. This result suggests that at least one of the model-implied 
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instruments is correlated with the equation error and therefore there are problems with the 

larger model specification. A number of specification errors might be responsible for the 

observed result and we explore two of these possibilities: (1) there is an omitted lagged 

factor loading from fatigue at t − 1 to sluggish at t (Model 2), and (2) there is an omitted 

residual covariance between the errors of sluggish and weary (Model 3).

Based on the specification of Model 1, lagged and contemporaneous variables cheerful, 
happy, content, and weary, along with lagged variables tired and weary are all valid 

instruments for the sluggish equation. In Model 2 sluggish also loads directly on fatigue at t 
− 1 which means tired at t − 1 would be ruled out as a valid instrument for sluggish. Based 

on 95% confidence interval constructed using a moving block bootstrap procedure the 

lagged loading for sluggish (λ52
(1)) was not significant. Furthermore, Sargan’s χ2 test statistic 

is still significant for the sluggish equation, with tired at t − 1 removed from the instrument 

set, χ2(7) = 21.7, p < 0.01, suggesting there are still problems with this specification.

In Model 3 we hypothesize the existence of an omitted residual covariance between sluggish 
and weary. This might occur due to some ambiguity regarding perceived distinctions 

between the two adjectives. As a result of this additional covariance, weary is no longer 

considered as a valid MIIV for the sluggish equation. As a result of this new specification, 

Sargan’s χ2 test statistic is no longer significant, χ2(8) = 12.9, p = 0.12. We can follow-up 

this test with a more formal comparison of the two specifications using the C statistic 

described by Hayashi (2011, p. 218). This test involves taking the difference of the restricted 

and unrestricted Sargan’s χ2 statistic, in this case the model where weary is a valid 

instrument for the sluggish equation and one where it is not, which itself is χ2 distributed 

with degrees of freedom equal to the number of suspect instruments. We also find the C 

statistic comparing the orthogonality conditions implied my Model 1 and 3 to be significant, 

χ2(1) = 11.5, p < 0.001, providing additional evidence of some omitted covariation between 

the two items.

The steps detailed here are not intended to provide an exhaustive or rigorous model 

respecification procedure, but to demonstrate at a broad level the relation between 

overidentification tests and the larger model specification, and how these tests might be used 

to localize misfit. It is also worth noting that across the three model specifications the time 

series parameter estimates were robust to the various measurement model specifications. 

Code for fitting the empirical example using the MIIV-2SLS estimator can be obtained from 

the first author.

Discussion

In this paper we introduced a limited-information estimator for dynamic factor analysis 

based on Bollen’s (1996; 2001) MIIV-2SLS estimator. We demonstrated how a DFM can be 

transformed from a model containing latent variables into one composed of observed time 

series only. We showed how instrumental variables implied by the model specification itself 

can be used to obtain consistent estimates of the original DFM model parameters. As latent 

variable time series models imply certain equality constraints we established how these 

constraints can be imposed on the contemporaneous and lagged sample covariance matrices 
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during estimation. Furthermore, we examined the performance of local misspecification tests 

as a means for detecting structural misspecifications in both the time series and factor 

analysis models.

Although there is a long tradition of employing SEM to analyze multivariate time series data 

from a single individual very little attention has been paid to the effects of structural 

misspecification in these models. In the case of dynamic factor models this is unfortunate as 

misspecification is possible in both the factor analysis and time series components of the 

model. When the DFM is correctly specified we expect all estimators to produce consistent 

estimates, and this result was shown empirically. Unfortunately, structural misspecification 

is inevitable and therefore it is essential to understand which DFM model parameters remain 

consistent in the face of various misspecifications. The method introduced here differs from 

the system-wide estimators previously considered for DFMs in that it does not require all 

model parameters to be estimated simultaneously and may better isolate structural errors.

To better understand the robustness properties of the MIIV-2SLS and system-wide 

estimators we examined two plausible structural misspecifications of a bivariate DFM. The 

first misspecification involved the omission of a lagged factor loading. As models without 

lagged factor loadings tacitly imply all indicators return to baseline levels at equivalent rates 

we viewed this as an important misspecification to consider. As a result of this 

misspecification all estimators produced biased estimates of the contemporaneous loading 

associated with the omitted indicator. However, for the system-wide estimators, the effects 

were not isolated to the measurement model parameters. Incorrect omission of a single 

lagged factor loading resulted in some auto and cross-regressive parameters that were no 

longer consistent. This was not the case for the MIIV-2SLS estimator whose time series 

model parameters were unaffected. The second misspecification we considered was the 

omission of negative lagged cross-regressive weights amongst the latent variable time series. 

