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ABSTRACT Transcriptional bursting is a major source of noise in gene expression. The telegraph model of gene expression,
whereby transcription switches between on and off states, is the dominant model for bursting. Recently, it was shown that the
telegraph model cannot explain a number of experimental observations from perturbation data. Here, we study an alternative
model that is consistent with the data and which explicitly describes RNA polymerase recruitment and polymerase pause
release, two steps necessary for messenger RNA (mRNA) production. We derive the exact steady-state distribution of
mRNA numbers and an approximate steady-state distribution of protein numbers, which are given by generalized hypergeomet-
ric functions. The theory is used to calculate the relative sensitivity of the coefficient of variation of mRNA fluctuations for thou-
sands of genes in mouse fibroblasts. This indicates that the size of fluctuations is mostly sensitive to the rate of burst initiation
and the mRNA degradation rate. Furthermore, we show that 1) the time-dependent distribution of mRNA numbers is accurately
approximated by a modified telegraph model with a Michaelis-Menten like dependence of the effective transcription rate on RNA
polymerase abundance, and 2) the model predicts that if the polymerase recruitment rate is comparable or less than the pause
release rate, then upon gene replication, the mean number of RNA per cell remains approximately constant. This gene dosage
compensation property has been experimentally observed and cannot be explained by the telegraph model with constant rates.
SIGNIFICANCE The random nature of gene expression is well established experimentally. Mathematical modeling
provides a means of understanding the factors leading to the observed stochasticity. There is evidence that the classical
two-state model of stochastic messenger RNA (mRNA) dynamics (the telegraph model) cannot describe perturbation
experiments, and a new model that includes polymerase dynamics has been proposed. In this article, we present the first
detailed study of this model, deriving an exact solution for the mRNA distribution in steady-state conditions and an
approximate time-dependent solution and showing that the model can explain gene dosage compensation. As well, we use
the theory together with transcriptomic data to deduce which parameters when perturbed lead to a maximal change in the
size of mRNA fluctuations.
INTRODUCTION

There is widespread evidence that mammalian genes are ex-
pressed in bursts: infrequent periods of transcriptional activ-
ity that produce a large number of messenger RNA (mRNA)
transcripts within a short period of time (1–3). This is in
contrast to constitutive expression in which mRNAs are
produced in random, uncorrelated events, with a time-inde-
pendent probability (4). The size and frequency of transcrip-
tional bursts affect the magnitude of temporal fluctuations in
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mRNA and the protein content of a cell and thus constitute
an important source of intracellular noise (5).

A large number of studies have sought to elucidate the
mechanisms leading to bursting by constructing simple sto-
chastic models that can explain the data. The simplest of
these models is the telegraph model whereby 1) a gene is
in two states, an ON state where mRNA is expressed, and
an OFF state where there is no expression, and 2) mRNA de-
grades in the cytoplasm. These first-order reactions are
effective because each encapsulates the effect of a large
number of underlying biochemical reactions. The chemical
master equation of this model has been solved exactly to
obtain the probability distribution of mRNA numbers as a
function of time (6). For parameter conditions consistent
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Stochastic Model of Gene Expression
with bursty expression, the steady-state distribution is well
approximated by a negative binomial that fits some of the
experimental data (7).

Recent studies have extended the telegraph model in
various directions (see (8,9) for a recent review).
Mammalian cells have been shown to display complex
promoter dynamics during the switch from transcription-
ally inactive to active states. Such dynamics cannot be
described by a single reaction step whose time is expo-
nentially distributed (2), as assumed by the telegraph
model. In (10), this complexity is accounted for by
deriving analytical expressions linking the Fano factor
of mRNA distributions to the general waiting-time dis-
tribution of the time to switch from inactive to active
states. In contrast, other works (11–13) have sought to
describe promoter dynamics with transitions between a
number of discrete promoter states, only some of which
are active; in special cases of such models, the steady-
state distribution of mRNA fluctuations can be derived
analytically. Moreover, dynamic regulation of eve stripe
2 expression in living Drosophila (14) suggests the
occurrence of multiple rates of RNA polymerase II
(Pol II) loading, which argues in favor of the multistate
model rather than the simpler telegraph model. Another
study, based on live cell imaging of the amoeba Dictyos-
telium, postulates a continuum of transcriptional states
(15) rather than discrete states. All these models share
a common property with the telegraph model, namely
that when a transcript is produced, the gene state is
unchanged.

Bartman et al. (16) recently argued that it is unclear how
polymerase recruitment and pause release, two well-known
steps in mRNA production, map onto the active and inactive
states assumed by the telegraph model. This argument also
applies to the various multistate variants of the telegraph
model. In particular, in these models, one cannot tell
whether the initiation of a burst permits polymerase recruit-
ment to occur or whether it permits release from the paused
state. In (16), the telegraph model and several possible
models of transcription were considered that incorporated
bursting (burst initiation and termination steps) together
with polymerase recruitment and pause release steps. Using
stochastic simulations in conjunction with RNA fluores-
cence in situ hybridization and Pol II chromatin immunopre-
cipitation sequencing measurements, they showed that the
only model compatible with the data is one in which 1) po-
lymerase recruitment follows after burst initiation, and 2)
only one polymerase is permitted to bind each promoter-
proximal region at a time, and this bound polymerase has
to undergo pause release before a second polymerase can
be recruited to a gene copy (in line with the findings in
(17,18)). We emphasize that although this model has three
effective gene states, it is not a special case of the multistate
gene models studied in (11–13). These models assume that
the gene state does not change upon production of mRNA
because they model the production of a mature transcript
without detailed modeling of the steps between transcrip-
tional initiation and termination. However, the model ex-
pounded in (16) models transcription at a finer level of
detail, which requires that the production of nascent
mRNA results in a change of gene state, a property that is
crucial to capture the second property above. Note the num-
ber of nascent mRNA molecules, irrespective of their
length, is equal to the number of polymerases currently tran-
scribing the gene (19). An interesting recent review discus-
sing the assumptions behind common gene expression
models including those with polymerase dynamics can be
found in (20).

