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Cardiac dysfunction is a critical manifestation of sepsis-induced multiorgan failure and results in the high mortality of sepsis. Our
previous study demonstrated that a traditional Chinese medicine formula, Qiang-Xin 1 (QX1), ameliorates cardiac tissue damage in
septic mice; however, the underlying pharmacology mechanism remains to be elucidated. The present study was aimed at clarifying
the protective mechanism of the QX1 formula on sepsis-induced cardiac dysfunction. The moderate sepsis model of mice was
established by cecal ligation and puncture surgery. Treatment with the QX1 formula improved the 7-day survival outcome,
attenuated cardiac dysfunction, and ameliorated the disruption of myocardial structure in septic mice. Subsequent systems
pharmacology analysis found that 63 bioactive compounds and the related 79 candidate target proteins were screened from the
QX1 formula. The network analysis showed that the QX1 active components quercetin, formononetin, kaempferol, taxifolin,
cryptotanshinone, and tanshinone IIA had a good binding activity with screened targets. The integrating pathway analysis
indicated the calcium, PI3K/AKT, MAPK, and Toll-like receptor signaling pathways may be involved in the protective effect of
the QX1 formula on sepsis-induced cardiac dysfunction. Further, experimental validation showed that the QX1 formula
inhibited the activity of calcium/calmodulin-dependent protein kinase II (CaMKII), MAPK (P38, ERK1/2, and JNK), and
TLR4/NF-κB signaling pathways but promoted the activation of the PI3K/AKT pathway. A cytokine array found that the QX1
formula attenuated sepsis-induced upregulated levels of serum IFN-γ, IL-1β, IL-3, IL-6, IL-17, IL-4, IL-10, and TNF-α. Our data
suggested that QX1 may represent a novel therapeutic strategy for sepsis by suppressing the activity of calcium, MAPK, and
TLR4/NF-κB pathways, but promoting the activation of AKT, thus controlling cytokine storm and regulating immune balance.
The present study demonstrated the multicomponent, multitarget, and multipathway characteristics of the QX1 formula and
provided a novel understanding of the QX1 formula in the clinical application on cardiac dysfunction-related diseases.

1. Introduction

Sepsis, defined as life-threatening organ dysfunction caused
by a dysregulated host response to infection, affects more
than 19 million people per year and is the main cause of
death in intensive care units [1, 2]. Cardiac dysfunction is
critical to sepsis-induced multiorgan failure. Cardiac dys-
function occurs in over 40% of sepsis patients, which is asso-
ciated with high mortality and poor prognosis [3]. Despite

improvements in antibiotic therapies and critical care tech-
niques, the management of cardiac dysfunction in patients
with sepsis remains challenging since basic interventions
for cardiac dysfunction or sepsis alone are contradictory in
key areas, including fluid resuscitation [4]. The pathological
mechanisms of cardiac dysfunction in sepsis are multifac-
torial, including inflammatory mediator disorder, mito-
chondrial dysfunction, apoptosis, and calcium regulation
disorder [5, 6]. Therefore, developing a drug that can inhibit
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these pathological changes would be of great clinical signifi-
cance for the prevention of sepsis-induced cardiac dysfunction.

Traditional Chinese medicine (TCM) is an integral med-
icine system with clinical practice over thousands of years.
Our previous study showed that the TCM prescription
Qiang-Xin 1 (QX1) ameliorates cardiac tissue damage in
mice suffering from sepsis partly by inhibiting endoplasmic
reticulum- and mitochondria-related apoptosis [7]. How-
ever, a holistic understanding underlying mechanisms of
the QX1 formula in improving sepsis-induced cardiac dys-
function still is needed in further study.

Systems pharmacology, an emerging systematic method-
ology combining pharmacology and systems biology, pro-
vides a holistic analysis approach to explore the molecular
mechanism of TCM [8]. Systems pharmacology includes
pharmacokinetics evaluation (absorption, distribution, metab-
olism, excretion, and toxicity [ADME/T] characteristics of
herbs), target protein prediction, and network analysis. At
present, systems pharmacology has been widely used to reveal
the potential mechanism of TCM formulas in the treatment
of cancer, inflammatory bowel disease, and cardiovascular
disease [9–11].