We view this misspecification as important to consider as the degrees of freedom associated 

with the auto and cross-regressive paths are considerably fewer than those associated with 

the factor analysis model. In practice this could lead to adequate overall model fit statistics 

despite having incorrect constraints on the time series model parameters. In our simulations, 

this misspecification resulted in autoregressive weights which were no longer consistent 

across all estimators. This misspecification had little to no affect on the measurement model 

parameters.

Through our simulations we also considered the efficiency of each estimator and found the 

pattern of standard deviation to be similar across all model specifications within each 

estimator. Furthermore, the variability of the Kalman filter and smoother based estimates 

were the least variable, followed by pseudo-ML and MIIV-2SLS. For the case of MIIV-2SLS 

this result is not surprising as we chose to use a small degree of overidentification in our 

simulations, which is known to decrease bias but increase variability in small samples. To 

obtain a constant degree of overidentification across equations we eliminated MIIVs based 

on robustness concerns. Theoretically, MIIVs could be selected to reduce bias and 

variability, and future work should consider both the equation-specific degree of 

overidentification and MIIV selection criteria more systematically.
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In addition to introducing the MIIV-2SLS estimator we also demonstrated how 

overidentification tests can be used to detect local misspecification in latent time series 

models. For the longer time series lengths considered here (T = 250 and T = 500) Sargan’s 

χ2 test performed well in detecting the misspecified factor loading. Interestingly, the test did 

not perform as well at detecting the misspecified time series components, only approaching 

the nominal rejection rate at the largest time series length, T = 500. Given the effects of 

structural misspecification on DFM model parameters observed here we view these results 

as a promising first step in providing new methods for diagnosing model misspecification 

across all time series estimators.

Appendix

Appendix A.: Additional Monte Carlo Simulations

The data generating procedure, time series lengths, estimators, equation-specific MIIVs, and 

summary measures were identical across the two simulations.

A.1 Model Specification

In Simulation 2 we varied the data generating parameters contained in Λ and Φ,

Φ = 0.7 −0.2
0.0 0.5 , Λ = Λ0Λ1 =

1.0 0 0 0
0.8 0 0 0
0.6 0 0.5 0
0 1.0 0 0
0 0.8 0 0
0 0.6 0 0

,

while keeping Ψ and Ξ consistent with Simulation 1. This data generating model allows us to 

examine consequences of model misspecification not permitted by Simulation 1, such as the 

estimation of a cross-regressive path, ϕ21, whose data generating value was zero. To assess 

the performance of each estimator we again considered three different use cases: (1) the 

correct measurement model in terms of free and fixed parameters and a latent variable model 

with all autoregressive and cross-regressive effects present, (2) a misspecified measurement 

model where a single lagged factor loading, λ33, is incorrectly omitted, and the latent 

variable model is identical to (1), and (3) the case where the measurement model is correctly 

specified, but the cross-regressive path, ϕ12 is incorrectly omitted from the model 

specification.

A.2 Results

As in Simulation 1 to make comparisons across the estimators and model specifications only 

those datasets on which all estimators converged with no improper solutions were used. 

Results were consistent across the two simulations with the majority of improper solutions 

occurring at the smallest time series length. This left 437 datasets at T = 50, and 500 datasets 

at T = 100, 250, 500 for the following comparisons. For Simulation 2 the percentage of 

mean relative bias is presented in Table A1, the standard deviation of coefficient estimates in 
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Table A2, and the proportion of equations failing Sargan’s χ2 test in Table A3. These results 

are generally consistent with those observed in Simulation 1. For this reason we do not 

discuss the individual measures exhaustively but highlight areas where the results differed.