In this article, we present the first detailed study of the
model proposed by Bartman et al. (16). The article is orga-
nized as follows. In Model, we introduce the chemical mas-
ter equation formulation of the model. In Exact Solution, we
obtain an exact steady-state solution of this model, and in
Sensitivity Analysis, we use the theoretical results and tran-
scriptomic data to investigate the sensitivity of the size of
mRNA fluctuations to the five parameters. In Effective Tele-
graph Model, we show that by mapping the model onto an
effective telegraph model, we can obtain an approximate
time-dependent solution. In Connection to the Refractory
Model, we show that although our model has three effective
promoters states, it is not the same as the refractory model of
gene expression devised by Naef and co-workers (2). In Pro-
tein Dynamics, we show that the protein number distribution
can also be obtained in the limit of fast mRNA decay and
that this is generally different than that obtained using the
conventional three-stage model of gene expression (21).
We finish with a discussion of the biological implications
of our results in Conclusions.
RESULTS AND DISCUSSION

Model

We consider a stochastic transcriptional bursting model
(recently introduced in (16) and henceforth referred to as
the multiscale model; see Fig. 1 A), whereby a gene fluctu-
ates between three states: two permissive states (D10 and
D11) and a nonpermissive state (D0).

The transition from D0 to D10 (burst initiation) is medi-
ated by transcription factor binding with rate constant su,
which is reversible with rate constant sb (this transition
may alternatively represent other processes such as nucle-
osome remodeling). Subsequently, the binding of Pol II to
D10 with rate constant l (which is proportional to Pol II
abundance) leads to D11. This represents a state in which
Pol II is paused and models the experimental observation
that Pol II pauses downstream of the transcription initia-
tion site preceding productive elongation (18). The poly-
merase is released from this state with rate constant r,
leading to two simultaneous processes: 1) because now
Biophysical Journal 119, 1002–1014, September 1, 2020 1003
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FIGURE 1 (A) Schematic of the stochastic multi-

scale transcriptional bursting model. (B) Analytical

distribution for mature mRNA numbers (under the

assumption of short-lived nascent mRNA) is given

by Eq. 6 and agrees with stochastic simulations us-

ing the SSA. The kinetic parameters are r ¼ 60,

l ¼ 40, and d ¼ 1; other parameters are indicated

in each panel. To see this figure in color, go online.
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the polymerase can actively transcribe RNA, it implies the
production of nascent mRNA (denoted as N) with rate r;
and 2) the gene state changes from D11 to D10. This step
models the experimental observation that unless the poly-
merase is unpaused, there is no binding of new Pol II
(17,18). In the paused state D11, both the polymerase
and the transcription factor can unbind from the gene
and lead to the nonpermissive state D0 (burst termination).
Both reversible switches operate at different timescales
(hours versus minutes) with max{sb, su} << min {r,
l}, leading to multiscale transcriptional bursting (16,22).
After termination, the nascent mRNA becomes a mature
mRNA (denoted by M); this occurs with rate r. Subse-
quently, the mature mRNA decays with rate constant d.
Note that we assume all reactions to be first order, charac-
terized by exponentially distributed waiting times between
successive reactions.

In what follows, for simplicity, we assume that the life-
time of nascent mRNA is very short, i.e., r is large, such
that the reaction D11 / D10 þ N, N / M can be approxi-
mated by the single reaction step D11 / D10 þ M. In the
next section, we derive the steady-state distribution of
mature mRNA (simply called mRNA henceforth).
Exact solution

Let Pq (n, t) (q ¼ 0, 10, 11) denote the probability of a cell
being in state Dq with nmRNAs at time t (arguments n and t
are hereafter omitted for brevity). The dynamics of proba-
1004 Biophysical Journal 119, 1002–1014, September 1, 2020
bility Pq are described by the set of coupled master
equations

vtP0 ¼ �
E1 � 1

�
dnP0 � suP0 þ sbðP10 þ P11Þ;

vtP10 ¼ �
E1 � 1

�
dnP10 � ðsb þ lÞP10 þ suP0 þ rE�1P11;

vtP11 ¼ �
E1 � 1

�
dnP11 � ðrþ sbÞP11 þ lP10;

(1)

where the step operator Ei acts on a general function g(n) as
EigðnÞ ¼ gðnþiÞ (23). To solve Eq. 1, we use the generating
function method and define GqðzÞ ¼

P
n
znPqðnÞ for q ¼ 0,

10, 11 so that Eq. 1 can be recast as a set of coupled partial
differential equations

vtG0 þ dðz� 1ÞvzG0 ¼ �suG0 þ sbG10 þ sbG11; (2a)

vtG10 þ dðz� 1ÞvzG10 ¼ rzG11 � ðsb þ lÞG10 þ suG0;
(2b)

vtG11 þ dðz� 1ÞvzG11 ¼ �rG11 � sbG11 þ lG10; (2c)
wherein the variable z is dropped for brevity. By setting z ¼
1 and the time derivatives to zero (considering steady-state
conditions), we can deduce that the probability of being in
the nonpermissive state D0 is G0(1) ¼ sb/(su þ sb) and
the probability of being in one of the two permissive states
D10 or D11 is G10(1) þ G11(1) ¼ su/(su þ sb).
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Stochastic Model of Gene Expression
To solve Eq. 2 for G0(z),G10(z), andG11(z) in steady-state
conditions, we set vtGq ¼ 0, solve G10 from Eq. 2c as a
function of G11, and combine the yielded result to solve
G0 from Eq. 2b as a function of G11 so that Eq. 2a conse-
quently becomes a differential equation with G11 being
the only variable

d3u2v3uG11 þð3dþg1 þg2Þd2uv2uG11 þ ½ðdþg1Þðdþg2Þ
� rlu�dvuG11 � ðdþ suÞrlG11 ¼ 0;

(3)

with u ¼ z � 1, g1 ¼ sb þ su, and g2 ¼ r þ l þ sb. By
defining a new variable x ¼ rlu/d2, Eq. 3 can be further
simplified to

x2v3xG11 þ
�
1þg1 þ d

d
þg2 þ d

d

�
xv2xG11

þ
�
g1 þ d

d

g2 þ d

d
� x

�
vxG11

� su þ d

d
G11 ¼ 0;

which is in the canonical form of the differential equation
for the generalized hypergeometric function

x2v3x f ðxÞþ ð1þ b1 þ b2Þxv2x f ðxÞ þ ðb1b2 � xÞvxf ðxÞ
� a1f ðxÞ ¼ 0;

admitting the solution f(x) ¼ C1F2(a1, b1, b2, x), with C be-
ing an integration constant. Hence, the solution for G11 is in
terms of the generalized hypergeometric function