The present study was aimed at investigating the molec-
ular mechanism of the QX1 formula in the treatment of
sepsis-induced cardiac dysfunction. First, the effect of the
QX1 formula on survival rate and cardiac dysfunction was
assessed in septic mice. Then, the material basis and potential
interaction mechanism of the QX1 formula were analyzed by
systems pharmacology. Finally, we further verified the mech-
anism of the QX1 formula on the main signaling pathways
integrated by systemic pharmacology in septic mice. The
workflow of the current study was shown in Figure 1.

2. Materials and Methods

2.1. Animals and Ethics Statement. BALB/c mice (male, 18–
22 g, 8 weeks old) provided by Beijing HFK Bioscience Co.,
Ltd. (Beijing, China) were housed under a pathogen-free
environment with free access to food and water. All proce-
dures performed on the animals were conducted in accor-
dance with the National Institutes of Health Guidelines on
Laboratory Research and approved by the Animal Care
and Use Committee of the Beijing Institute of Traditional
Chinese Medicine (permit number: 2018040206).

2.2. Preparation of the QX1 Formula. The QX1 formula is
composed of five herbs: Astragalus membranaceus (Fisch.)
(HQ), Polygonum orientale L. (SHHZ), Poria cocos (Schw.)
Wolf (FL), Salvia miltiorrhiza Bge. (DS), and Schisandra chi-
nensis (Turcz.) Baill. (WWZ). All herbs were obtained from
the Chinese Pharmacy of Beijing Hospital of Traditional
Chinese Medicine and were mixed in the proportion of
3 : 3 : 2 : 2 : 1, with a total weight of 110 g. After soaking for
1 h, the QX1 decoction was prepared by water extraction
twice. The extract was then filtered and condensed to
110ml, with a concentration equal to 1 g herb/ml.

2.3. Cecal Ligation and Puncture- (CLP-) Induced Sepsis. A
mouse model with moderate sepsis was established by cecal

ligation and puncture (CLP) surgery according to the proto-
col described previously [12]. Briefly, mice were anesthetized
with 1% pentobarbital sodium, and a 1–2 cm longitudinal
skin midline incision was made to expose the internal organs.
The cecum was exposed and ligated in the mid position,
which comprised 50% of the cecum, and punctured through
and through with a 21-gauge needle. Then, a small amount of
feces was extruded from the puncture holes to make sure
patency. The cecum was transferred to the abdominal cavity,
and the peritoneum and skin were closed by applying
sutures. After surgery, mice were injected with sterile saline
solution (0.9%, 24ml/kg of body weight) for fluid resuscita-
tion. In the sham group, the procedure was carried out in
the same way as the CLP described above, except without
ligation and puncture of the cecum.

2.4. Treatment Protocol of the QX1 Formula. After a 7-day
acclimation period, 90 mice were randomly assigned to five
groups: (1) sham group (sham, n = 10), wherein mice
received a sham operation without drug treatment; (2) CLP
group (CLP, n = 20), wherein mice received a CLP operation
without QX1 decoction treatment; (3) low-dose QX1 decoc-
tion group (QX1 Low, n = 20), wherein mice received a
CLP operation with 5 g/kg QX1 decoction treatment; (4)
high-dose QX1 decoction group (QX1 High, n = 20), wherein
mice received a CLP operation with 10g/kg QX1 decoction
treatment; and (5) trimetazidine group (TMZ, n = 20),
wherein mice received a CLP operation with 20mg/kg TMZ
treatment. The mice in QX1 Low, QX1 High, and TMZ
groups were orally administered intragastrically with different
concentrations of QX1 decoction at 6 and 18h after the CLP
operation, respectively, whereas mice in the sham and CLP
groups were administered with the same volume of water. In
a survival test, another 20 mice from each group were used
to assess survival rates during seven days.

2.5. Sample Collection. At 24h after the CLP operation, mice
were anesthetized with 1% pentobarbital sodium and blood
samples were collected. Serum was separated for quantitative
analysis of cytokines. The heart tissues were harvested and
divided into three parts: one was stored in 10% buffered for-
malin phosphate for histological analysis, one was fixed in 4%
glutaraldehyde for ultrastructure analysis, and the other was
stored at −80°C for Western blot analysis.