First, Simulation 2 provides a test of the MIIV-2SLS estimator when a cross-regressive path 

is erroneously included in the model specification. Specifically, in Models 1 and 2, ϕ21 is 

estimated despite the population value being zero. Since it is not possible to calculate the 

percentage of relative bias in this case we give the range of mean coefficient estimates across 

all time series lengths for Models 1 and 2. Here the coefficient estimates were similar across 

estimators, ranging from 0.004 to 0.021 for MIIV-2SLS, 0.002 to 0.026 for the pseudo-ML, 

and 0.003 to 0.029 for the Kalman Filter. No differences in the coefficient estimates of ϕ21 

were observed as a result of omitting λ33 from the model specification. For the pseudo-ML 

and KF estimators, the omission of λ33 (Model 2) had a less dramatic impact on coefficient 

estimates of ϕ21, while estimates of λ31 were generally more biased, when compared to the 

results from Simulation 1. The pattern of standard deviations (Table A2) observed in 

Simulation 2 was also similar to the pattern seen in Simulation 1. Results for Sargan’s test 

showed a slight increase in power to detect the misspecified measurement model equation 

and a decrease to detect the omitted cross-regressive path. The consistency of our findings 

across these two simulations designs provide additional confidence in the generalizability of 

our results.

Table A1

Mean Percentage of Relative Bias

Estimator

MIIV-2SLS pseudo-ML Kalman Filter

Time Series Length Time Series Length Time Series Length

Parameter T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

Correct Measurement Model, All Elements of Φ Estimated

ϕ11 −15 −7 −2 −l −11 −6 −2 −l −13 −7 −2 −l

ϕ12 −17 −7 −0 −2 12 l l −l −15 −11 −4 −2

ϕ22 −17 −9 −4 −2 −21 −10 −4 −2 −l7 −8 −3 −2

λ21 l l 0 0 3 2 0 1 1 1 0 l

λ31 1 −1 1 −0 3 2 l 0 0 0 0 0

λ55 −6 −2 −2 −0 0 −l −0 −0 1 0 0 0

λ52 −2 1 −1 −0 5 2 0 0 3 L 0 0

λ62 1 1 −0 −0 5 3 0 0 2 2 0 0

Δ Percentage of Relative Bias from Model 1 Due to Omission of λ33

ϕ11 0 0 0 0 13 l2 l2 12 11 10 10 10

ϕ12 0 0 0 0 −31 −30 −31 −31 −23 −22 −22 −23
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Estimator