G11 ¼ C , 1F2

�
su þ d

d
;
g1 þ d

d
;
g2 þ d

d
;
rl

d2
u

�
: (4)

On the other hand, summing Eqs. 2a, 2b, and 2c and denot-
ing G ¼P

qGq, one can get vuG ¼ rG11=d, which together
with Eq. 4 leads to

GðuÞ ¼ C2 , 1F2

�
su

d
;
sb þ su

d
;
sb þ rþ l

d
;
rl

d2
u

�
:

Note that in the last step, we made use of the general rela-
tion vz 1F2ða; b;c; zÞ ¼ ða =bcÞ,1F2ða þ 1; b þ 1;c þ 1; zÞ.
The integration constant C2 is found to be 1 by using the
normalization condition G(0)¼ 1. Hence, the exact solution
for the generating function is

GðuÞ¼ 1F2

�
su

d
;
g1

d
;
g2

d
;
rl

d2
u

�
: (5)

Hence, it follows that the marginal probability of finding n
mRNAs in a cell is
PðnÞ ¼ 1

n!

dnGðuÞ
dun

����
u¼�1

¼ 1

n!

�
rl

d2

� �
su
d

�
n�

sbþsu
d

�
n

�
sbþrþl

d

�
n

� 1F2

�
su

d
þ n;

sb þ su

d
þ n;

sb þ rþ l

d
þn;� rl

d2

�
(6)

where ð,Þn is the Pochhammer symbol. In Fig. 1 B, we show
that distributions obtained from Eq. 6 as well as the corre-
sponding modality (a phenotypic signature (24)) are indis-
tinguishable from distributions produced using the
stochastic simulation algorithm (SSA) (25). Note that
here, we have solved for the mature mRNA distribution un-
der the assumption that nascent mRNA is short lived. In
cases in which this assumption is not physiologically mean-
ingful and one is interested in the nascent mRNA distribu-
tion, then the latter is given by Eq. 6 with d replaced by r
(the rate at which nascent mRNA changes to mature
mRNA because of the termination of transcription).

Special case of bursty transcription

It can be further shown by perturbation theory in Appendix
A that when r, l, and sb are much greater than the rest of the
parameters, the exact solution Eq. 6 reduces to the negative
binomial distribution PðnÞ ¼ NBððsu =dÞ; ðr =rþaÞÞ with
a ¼ sbg2/l. Note the constraint on the parameters leads to
a time series with large- and short-lived bursts of transcrip-
tion (because r, l, and sb are large), separated by long silent
intervals (because su is small). Such bursty trancription is
common in mammalian cells (3).

Relationship to the telegraph model

It can also be shown that that in the limit of large r, the exact
solution of Eq. 6 reduces to the confluent hypergeometric
solution of the telegraph model (see Appendix B). This is
equivalent to the steady-state solution of the two-state sys-
tem D0 #

su

sb
D10/

l
D10 þ M; M/

d
B. The reduction to a

two-state model results from genes spending a short time
in state D11 because of the large value of r. The production
of an mRNA molecule involves the slow reaction step from
D10 to D11 with rate l followed by a very fast reverse step
with rate r. Hence, the rate of mRNA production is deter-
mined by the reaction rate of the slowest reaction, i.e., it
is equal to l. By similar reasoning, we can deduce that in
the limit of large l, the gene spends a short time in the state
D10, and the multiscale model reduces to the two-state tele-
graph model with a rate of mRNA production equal to r.
Sensitivity analysis

The exact solution in Eq. 5 allows us to examine the sto-
chastic properties of the multiscale model over large
swathes of parameter space. We investigate the relative
Biophysical Journal 119, 1002–1014, September 1, 2020 1005
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sensitivity of the coefficient of variation of mRNA fluctua-
tions, CV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðnÞp
=hni, which is typically employed as

a measure of the magnitude of transcriptional noise. To this
end, we calculate the first two central moments, (hni and
VarðnÞ), from Eq. 5 using hni ¼ vuG j u¼0 and VarðnÞ ¼
v2uG

��
u¼0

þ hni� hni2. The mean and CVare then given by

hni ¼ sulr

dg1g2

; (7a)
2 1 d g1 g2
CV ¼ hni þ su

,
g1 þ d

,
g2 þ d

: (7b)
Note that because the parameters r and l appear symmet-
rically in Eq. 7, for simplicity, we enforce the constraint r¼
l (we will relax this constraint later). Hence, the relative
sensitivity of the quantity CV ¼ CV j r¼l, which can serve
as a gauge of transcriptional noise, is insightful to study
and defined as Lp ¼ ðp =CVÞvCV =vp for a model param-
eter p, meaning that 1% change in p leads to a Lp% change
in CV. The parameter values for the sensitivity analysis
were sampled from experimental distributions recently in-
ferred for 3575 genes of CAST allele in mouse fibroblasts
(3) using the telegraph model. To obtain values for r and
l, we equate the mean of the telegraph model (with ON
switching rate sb, OFF switching rate su, transcription
rate ru, and degradation rate d) hnitel ¼ suru=g1d with the
mean of the multiscale model (Eq. 7a) under the constraint
r ¼ l, giving
A B

C
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r ¼ ru

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sb

ru

r �
: (8)

Distributions for each parameter in the data set are presented
in Fig. 2 A, and the box plots in Fig. 2 B show the relative
sensitivity for each parameter. The parameters in order of
most sensitive first are su, d, sb, and r ¼ l. This order is
the same as obtained by ranking parameters according to
the inverse of their mean experimental values (the mean
of the distributions in Fig. 2 A), implying that changes to
the CV are most easily accomplished by perturbations to
the slowest reactions. Given the vectors Lp1 and Lp2 for
any pair p1sp2 and p1, p2 in the set {r, l, sb, su, d} where
each entry is a different gene, in Fig. 2 C, we calculate the
Pearson correlation coefficient between the vectors and the
corresponding joint distributions. This shows that (su, sb) is
the least dependent pairing, and hence, they constitute a
quasiorthogonal decomposition of the sensitivity. In other
words, a change in the CV due to a change in su is practi-
cally uncorrelated with a change in the CV due to a change
in sb, and hence, these two parameters can be seen as inde-
pendent ‘‘control knobs’’ to change the CV; this is of interest
in synthetic biology, in which an engineering design
approach is taken to modify a biological system for
improved functionality (26,27). The same set of parameters
ranked by sensitivity are obtained, if instead of setting l¼ r,
we consider r >> l or l >> r, and hence, it appears that
our results in this section are robust and invariant with
respect to the ratio l/r.
FIGURE 2 Relative sensitivity analysis of the co-

efficient variation CV of mRNA noise over five ki-

netic parameters for 3575 genes of CAST allele

data for mouse fibroblasts. (A) Distributions of the

kinetic parameters in the dataset (obtained from

(3)); values of r or l are calculated using Eq. 8.