2.6. Hematoxylin and Eosin (H&E) Staining. The heart sam-
ples were immersed in 10% neutral buffered formaldehyde at
room temperature for 48 h, and the fixed samples were then
embedded in liquid paraffin and sectioned into 5μm thick-
ness. The sections were stained with hematoxylin and eosin,
and the cardiac morphological changes were observed under
a light microscope (Zeiss GmbH, Jena, Germany).

2.7. Transmission Electron Microscopy (TEM). The cardiac
tissue samples were fixed with 4% glutaraldehyde overnight,
postfixed in cold 1% osmium tetroxide, and then washed
with cacodylate buffer three times. Subsequently, cardiac tis-
sue was dehydrated in a series of graded acetone and embed-
ded in an epoxy resin. Ultrathin sections were stained with
saturated uranyl acetate in 50% ethanol and lead citrate and
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observed under an HT7700 transmission electron micro-
scope (Hitachi, Tokyo, Japan).

2.8. Echocardiography Analysis. At 24 h after CLP or sham
surgery, echocardiography was performed using the Vevo
770 ultrasound system (Visual Sonics Inc., Toronto, Canada)
to assess the cardiac function. Briefly, mice were anesthetized
with isoflurane at a concentration of 4% (induction) or 1.5%
(maintenance) in 100% oxygen. The left ventricular (LV) M-
mode tracing was gained from the transthoracic parasternal
short-axis view. Through these images, the left ventricular
internal dimensions at diastole/systole (LVIDd/LVIDs) and
the left ventricular volume at diastole/systole (LVVd/LVVs)
were measured and used to determine the left ventricular
ejection fraction (LVEF) and left ventricular fractional short-
ening (LVFS). Each parameter was recorded in least three
consecutive cardiac cycles.

2.9. Database Construction. The chemical ingredients of all
herbs in the QX1 formula were data-mined from the Tradi-
tional Chinese Medicine Systems Pharmacology Database
(TCMSP, http://lsp.nwu.edu.cn/tcmspsearch.php) and a
large number of related literature mining, including PubMed
and China National Knowledge Infrastructure (CNKI) data-
bases. Finally, we obtained 513 chemical ingredients and

their physicochemical properties from QX1: 87 compounds
of HQ, 130 compounds of WWZ, 202 compounds of DS,
34 compounds of FL, and 60 compounds of SHHZ.

2.10. Active Compound Screening

2.10.1. Oral Bioavailability (OB). OB is one of the most
important pharmacokinetic parameters in ADME (absorp-
tion, distribution, metabolism, and excretion) characteristics,
which indicates the efficiency of active drug delivery to the
systemic circulation. In the present study, the OBioavail1.1
model was used to estimate OB values [13]. And compounds
from QX1 satisfy OB ≥ 28% as a candidate active molecule
for subsequent step screening.

2.10.2. Druglikeness (DL). DL is used to assess the similarity
of physical properties of compounds with known drugs.
According to previous reports, the drug-like active molecules
were picked out from QX1 based on molecular descriptors
and the Tanimoto coefficient [14]. In this study, a compound
with DL ≥ 0:18 was selected as the active compound of herbs
for further study.

2.10.3. Drug Half-Life. Half-life refers to the time it takes for
the concentration of a drug to be degraded to half in the body
and is considered to be an essential pharmaceutical property,
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Figure 1: Workflow of the current study.
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which is mainly used as a time measure for defining the effi-
cacy of a compound. TheHL ≥ 4 was adopted as the criterion
to screen the candidate active compound of QX1 in this
study.

2.10.4. Caco-2 Cell Permeability. The human intestinal cell
line Caco-2 is commonly used as an effective in vitro
model to study the passive diffusion of drugs through
the intestinal epithelium. We used the transport rate of
drug molecules in Caco-2 cell monolayers as an evaluation
of intestinal absorption. Those chemical ingredients with
Caco-2 cell permeability ≥ –0:4 were filtered out as candi-
date active compounds.

2.11. Target Prediction. To identify the target molecules of
the candidate active compounds is a key step to reveal the
mechanism of QX1. Currently, the weighted ensemble simi-
larity (WES) model was applied to predict the potential tar-
gets of QX1 compound [15]. Then, a similarity based on
chemical fingerprinting is used to obtain potential targets
(http://sea.bkslab.org/search/). Finally, the targets from dif-
ferent sources were named uniformly in the UniProt data-
base (http://www.uniprot.org) and then submitted to the
Pharmacogenomics Knowledgebase (PharmGKB, https://
www.pharmgkb.org/), Therapeutic Targets Database (TTD,
http://database.idrb.cqu.edu.cn/TTD/), and Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/) to
remove redundant and erroneous targets, so as to ensure
the accuracy of the target database.