MIIV-2SLS pseudo-ML Kalman Filter

Time Series Length Time Series Length Time Series Length

Parameter T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

ϕ22 0 0 0 0 −l −0 0 0 1 1 1 L

λ21 0 0 0 0 L L 1 1 −l 0 0 0

λ31 53 59 61 63 71 72 74 75 65 67 69 69

λ52 0 0 0 0 0 0 0 −0 1 l l 0

λ62 0 0 0 0 1 l 0 −0 1 l 1 0

Δ Percentage of Bias from Model 1 Due to Omission of ϕ21 and ϕ12

ϕ11 −6 −9 −10 −10 −10 −10 −10 −10 −6 −7 −9 −9

ϕ22 6 3 2 1 l7 13 11 11 15 13 13 12

λ21 0 0 0 0 −0 −0 −0 −0 0 0 0 −0

λ31 0 0 0 0 2 1 L l 2 2 2 2

λ55 0 0 0 0 −2 −2 −2 −2 −l −2 −2 −2

λ52 0 0 0 0 −1 0 −0 −0 1 1 0 0

λ62 0 0 0 0 0 0 −0 −0 1 1 0 0

Table A2

Standard Deviation of Coefficient Estimates

Estimator

MIIV-2SLS pseudo-ML Kalman Filter

Time Series Length Time Series Length Time Series Length

Parameter T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

Correct Measurement Model, All Elements of Φ Estimated

ϕ11 0.23 0.15 0.09 0.07 0.19 0.11 0.07 0.05 0.16 0.10 0.06 0.05

ϕ12 0.38 0.27 0.15 0.11 0.26 0.14 0.08 0.06 0.19 0.12 0.08 0.05

ϕ21 0.27 0.17 0.10 0.07 0.19 0.12 0.07 0.05 0.16 0.11 0.06 0.04

ϕ22 0.28 0.18 0.11 0.07 0.22 0.14 0.08 0.05 0.18 0.12 0.07 0.05

λ21 0.17 0.12 0.07 0.05 0.17 0.12 0.07 0.05 0.16 0.11 0.07 0.05

λ31 0.24 0.17 0.11 0.08 0.20 0.15 0.09 0.06 0.19 0.14 0.09 0.06

λ33 0.25 0.18 0.12 0.08 0.19 0.13 0.08 0.06 0.19 0.13 0.08 0.06

λ52 0.21 0.17 0.10 0.08 0.24 0.15 0.09 0.07 0.21 0.14 0.09 0.06

λ62 0.19 0.13 0.08 0.06 0.21 0.13 0.08 0.05 0.17 0.12 0.07 0.05
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Table A3

Proportion of Equations Failing Sargan’s χ2 Test

Model Specification

Model 1 Model 2 Model 3

Time Series Length Time Series Length Time Series Length

Parameter T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

T = 
50

T = 
100

T = 
250

T = 
500

y2 0.03 0.06 0.06 0.06 0.03 0.06 0.06 0.06 0.03 0.06 0.06 0.06

y3
a 0.06 0.06 0.07 0.06 0.17 0.43 0.86 1.00 0.06 0.06 0.07 0.06

y5 0.05 0.05 0.04 0.06 0.05 0.05 0.04 0.06 0.05 0.05 0.04 0.06

y6 0.04 0.06 0.05 0.05 0.04 0.06 0.05 0.05 0.04 0.06 0.05 0.05

η1
b 0.05 0.03 0.04 0.06 0.05 0.03 0.04 0.06 0.05 0.06 0.15 0.37

η2
b 0.04 0.05 0.03 0.05 0.04 0.05 0.03 0.05 0.05 0.04 0.04 0.05

a
Equation is misspecified in Model 2.

b
Equation is misspecified in Model 3.
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Table 1

Mean Percentage of Relative Bias

Estimator

MIIV-2SLS pseudo-ML Kalman Filter

Time Series Length Time Series Length Time Series Length

Parameter T = 50 T = 
100

T = 
250

T = 
500

T = 50 T = 100 T = 250 T = 500 T = 50 T = 100 T = 250 T = 500

Correctly Specified Model

ϕ11 −15 −6 −3 −2 −14 −6 −3 −1 −9 −6 −2 −1

ϕ12 −6 −4 −3 0 −10 −2 2 2 −5 −5 −3 0

ϕ21 3 −1 −2 1 5 2 −0 1 −3 −3 1 −0

ϕ22 −11 −7 −4 −1 −14 −7 −4 −1 −13 −5 −2 −2

λ21 −0 −0 −0 0 1 0 0 0 −0 −0 0 0

λ31 −1 0 0 0 2 1 −0 0 −1 1 0 1

λ33 2 −1 −1 0 4 0 1 0 0 −1 1 1

λ52 1 1 −0 −0 3 1 0 −0 −0 0 0 0

λ62 0 1 −1 0 2 2 −0 0 −1 1 0 0

Δ Percentage of Relative Bias from Correctly Specified Model Due to Omission of λ33

ϕ11 0 0 0 0 13 12 11 11 11 10 10 10

ϕ12 0 0 0 0 −42 −44 −45 −46 −33 −34 −35 −36

ϕ21 0 0 0 0 4 2 1 1 −0 −3 −2 −3

ϕ22 0 0 0 0 −3 −3 −3 −3 −1 −1 −1 −1

λ21 0 0 0 0 0 −0 −0 0 −2 −1 −1 −1

λ31 35 37 39 40 44 44 45 45 39 40 42 42

λ52 0 0 0 0 0 0 0 0 0 0 0 0

λ62 0 0 0 0 −0 0 −0 −0 0 0 0 0

Δ Percentage of Relative Bias from Correctly Specified Model Due to Omission of ϕ12 and ϕ21

ϕ11 −3 −2 −2 −2 9 9 9 9 10 10 10 10

ϕ22 −5 −6 −4 −4 9 8 8 9 13 10 10 10

λ21 0 0 0 0 0 0 0 0 1 0 0 −0

λ31 0 0 0 0 −0 0 0 0 1 1 1 1

λ33 0 0 0 0 −1 −1 −1 −1 −2 −3 −3 −4

λ52 0 0 0 0 0 0 0 0 1 1 0 0

λ62 0 0 0 0 0 0 0 0 1 1 0 0

Multivariate Behav Res. Author manuscript; available in PMC 2020 September 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fisher et al. Page 27