(B) Box plots indicate the median (values shown at

bottom), the 25% and 75% quantiles, and mean

and outliers of relative sensitivity. (C) Joint distribu-

tions and Pearson correlation between the relative

sensitivity vectors for each pair of parameters sug-

gest that (sb, su) and (su, d) are the least-dependent

pairs. To see this figure in color, go online.
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Effective telegraph model

Earlier, we showed that in the limit of large r or large l, the
solution of the multiscale model tends to the solution of the
telegraph model. Next, we use the first-passage time method
to reduce the multiscale model into an effective telegraph
model, without making the aforementioned assumptions.
To this end, we consider the transcription motif of the multi-
scale model, D10/

l
D11/

r
D10 þ M, whose corresponding

master equations for producing newborn mRNA starting
from state D10 are

vtP10 ¼ �lP10;
vtP11 ¼ lP10 � rP11;
vtPM ¼ rP11;

(9)
where P10, P11, and PM represent the probability of staying
in states D10, D11, or producing a new mRNA, respectively.
We remark that the reaction D11 / D0 is absent from the
motif because of its relatively small reaction rate sb
compared to r and l. The initial conditions for Eq. 9 are
P10 j t¼0 ¼ 1 and P11 j t¼0 ¼ PM j t¼0 ¼ 0. Solving for PM

in Eq. 9, we can calculate the mean first-passage time for
mRNA production

�
tf
	 ¼

Z N

0

tPfdt ¼ rþ l

lr
; (10)
where Pf ¼ vtPM is the first-passage time distribution (28).
Because the effective transcription rate is the inverse of the
mean first-passage time, it immediately follows that the
effective telegraph model is
A B

C D
D0 #
su

sb
D10 

!ru ¼

lr

lþr

10þM;M/
d
B: (11)
Alternatively, one can obtain this result by equating the
means of our model Eq. 7a and of the telegraph model
hnitel ¼ rusu=g1d and solving for the effective production
rate ru, giving ru ¼ lr=g2xlr =ðlþrÞ because, typically,
r, l >> sb.

In Fig. 3, we show the high accuracy of the effective
telegraph model approximation from Eq. 11. In particular,
Fig. 3 A shows a heatmap of the distance between the dis-
tributions of mRNA numbers predicted by the effective
telegraph model and the multiscale model. As a distance
measure, we use the Hellinger distance (HD), a Euclidean
distance-based metric normalized to the interval between
0 and 1. The effective telegraph model is naturally a
more accurate description to the multiscale model when
there is one rate-limiting step (large difference between r

and l) rather than when there are two rate-limiting steps
(r ¼ l).

Because the time-dependent distribution of the telegraph
model is known in closed form (6,29), it follows that by the
effective model in Eq. 11 we have an approximation for the
time-dependent distribution of the multiscale model too.
The accuracy of this approximation is shown in Fig. 3 B,
where it is compared to the time-dependent distributions
computed using the SSA for the multiscale model. The pa-
rameters here correspond to those of Point I in Fig. 3 A (the
largest HD). Differences between the distributions of the
two models are negligible except near time t¼ 0. We further
FIGURE 3 An effective telegraph model (given

by reaction scheme (11)) approximates the distribu-

tion of mRNA numbers of the multiscale model. (A)

Hellinger distance (HD) between steady-state distri-

butions of mRNA numbers for the effective tele-

graph model and the multiscale model as a

function of r and l with su ¼ 0.2, sb ¼ 0.1, and

d ¼ 1. The discrepancy between the two distribu-

tions grows as r and l approach the line r ¼ l.

(B) Shown is the time-dependent distributions for

Point I in (A) (the point with the largest HD) pre-

dicted by the effective model compared to those

computed by the SSA for the multiscale model.

(C) Heat map of HD between both distributions as

a function of sb and su with r ¼ l ¼ 23 and d ¼
1. (D) Stochastic bifurcation diagram for the number

of modes of the steady-state distributions predicted

by the two models. The small dark blue region is

where modality of both models disagree. Insets

show distributions corresponding to the points

marked in (C and D). To see this figure in color,

go online.
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investigate how burst initiation and termination rates (su,
sb) affect the approximation error with a heatmap of HD
as a function of su and sb (Fig. 3 C) and a stochastic bifur-
cation diagram for the number of modes of the effective
telegraph and multiscale model distributions (Fig. 3 D) at
steady state. The point of maximal HD in Fig. 3 C (Point
II) displays distributions that are not that different from
each other; see upper right inset of Fig. 3D. The two models
display the same number of modes in all regions of param-
eter space except for a narrow region in which modality
detection is challenging because the distributions have a
broad plateau; see lower right inset of Fig. 3 D (Point III).
This again confirms the high accuracy of the effective tele-
graph model approximation. The biological implications of
the Michaelis-Menten dependence of the transcription rate
8<
:

vtP0ðnÞ ¼ �
E1 � 1

�
dnP0ðnÞ þ sbP2ðnÞ � suP0ðnÞ;

vtP1ðnÞ ¼ �
E1 � 1

�
dnP1ðnÞ þ suP0ðnÞ � lP1ðnÞ;

vtP2ðnÞ ¼ �
E1 � 1

�
dnP2ðnÞ þ

�
E�1 � 1

�
ruP2ðnÞ þ lP1ðnÞ � sbP2ðnÞ:
ru in Eq. 11 on l and r is discussed in Conclusions; in
particular, there we argue how this special feature of our
model can explain gene dosage compensation observed in
experiments.
A

B C
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Connection to the refractory model

Besides the telegraph model, another prevalent stochastic
transcriptional model is the refractory model (2) (a three-
state model, see Fig. 4 A, left), wherein the burst initiation
requires two steps. This model was devised to explain the
experimental observation that the distribution of ‘‘off’’ inter-
vals is not exponential but rather has a peak at a nonzero
value. To understand the connection between our model
and the refractory model, we first exactly solve the refrac-
tory model for the steady-state distribution of mRNA
numbers.