2.12. Network Construction. Traditional Chinese medicine
(TCM) is a whole system with multicompound and multitar-
get characteristics. There is a complicated relationship
between effective active compounds, active targets, and path-
ways. Therefore, the network visualization analysis software
Cytoscape was used to draw the compound-target (C-T) net-
work and target-pathway (T-P) network.

In order to investigate the molecular mechanism of the
QX1 formula against cardiac injury, an integrated “cardiac
disease-related pathway” was established. Firstly, the active
targets were mapped to the KEGG database (http://www
.kegg.jp/). Then, according to the latest pathological informa-
tion of a cardiac disease-related pathway, an integrated
compound-target pathway diagram was constructed by com-
bining C-T network and T-P network analyses.

2.13. Target-Tissue Location. To understand QX1 formula
therapy for cardiac disease at the organ level, first, GO anal-
ysis showed the most obvious targets among the screened
compound targets, and then, their distribution in tissues
and organs was analyzed. The tissue distribution of the tar-
gets was identified based on microarray analysis of different
tissue types in the BioGPS database (http://biogps.org).

2.14. Ultraperformance Liquid Chromatography Coupled
with Orbitrap Q Exactive Mass Spectrometry (UPLC-MS).
Plasma samples were collected at 0, 15, 30, 60, and 120min
after oral administration with 10 g/kg QX1 decoction. The
reference standards of quercetin, formononetin, kaempferol,
taxifolin, cryptotanshinone, and tanshinone IIA were pur-

chased from the National Institutes for Food and Drug
Control (Beijing, China). The plasma samples and standard
solutions were analyzed using ultraperformance liquid chro-
matography coupled with Orbitrap Q Exactive mass spec-
trometry (Thermo Scientific, San Jose, USA). Briefly,
acetonitrile (A) and 0.1% formic acid aqueous solution (B)
were selected as the mobile phases. The gradient mobile
phase was as follows: 0% A from 0 to 1min, 0% to 95% A
from 1 to 10min, 95% to 98% A from 10 to 14.5min, 98%
to 0% A from 14.5 to 14.6min, and 0% A from 14.6 to
16min. The column temperature was 45°C, and the flow rate
was 0.3ml/min. An HSS T3 chromatographic column
(100 × 2:1mm, 1.8μm, Waters, USA) was adopted. The
system was equipped with an ESI source, and the detection
conditions were under positive ion modes. The heater tem-
perature was 320°C and the capillary temperature was
300°C, and the capillary voltage was 3.5 kV. Quercetin, for-
mononetin, kaempferol, taxifolin, cryptotanshinone, and
tanshinone IIA were identified as the main bioactive com-
pounds using reference standards. The UPLC-MS analysis
was performed using Xcalibur 2.2 software (Thermo Scien-
tific, San Jose, USA).

2.15. Western Blot Analysis. Western blot procedures were
performed as previously described [16]. The primary
antibodies were rabbit anti-calcium/calmodulin-dependent
protein kinase II (CaMKII) (1 : 1000, ab52476, Abcam,
Cambridge, United Kingdom), rabbit anti-phospho- (P-)
CaMKII (1 : 1000, ab5683, Abcam), rabbit anti-AKT
(1 : 1000, #4685, Cell Signaling Technology, Danvers, MA,
USA), rabbit anti-P-AKT (1 : 1000, #4060, Cell Signaling
Technology), rabbit anti-P-ERK1/2 (1 : 1000, #4370, Cell Sig-
naling Technology), rabbit anti-ERK1/2 (1 : 1000, #4695, Cell
Signaling Technology), rabbit anti-P-p38 (1 : 1000, #9215,
Cell Signaling Technology), rabbit anti-p38 (1 : 1000, #9212,
Cell Signaling Technology), rabbit anti-P-SAPK/JNK
(1 : 1000, #4668, Cell Signaling Technology), rabbit anti-
SAPK/JNK (1 : 1000, #9258, Cell Signaling Technology), rab-
bit anti-TLR4 (1 : 1000, #14358, Cell Signaling Technology),
rabbit anti-NF-κB p65 (1 : 1000, #8242, Cell Signaling Tech-
nology), rabbit anti-P-NF-κB p65 (1 : 1000, #3033, Cell
Signaling Technology), and rabbit anti-β-actin (1 : 2000,
#4970, Cell Signaling Technology). Horseradish peroxidase-
(HRP-) conjugated goat anti-rabbit IgG (1 : 5000, A8275,
Sigma-Aldrich) was used as a secondary antibody.