Table 2

Standard Deviation of Coefficient Estimates

Estimator

MIIV-2SLS pseudo-ML Kalman Filter

Time Series Length Time Series Length Time Series Length

Parameter T = 50 T = 
100

T = 
250

T = 
500

T = 50 T = 100 T = 250 T = 500 T = 50 T = 100 T = 250 T = 500

Correctly Specified Model

ϕ11 0.20 0.12 0.07 0.05 0.16 0.10 0.06 0.04 0.12 0.09 0.05 0.04

ϕ12 0.29 0.16 0.09 0.07 0.21 0.12 0.07 0.05 0.16 0.11 0.07 0.05

ϕ21 0.21 0.13 0.08 0.05 0.17 0.10 0.06 0.04 0.13 0.09 0.05 0.04

ϕ22 0.21 0.14 0.09 0.06 0.17 0.11 0.07 0.05 0.14 0.10 0.07 0.05

λ21 0.18 0.11 0.07 0.05 0.17 0.11 0.07 0.04 0.15 0.10 0.06 0.04

λ31 0.29 0.20 0.13 0.08 0.24 0.16 0.09 0.07 0.21 0.15 0.09 0.06

λ33 0.28 0.20 0.12 0.08 0.21 0.14 0.08 0.06 0.19 0.13 0.08 0.06

λ52 0.22 0.15 0.09 0.06 0.23 0.15 0.08 0.06 0.18 0.14 0.08 0.06

λ62 0.21 0.14 0.08 0.06 0.22 0.14 0.08 0.06 0.18 0.13 0.08 0.06
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Table 3

Proportion of Equations Failing Saragan’s χ2 Test

Model Specification

Model 1 Model 2 Model 3

Correctly Specified λ33 Incorrectly Omitted ϕ12 and ϕ21 Incorrectly Omitted

Time Series Length Time Series Length Time Series Length

Dependent 
Variable

T = 50 T = 
100

T = 
250

T = 
500

T = 50 T = 
100

T = 
250

T = 
500

T = 50 T = 100 T = 250 T = 500

y2 0.03 0.05 0.06 0.06 0.03 0.05 0.06 0.06 0.03 0.05 0.06 0.06

y3
a 0.08 0.06 0.06 0.05 0.20 0.32 0.74 0.98 0.08 0.06 0.06 0.05

y5 0.05 0.07 0.06 0.05 0.05 0.07 0.06 0.05 0.05 0.07 0.06 0.05

y6 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05

η1
b 0.05 0.05 0.05 0.08 0.05 0.05 0.05 0.08 0.05 0.11 0.24 0.57

η2
b 0.05 0.04 0.06 0.05 0.05 0.04 0.06 0.05 0.06 0.12 0.39 0.88

a
Equation is misspecified in Model 2.

b
Equation is misspecified in Model 3.
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Table 4

Coefficient Estimates and Sargan’s χ2 Test P-Values for Subject 1

Model

1 2 3

Equation Parameter Coefficient Sargan χ2 P-Value Coefficient Sargan χ2 P-Value Coefficient Sargan χ2 P-Value

wellbeing ϕ11 0.36
* 0.98

0.36
* 0.98

0.36
* 0.98

ϕ12 0.11 0.11 0.11

fatigue ϕ22 0.32 0.47 0.32 0.47 0.32 0.47

ϕ21 0.07 0.07 0.07

happy λ21
(0)

0.85
* 0.82

0.85
* 0.82

0.85
* 0.82

content λ31
(0)

0.65
* 0.34

0.65
* 0.34

0.65
* 0.34

sluggish λ52
(0)

0.78
* 0.00

0.76
* 0.00

1.13
* 0.12

λ52
(0) — — 0.14 — —

weary λ62
(0)

0.87
* 0.27

0.87
* 0.27

0.99
* 0.41

Note: The Sargan χ2 P-Values are equation specific. A — indicates a coefficient was not estimated in the corresponding model.

*
An indicates a 95% CI for the coefficient estimates constructed using a moving block bootstrap (1,000 replications) did not contain zero.
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