Given the reaction scheme illustrated in Fig. 4 A, it fol-
lows that the temporal evolution of probability Pq(n) of
finding n mRNAs and gene state Dq (q ¼ 0, 1, or 2) can
be described by the following master equations:
The corresponding generating function equations are given
by

vtG0 þ dðz� 1ÞvzG0 ¼ sbG2 � suG0; (12a)
FIGURE 4 Effective telegraph model approxima-

tion for the refractory model. (A) Schematics of both

models. (B) Hellinger distance between the steady-

state distributions of mRNA numbers predicted by

both models and a bifurcation diagram of their num-

ber of modes (black lines) as a function of su and l

with sb ¼ 0.8, ru ¼ 30, and d ¼ 1. (C) Distributions

for Points I and II in (B), showing significant

disagreement in the height of the zero mode (insets

show a zoom at the mode at zero). To see this figure

in color, go online.
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vtG1 þ dðz� 1ÞvzG1 ¼ suG0 � lG1; (12b)
vtG2 þ dðz� 1ÞvzG2 ¼ ruðz� 1ÞG2 þ lG1 � sbG2; (12c)
where Gq ¼ P
nz

nPqðnÞ. We intend to solve Eqs. 12a,
12b, and 12c at steady state and thus set vtGq ¼ 0.
Then, we solve G1 as a function of G2 from Eq. 12c, sub-
sequently substitute it into Eq. 12b, and solve G0 as a
function of G2. After that, Eq. 12a becomes an ordinary
differential equation with G2 being the only variable to
be solved

u2v3uG2 þ
�
3þ ~lþ ~sb þ ~su � ~ruu

�
uv2uG2

þ �
1þ ~sb þ ~su þ ~sb~su � ~ruð3þ ~suÞu

þ ~lð1þ ~sb þ ~su � ~ruuÞ
�
vuG2

��
1þ ~l

�ð1þ ~suÞ~ruG2 ¼ 0; (13)

where ~ru, ~l, ~sb, and ~su are the kinetic parameters normal-
ized with respect to d and u ¼ z � 1. Eq. 13 is the canonical
form of the differential equation for the generalized hyper-
geometric function 2F2, admitting the solution

G2ðuÞ ¼ C , 2F2

�
~lþ 1; ~su þ 1; b1 � b2

þ 1; b1 þ b2 þ 1; ~ruu
�
;

(14)

where C is an integration constant, and b1 and b2 denote

b1 ¼ ~su þ ~sb þ ~l

2
;

b2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l
2 � 2~l~sb þ ~s2

b � 2~l~su � 2~sb~su þ ~s2
u

q
:

Summing Eqs. 12a, 12b, and 12c leads to vuG ¼
vuð

P
qGqÞ ¼ ~ruG2, one can obtain G from Eq. 14 in the

form of the generalized hypergeometric function

GðuÞ ¼ C2 , 2F2

�
~l; ~su; b1 � b2; b1 þ b2; ~ruu

�
; (15)

and C2 is found to be 1 by the normalization
condition G(0) ¼ 1. Eq. 15 together with
PðnÞ ¼ ð1 =n!ÞðdnG=dunÞ j u¼�1 defines the distribution of
mRNA numbers for the refractory model in steady-state
conditions. A similar solution is also known for a general-
ization of the refractory model (11).

The next step is to map the refractory model onto an
effective telegraph model by matching the mean mRNA
numbers

hniref ¼
lsuru

dðlsu þ lsb þ susbÞ; hnitel ¼
rusu

dðsb þ suÞ:;
leading to an effective burst initiation rate
su ¼ sul =ðsu þlÞ and the corresponding effective model
shown in Fig. 4 A (right). Note that whereas the multiscale
model is approximately equivalent to an effective telegraph
model with a renormalized mRNA production rate, the re-
fractory model’s telegraph approximation leads to a renor-
malized rate of switching to the active state.

We then compare the steady-state distributions of the
refractory model and its effective telegraph model. A
heatmap of HD quantifying their distributional differ-
ence and a modality diagram (marked as black lines)
of the two distributions are illustrated in Fig. 4 B.
Both the regions of high HD and Region 2 where
only the telegraph model predicts bimodality are signif-
icantly large, and Region 1 where both predict bimo-
dality is small. This shows that the refractory model,
in general, is not well approximated by the telegraph
model, particularly the latter’s probability for low
mRNA numbers is not accurate (see Fig. 4 C). Given
the telegraph model’s excellent approximation to the
multiscale model, it is clear that the multiscale model
and refractory model can be distinguished.
Protein dynamics

Finally, for completeness, we extend the multiscale model to
provide analytic steady-state distributions of protein
numbers. This allows interpretations of single-cell data of
protein expression (see, for example, (30)). We consider
the network in Fig. 1 A with two additional reactions: 1) a
first-order reaction modeling the translation of mRNA to
proteins with rate constant k and 2) a first-order reaction
modeling the decay of protein with rate constant dp. It is
shown in Appendix C that under the classic short-lived
mRNA assumption (d >> dp) (21), the generating function
corresponding to the steady-state distribution of protein
numbers is given by

GðvÞ¼ 3F2ða1; a2; a3; b1; b2; bvÞ; (16)

with b1 ¼ (sb þ su)/dp, b2 ¼ (sb þ l þ r)/dp, the mean
translational burst size b ¼ k/d, and the parameters a1, a2,
and a3 being solutions of the equations

a1a2a3 ¼ sulr
.
d3p;

a1 þ a2 þ a3 ¼ b1 þ b2;

a1a2 þ a1a3 þ a2a3 ¼ b1b2 þ lr
.
d2
p :

In the limit of large l or r, we show in Appendix C that Eq.
16 reduces to the Gaussian hypergeometric function (2F1),
which was reported in (21), for the classical three-stage
model of gene expression in the limit of fast mRNA decay.
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CONCLUSIONS

Here, we performed the first detailed analytical study of a
multiscale model of bursty gene expression based on recent
experimental data from mammalian cells (16). The conven-
tional telegraph model does not include an independently
regulated pause release step and hence cannot differentiate
the effects of changing polymerase pause release versus poly-
merase recruitment rates, whereas the multiscale model stud-
ied here can distinguish these effects.Although ourmodel has
three effective gene states (one of which regulates pause
release), it is not a special case of existing multistate models
because in ourmodel, the gene state changes upon production
of new nascent mRNAs to model the experimental observa-
tion that unless the polymerase is unpaused (and nascent
mRNA starts being actively transcribed by this polymerase),
there can be no binding of new Pol II. In contrast, current
models assume the gene state does not change upon produc-
tion ofmRNAbecause theymodel the production of amature
transcript without detailed modeling of the steps between
transcriptional initiation and termination.