2.16. Mouse Cytokine Array. Serum samples were harvested
from each group at 24h after CLP surgery. For each sample,
60μl serum was used to determine the concentration of
20 cytokines including granulocyte-macrophage colony-
stimulating factor (GM-CSF), interferon-gamma (IFN-γ),
interleukin- (IL-) 1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-
9, IL-10, IL-12, IL-13, IL-17, keratinocyte-derived chemokine
(KC), monocyte chemoattractant protein-1 (MCP-1), mac-
rophage colony-stimulating factor (MCSF), regulated upon
activation normal T expressed and secreted (RANTES),
tumor necrosis factor-α (TNF-α), and vascular endothelial
growth factor (VEGF) using Quantibody Mouse Cytokine
Array 1 (RayBiotech, Inc., Norcross, GA, USA) according
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to the manufacturer’s instruction. The data were analyzed
with RayBiotech cytokine antibody array software [17].

2.17. Statistical Analysis. Data were presented as means ±
standard deviation (SD). Statistical analysis was performed
using the GraphPad Prism 7 program (GraphPad, La Jolla,
USA). One-way analysis of variance (ANOVA) was per-
formed to compare the statistical differences of data among
three or more groups. A P value of <0.05 was considered sta-
tistically significant.

3. Results

3.1. QX1 Formula Improved the Survival Outcome and
Attenuated Cardiac Dysfunction in Septic Mice. We initially
investigated whether administration of the QX1 formula
conferred a survival advantage to septic mice (Figure 2(a)).
The survival rate of CLP mice was approximately 55% within
3 days and 40% within 7 days. The Kaplan-Meier survival
analysis showed that mice in the QX1 Low group exhibited
an increased 7-day survival rate to 50% compared to the
CLP mice. Both the high dose of the QX1 formula and
TMZ treatment significantly improved the 7-day survival
rate to 60% as compared with that of CLP mice (P < 0:05
and P < 0:05, respectively). Then, we performed echocardi-
ography analysis to assess the effect of the QX1 formula on
cardiac function in septic mice (Figure 2(b)). Echocardiogra-
phy analysis found that mice that underwent CLP surgery
had significantly reduced LVEF and LVFS compared with
shammice, while low or high dose of the QX1 formula signif-
icantly increased LVEF and LVFS (P < 0:05 and P < 0:01,
respectively, Figures 2(c) and 2(d)). The LVEF and LVFS of
mice in the TMZ group also significantly increased compared
to those of mice in the CLP group (P < 0:05 and P < 0:05,
respectively).

3.2. QX1 Formula Ameliorated the Disruption of Cardiac
Structure in Septic Mice. H&E staining was used to observe
the effect of QX1 formula treatment on the pathological
changes of cardiac tissue in septic mice (Figure 3(a)). The
sham group showed normal histological features. In the
CLP group, the cardiac structure was damaged, accompanied
by a loose arrangement of myogenic fibers and inflammatory
cell infiltration. Treatment with low or high dose of the QX1
formula or TMZ alleviated the loosening of cardiomyocytes
and inflammatory cell infiltration. Further, the changes of
cardiac structure were observed using TEM (Figure 3(b)).
In the sham group, the myofibrils were organized orderly,
the Z-line of the sarcomere was clear and straight, and the
mitochondrial structure was completely arranged between
the myofibrils. Compared with the sham group, in the CLP
group, myofibril arrangement was loose and tortuous, with
local dissolution and cavitation, the Z-line of the sarcomere
was broken or blurred, the color of mitochondria became
darker, and the arrangement was loose and swollen. In the
QX1 Low group, myofibril arrangement was loose, the Z-
line of the sarcomere was clear, and the mitochondria were
swollen and proliferated. Compared with the CLP group,

the myofibrils, Z-line, and mitochondrial structure were sig-
nificantly improved in the QX1 High and TMZ groups.