We have derived simple closed-form expressions for the
approximate time evolution of the mRNA numbers and
used the theory to understand which reactions contribute
mostly to fluctuations. We also showed that 1) this model
can be distinguished from the refractory model, another
three-gene-statemodel popular in the literature and 2) a num-
ber of previous models in the literature are special cases of
our model, valid only in certain parameter regimes. Specif-
ically, the mRNA and protein distributions of the conven-
tional three-stage model of gene expression provide a good
approximation to the multiscale bursting model in certain re-
gions of parameter space as shown in Appendices B and C.

The simplicity of the equations for the mean and the vari-
ance allow the inference of rate parameters from single-cell
data using maximal likelihood methods (31). Potential ex-
tensions include 1) the impact of cell cycle effects such as
binomial partitioning and variability in the cell cycle dura-
tion and 2) introducing a detailed description of polymerase
movement along the gene during elongation. The use of the
recently developed linear mapping approximation (32)
appears to be a promising means to extend the analytical
solution of this model to include feedback loops via DNA-
protein interactions (33,34).

An important result of the article is that the time-depen-
dent mRNA distribution of the multiscale model with poly-
merase dynamics and three states can be accurately
approximated by the two-state telegraph model, modified
with a Michaelis-Menten-like dependence of the effective
transcription rate on polymerase abundance. Specifically,
by Eq. 11, the transcription rate of a gene locus is ru ¼
lr/(l þ r), where l is the binding rate of Pol II (see
Fig. 1 A), which is proportional to the local number of Pol
II molecules at the gene locus with active transcription
(35). This equation implies that the transcription rate is pro-
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portional to the local number of Pol II molecules if l is
approximately less than r, i.e., if the Pol II binding rate is
less than or equal to the rate at which Pol II is unpaused.
In contrast, if unpausing is the rate-limiting step (r <<
l), then the transcription rate is practically independent of
the local Pol II number.

Now, when the number of gene copies doubles during
replication, the local number of Pol II molecules will corre-
spondingly decrease because of increased sharing of Pol II.
Hence, if we are in the regime l(r, the transcription rate
per gene copy decreases; thus, the total transcription rate
for a gene per cell postreplication will be consequently
slower than twice the total transcription rate prereplication.
This implies that the mean number of RNA per cell is not
significantly affected by replication; indeed, this ‘‘dosage
compensation’’ has been observed experimentally for some
genes in mouse embryonic stem cells (36) though a different
explanation than above was suggested. In one study (37), it
was estimated that for 6 yeast genes (RPB2, RPB3, TAF5,
TAF6, TAF12, and KAP104), the formation of the preinitia-
tion complex at the promoter (l) is approximately equal to the
rate at which the RNA polymerase escapes the promoter (r);
hence, gene dosage compensation via polymerase sharing, as
implied by our model, may be common. In contrast, if we are
in the regime r << l, the transcription rate per gene copy
before and after replication is the same, and hence, the total
transcription rate for a gene per cell postreplication will be
twice the total transcription rate prereplication. This is also
what is predicted by the telegraph model with constant burst
initiation and termination rates and observed experimentally
for a reporter gene expressed from a strong synthetic pro-
moter (36). Note that because the mean burst size is the
mean number of RNAs transcribed when the gene is on, by
our reasoning above, it also follows that when l(r, the
mean burst size is altered upon gene replication. The idea
that the number of RNA polymerases is the limiting factor
in transcription has been recently hypothesized (38) and
has implications for the mitigation of burden imposed by
gene circuits in synthetic biology (39). Our model here
goes one step further by deriving the explicit relationship be-
tween the transcription rate and the number of RNApolymer-
ases.Generally, ourmodel supports the observation that there
are differences in transcriptional activity between different
stages of the cell cycle (40) that cannot be explained by the
conventional telegraph model.
APPENDIX A: ANALYTIC DISTRIBUTION FOR
MRNA NUMBERS WHEN r, l, AND sb ARE LARGE

Given the large values of r, l, and sb, we implement the following

parametrization:

sb1sbd; r1rd; l1ld;

where d is a large real number.
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Bymeans of the method of characteristics, solving Eq. 2 is tantamount to

seeking a solution to the ordinary differential equation system

vst ¼ 1 0 t ¼ s

vsz ¼ dðz� 1Þ 0 z� 1 ¼ reds
vsG ¼ rdðz� 1ÞG11; (17a)
vsG10 ¼ rdzG11 � sbdG10 � ldG10 þ suðG�G10 �G11Þ;

(17b)

vsG11 ¼ � rdG11 � sbdG11 þ ldG10: (17c)
Dividing d on both sides of Eqs. 17a, 17b, and 17c, one obtains a singular

system consisting of8<
:

evsG ¼ rðz� 1ÞG11;
evsG10 ¼ rzG11 � sbG10 � lG10 þ esuðG� G10 � G11Þ;
evsG11 ¼ �rG11 � sbG11 þ lG10;

(18)

with e ¼ 1=dx0. Expanding G, G10, and G11 in Eq. 18 as a series in

powers of e,

G ¼ Gð0Þ þ eGð1Þ þ O�
e2
�
;G10

¼ G
ð0Þ
10 þ eG

ð1Þ
10 þO�

e2
�
;G11 ¼ G

ð0Þ
11 þ eG

ð1Þ
11 þO�

e2
�
;

and matching the orders of e, we have

Order of e0 :(
rðz� 1ÞGð0Þ

11 ¼ 0 0 G
ð0Þ
11 ¼ 0

rzG
ð0Þ
11 � sbG

ð0Þ
10 � lG

ð0Þ
10 ¼ 0 0 G

ð0Þ
10 ¼ 0

and
Order of e1 :