3.3. Active Compound Screening. In this study, we initially
obtained 513 chemical ingredients and their physicochemical
properties from the QX1 formula from the TCMSP database
and based on a large number of literatures. Then, the ADME
system was applied to screen the potential active compounds
of QX1. Finally, we screened 63 compounds which reached
the standard ofOB ≥ 28%,DL ≥ 0:18,HL ≥ 4, and Caco-2 cell
permeability ≥ –0:4 as candidate active molecules (Table 1).
There were 9, 10, 5, 11, and 31 active compounds in HQ,
WWZ, FL, SHHZ, and DS, respectively. Among the active
ingredients, quercetin (MOL02) and kaempferol (MOL15)
were both in HQ and SHHZ, and hederagenin (MOL07) was
found in both HQ and FL. On the basis of structure analysis,
the 63 active compounds mainly belonged to diterpenoids, fla-
vonoids, and lignans.

3.4. Drug Targeting and Analysis. In order to clarify the
mechanism of QX1 active substances in the treatment of
cardiac-related diseases, we need to clarify the possible tar-
gets of active compounds. A total of 79 potential targets for
the 63 bioactive compounds were achieved using the WES
algorithms and assigning them to the CTD, TTD, and
PharmGKB databases (Supplementary Table 1). The results
showed that most active compounds can act on multiple
targets, and one target can be also possibly associated with
multiple active compounds. The active compound quercetin
(MOL02) can act on 56 targets, while the estrogen receptor
(ESR1) was the target of 57 compounds, accounting for 90%
of the total active compound targets.

3.5. Compound-Target Network Analysis. The C-T network
diagram was constructed based on 142 nodes (63 potential
compounds and 79 potential targets) and 686 edges
(Figure 4). The degree parameter of topological analysis
showed that the average degrees of potential compounds
and targets were 10.9 and 8.7, respectively, indicating that
the active compounds and targets were closely related in
the QX1 formula. Quercetin (MOL02) is the key component
of the QX1 formula and displayed the highest number of
target interactions (degree = 56), followed by kaempferol
(MOL15, degree = 33), beta-sitosterol (MOL10, degree = 24),
tanshinone IIA (MOL50, degree = 19), formononetin
(MOL13, degree = 16), cryptotanshinone (MOL35, degree =
14), and taxifolin (MOL21, degree = 11). Among potential
protein targets, the top 10 high-degree targets acted on
multiple compounds, namely, ESR1 (degree = 57), PTGS2
(degree = 55), AR (degree = 52), NOS2 (degree = 46), ESR2
(degree = 43), GSK3β (degree = 43), F2 (degree = 40),
PPARG (degree = 35), PTGS1 (degree = 32), and MAPK14
(degree = 30) (Supplementary Table 2). These high-degree
targets in the network may be the major mediators of the
QX1 formula in the treatment of cardiac-related diseases.

3.6. Target-Protein Association Network Analysis. The T-P
network consists of 60 targets and 30 pathways significantly
enriched by these targets (Figure 5). Obviously, most of the
target proteins (40/60) appeared in multiple pathways,
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indicating that the target proteins of the QX1 formula
interacted with each other in different pathways and carried
out signal transmission for cardiac diseases. Meanwhile,
many pathways (11/30) were also regulated by multiple
target proteins (≥8), which might be the key mechanism
of the QX1 formula in the treatment of cardiac-related