8><
>:

vsG
ð0Þ ¼ rðz� 1ÞGð1Þ

11

vsG
ð0Þ
10 ¼ rzG

ð1Þ
11 � sbG

ð1Þ
10 � lG

ð1Þ
10 þ su



Gð0Þ � G

ð0Þ
10 � G

ð0Þ
11

�
0 rzG

ð1Þ
11 � sbG

ð1Þ
10 � lG

ð1Þ
10 þ suG

ð0Þ ¼ 0

vsG
ð0Þ
11 ¼ �rG

ð1Þ
11 � sbG

ð1Þ
11 þ lG

ð1Þ
10 0 �rG

ð1Þ
11 � sbG

ð1Þ
11 þ lG

ð1Þ
10 ¼ 0:
Then, we have

vsG
ð0Þ ¼ � rusu

ru� a
Gð0Þ;

where a¼ sbg2/l, and u¼ z� 1¼reds. Its solution immediately follows

as
Gð0Þ ¼ CðrÞ�rreds � a
��su

d ; (19)
with C(r) being a function of r to be determined from the initial condi-

tion. Suppose that the initial condition for this process is gðuÞ ¼ Gð0Þ ��
t¼0

,

which is known a priori. For instance, say the initial distribution of nmRNA

molecules is P(n) ¼ pn, then g(u) ¼ P
npn(u þ 1)n. Letting s be equal to

0 (or equivalently t¼ 0), it follows u¼ r and g(u)¼ g(r), and we can estab-

lish the following relation

gðrÞ ¼ CðrÞðrr � aÞ�
su
d ;

from which we can solve C(r) as

CðrÞ ¼ gðrÞðrr � aÞ
su
d :

Substituting the latter back into Eq. 19 and replacing r ¼ ue�dt, we can

calculate the leading-order solution of G from (Eq. 19) as

GðuÞ ¼ g
�
ue�dt

��rue�dt � a

ru� a

�su
d

: (20)

At steady state, the leading-order solution in (Eq. 20) becomes

GðzÞ ¼
�

a

a� rðz� 1Þ
�su

d

;

and the corresponding distribution of mRNA numbers is a negative bino-

mial distribution NB

�
su
d ;

r
rþa

�
.

APPENDIX B: CONVERGENCE TO TELEGRAPH
MODEL FOR LARGE r

To this end, we parametrize r as r1rd, where d is a large real number. As

such, Eq. 2 can be recast as

vtG0 þ dðz� 1ÞvzG0 ¼ �suG0 þ sbG10 þ sbG11; (21a)

vtG10 þ dðz� 1ÞvzG10 þ ðsb þ lÞG10 � suG0 ¼ rdzG11;
(21b)
vtG11 þ dðz� 1ÞvzG11 þ sbG11 � lG10 ¼ �rdG11: (21c)
Dividing both sides of Eqs. 21b and 21c by d and setting e ¼ d�1, we

have that

eðvtG10 þ dðz� 1ÞvzG10 þðsb þ lÞG10 � suG0Þ ¼ rzG11;

(22a)
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eðvtG11 þ dðz� 1ÞvzG11 þ sbG11 � lG10Þ ¼ � rG11:
(22b)
Again using the same method as before, we expand G0, G10, and G11 in

Eqs. 21a and 22 as a series in powers of e, collect the terms for e0 and e1, and
obtain
Order of e0 :

8><
>:

vtG
ð0Þ
0 þ dðz� 1ÞvzGð0Þ

0 ¼ �suG
ð0Þ
0 þ sbG

ð0Þ
10 þ sbG

ð0Þ
11 ;

rzG
ð0Þ
11 ¼ 0;

rG
ð0Þ
11 ¼ 0;

(23)
and
Order of e1 :

(
vtG

ð0Þ
10 þ dðz� 1ÞvzGð0Þ

10 þ ðsb þ lÞGð0Þ
10 � suG

ð0Þ
0 ¼ rzG

ð1Þ
11 ;

vtG
ð0Þ
11 þ dðz� 1ÞvzGð0Þ

11 þ sbG
ð0Þ
11 � lG

ð0Þ
10 ¼ �rG

ð1Þ
11 :

(24)
From Eq. 23, we can solve that G
ð0Þ
11 ¼ 0, with which we can further get

lG
ð0Þ
10 ¼ rG

ð1Þ
11 from Eq. 24. Given both results, Eqs. 23 and 24 can be

simplified to
8>>>>>><
>>>>>>:

vtP0ðn;mÞ ¼ dðnþ 1ÞP0ðnþ 1;mÞ � dnP0ðn;mÞ þ dpðmþ 1ÞP0ðn;mþ 1Þ � dpmP0ðn;mÞ
þknP0ðn;m� 1Þ � knP0ðn;mÞ � suP0ðn;mÞ þ sbP10ðn;mÞ þ sbP10ðn;mÞ;

vtP10ðn;mÞ ¼ dðnþ 1ÞP10ðnþ 1;mÞ � dnP10ðn;mÞ þ dpðmþ 1ÞP10ðn;mþ 1Þ � dpmP10ðn;mÞ
þknP10ðn;m� 1Þ � knP10ðn;mÞ þ suP0ðn;mÞ � ðsb þ lÞP10ðn;mÞ þ rP11ðn� 1;mÞ;

vtP11ðn;mÞ ¼ dðnþ 1ÞP11ðnþ 1;mÞ � dnP11ðn;mÞ þ dpðmþ 1ÞP11ðn;mþ 1Þ � dpmP11ðn;mÞ
þknP11ðn;m� 1Þ � knP11ðn;mÞ þ lP10ðn;mÞ � ðrþ sbÞP11ðn;mÞ:

(25)
(
vtG

ð0Þ
0 þ dðz� 1ÞvzGð0Þ

0 ¼ �suG
ð0Þ
0 þ sbG

ð0Þ
10 ;

vtG
ð0Þ
10 þ dðz� 1ÞvzGð0Þ

10 ¼ lðz� 1ÞGð0Þ
10 �sbG

ð0Þ
10 þ suG

ð0Þ
0 ;
8<
:

vtG0 þ
�
dðzm � 1Þ � k

�
zp � 1

�
zm
�
vzmG0 þ dp

�
zp � 1

�
vzpG0 ¼ �suG0 þ sbG10 þ sbG11;

vtG10 þ
�
dðzm � 1Þ � k

�
zp � 1

�
zm
�
vzmG10 þ dp

�
zp � 1

�
vzpG10 ¼ suG0 � ðsb þ lÞG10 þ rzmG11;

vtG11 þ
�
dðzm � 1Þ � k

�
zp � 1

�
zm
�
vzmG11 þ dp

�
zp � 1

�
vzpG11 ¼ lG10 � ðrþ sbÞG11:

(26)
which are exactly the generating function equations of the telegraph

model (see Eqs. A2 and A3 in (29)), thus showing that the multiscale tran-
scriptional bursting model converges to the telegraph model when r/N.

A similar proof can be constructed to show that the telegraph model is also

obtained in the limit l / N.
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APPENDIX C: ANALYTIC MARGINAL
DISTRIBUTION FOR PROTEIN NUMBERS FOR THE
MULTISCALE MODEL IN THE LIMIT OF FAST
mRNA DECAY

To the reaction scheme illustrated in Fig. 1 A, we add two reactions:

1) a first-order reaction modeling the translation of mRNA to proteins
with rate constant k and 2) a first-order reaction modeling the decay

of protein with rate constant dp. The following coupled master equa-

tions describe the time evolution of the probability Pq(n, m) of

finding n mRNAs, m proteins, and gene state Dq (q ¼ 0, 10, 11)

in a cell:
By defining Gq ¼P
n

P
mz

n
mz

m
p Pqðn;mÞ, solving Eq. 25 is tantamount to

seeking solutions to the set of differential equations
By means of the method of characteristics, Eq. 26 is equivalently repre-

sented as

vst ¼ 1; vszm ¼ dðzm � 1Þ � k
�
zp � 1

�
zm; vszp

¼ dp
�
zp � 1

�
;
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and 8<
:

vsG0 ¼ �suG0 þ sbG10 þ sbG11;
vsG10 ¼ suG0 � ðsb þ lÞG10 þ rzmG11;
vsG11 ¼ lG10 � ðrþ sbÞG11:

Assuming that mRNA decays much faster than protein such that vszmx
0 (Eq. 21), we get that

zm ¼ 1

1� bv
; and v ¼ zp � 1; (27)

and b ¼ k/d is the mean translational burst size. Using Eq. 27, we can

reduce Eq. 26 to

vvvG0 ¼ � ~suG0 þ ~sbG10 þ ~sbG11; (28a)

� � ~r

vvvG10 ¼ ~suG0 � ~sb þ ~l G10 þ

1� bv
G11; (28b)

vv G ¼ ~lG � ð~rþ ~s ÞG ; (28c)
v 11 10 b 11

where ~sb, ~su, ~r, and ~l are kinetic parameters normalized with respect to

protein degradation rate dp. It follows from summing Eq. 28 that

G11 ¼ ð1� bvÞvvG
~rb

: (29)

Using the definitions b1 ¼ ~sb þ ~su and b2 ¼ ~sb þ ~lþ ~r and plugging

Eq. 29 into Eqs. 28b and 28c, it gives us that

ð1� bvÞv2v3vGþ ½1þ b1 þ b2 � bvð3þ b1 þ b2Þ�vv2vG
þ �

b1b2 � bv
�ð1þ b1Þð1þ b2Þþ ~l~r

��
vvG

� b~su
~l~rG ¼ 0;

which admits a solution

GðvÞ¼ 3F2ða1; a2; a3; b1; b2; bvÞ; (30)

with a1, a2, and a3 being roots of8<
:

a1a2a3 ¼ ~su
~l~r;

a1 þ a2 þ a3 ¼ b1 þ b2;
a1a2 þ a1a3 þ a2a3 ¼ b1b2 þ ~l~r:

Hence, summarizing, Eq. 30 and PðmÞ ¼ ð1=m!ÞdmGðvÞ=dvm j v¼�1

define the steady-state distribution of protein numbers, which is

PðmÞ ¼ bm

m!

ða1Þnða2Þnða3Þn
ðb1Þnðb2Þn 3F2ða1 þ n; a2 þ n; a3

þ n; b1 þ n; b2 þ n; � bÞ;

given that mRNA is short lived.

Next, we will show the solution Eq. 30 converges to the Gaussian hyper-

geometric function (2F1) for the three-stage gene expression model (21)

when r is large. To this end, we parameterize ~r in Eqs. 28b and 28c as
~r1~rd, where d is a large number. Dividing both sides of Eqs. 28b and

28c by d, we have

e
�
vvvG10 � ~suG0 þ

�
~sb þ ~l

�
G10

� ¼ ~r

1� bv
G11; (31a)

e
�
vv G � ~lG þ ~s G

� ¼ � ~rG ; (31b)
v 11 10 b 11 11

where e ¼ 1=dx0. Again similarly, we expandG0, G10, and G11 in Eqs.

28a and 31 as a series in powers of e, collect the terms for e0 and e1, and

obtain

Order of e0 :

8>>>><
>>>>:

vvvG
ð0Þ
0 ¼ �~suG

ð0Þ
0 þ ~sbG

ð0Þ
10 þ ~sbG

ð0Þ
11 ;

~r

1� bv
G

ð0Þ
11 ¼ 0;

~rG
ð0Þ
11 ¼ 0;

(32)

and

Order of e1 :

8><
>:

vvvG
ð0Þ
10 �~suG

ð0Þ
0 þ�

~sbþ~l
�
G

ð0Þ
10 ¼ ~r

1�bv
G

ð1Þ
11 ;

vvvG
ð0Þ
11 � ~lG

ð0Þ
10 þ ~sbG

ð0Þ
11 ¼ �~rG

ð1Þ
11 ;

:

(33)

From Eq. 32, we get G
ð0Þ
11 ¼ 0, which is used to reduce Eq. 33 and the

first equation in Eq. 32 to8><
>:

vvvG
ð0Þ
0 ¼ �~suG

ð0Þ
0 þ ~sbG

ð0Þ
10 ;

vvvG
ð0Þ
10 ¼ ~suG

ð0Þ
0 � ~sbG

ð0Þ
10 þ

~lbv

1� bv
G

ð0Þ
10 :

(34)

Note that Eq. 34, which is the leading order of Eq. 28, is exactly the same

as the generating functions of the three-stage gene expression model re-

ported in (21) (see Eqs. 68–69). By means of similar arguments, one can

show the reduction of our model when l is large.
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