diseases. As shown in Supplementary Table 3, the crucial
target-protein associated pathways included the PI3K/AKT
signaling pathway (degree = 16), HIF-1 signaling pathway
(degree = 11), calcium signaling pathway (degree = 10),
MAPK signaling pathway (degree = 9), cytokine-cytokine
receptor interaction (degree = 9), adrenergic signaling in
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Figure 2: The QX1 formula improved the survival outcome and cardiac dysfunction in septic mice. Mice were orally administered with low
(5 g/kg) or high (10 g/kg) dose of the QX1 formula or TMZ (20mg/kg) at 6 h and 18 h after CLP surgery, respectively. (a) Kaplan-Meier
survival curves. Twenty mice of each group were used to analyze the 7-day mortality. (b) Representative M-mode echocardiograms after
CLP surgery. (c) Left ventricle ejection fraction (EF) and (d) fractional shortening (FS) were calculated. Data were presented as means ±
SD, and differences between means were compared using one-way ANOVA with Tukey’s multiple comparison test. ∗∗P < 0:01 compared
to the sham group; #P < 0:05, ##P < 0:01 compared to the CLP group.
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Figure 3: The QX1 formula ameliorated the disruption of cardiac structure in septic mice. (a) Representative H&E staining images of the left
ventricular myocardium (scale bar = 50μm). (b) Representative images of transmission electron microscopy of the left ventricular
myocardium (scale bar = 2μm). (A) Sham group, (B) CLP group, (C) QX1 Low group, (D) QX1 High group, and (E) TMZ group. The
short yellow arrow indicated that the Z-line of the sarcomere was broken and blurred. The yellow circles indicated that myofibrils were
loosely arranged and partially dissolved. The long yellow arrows indicated that mitochondria were swollen.
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Table 1: Active compounds and their corresponding ADME parameters in the QX1 formula.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL01 Palmitic acid FL 19.30 1.09 0.10 0.00 10 H O

O

MOL02 Quercetin HQ/SHHZ 46.43 0.05 0.28 14.40 56

H

H

H
H

H

O

O O

OO

O

O

MOL03 Jaranol HQ 50.83 0.61 0.29 15.50 10

H

H

O

O

O

O O

O

MOL04

(2R)-2-[(3S,5R,10S,13R,14R,
16R,17R)-3,16-Dihydroxy-4,
4,10,13,14-pentamethyl-2,3,

5,6,12,15,16,17-octahydro-1H-
cyclopenta[a]phenanthren-

17-yl]-6-methylhept-5-enoic acid

FL 30.93 0.01 0.81 6.81 3

H

H

H

H

H O

O

O

O

MOL05 Trametenolic acid FL 38.71 0.52 0.80 7.78 4

O

HO

OH

MOL06 Cerevisterol FL 37.96 0.28 0.77 5.31 4

O
O

OH

H

H

H

H

H
H

H

MOL07 Hederagenin HQ/FL 36.91 1.32 0.75 5.35 15

HO

MOL08 n-Coumaroyltyramine SHHZ 85.63 0.69 0.20 4.82 8

O

O

O

H

HN

HH

H

8 Oxidative Medicine and Cellular Longevity



Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL09 Isorhamnetin HQ 49.60 0.31 0.31 14.34 15

O

O

O

O

O O

O

H

H

H

H

MOL10 Beta-sitosterol SHHZ 36.91 1.32 0.75 5.36 24

O

H

H

H
H

H

MOL11 3,9-Di-O-methylnissolin HQ 53.74 1.18 0.48 9.00 17
O

O

O

O
H

H O

MOL12 Bifendate HQ 31.10 0.15 0.67 17.96 9 O

O

O
O

O

O

O

O

O

O

MOL13 Formononetin HQ 69.67 0.78 0.21 17.04 16

OO

O
O

H

MOL14 Calycosin HQ 47.75 0.52 0.24 17.10 11

OO

O
O

O

H
H

MOL15 Kaempferol HQ/SHHZ 41.88 0.26 0.24 14.74 41
O

O

O

O

O
H

H

H

H

O

MOL16
(2R)-5,7-Dihydroxy-2-(4-hydroxyphenyl)

chroman-4-one
SHHZ 42.36 0.38 0.21 16.83 11

H

H
O

O

O O

O
H

MOL17 Poriferasterol DS 43.83 1.44 0.76 5.34 4

H
HH

H

H
H

H

O

MOL18 (-)-Taxifolin SHHZ 60.51 -0.24 0.27 14.37 10

OO

O

O O

H
H

H

O

O

H

H

9Oxidative Medicine and Cellular Longevity



Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL19 Dehydrotanshinone II A DS 43.76 1.02 0.40 23.71 13

O

O

O

MOL20 Chryseriol SHHZ 35.85 0.39 0.27 16.31 10 OO

O

O

O O

H

H

H

MOL21 Taxifolin SHHZ 57.84 -0.23 0.27 14.41 11

OO

O O

O

O

O

H

H

H

H

H

MOL22 Eriodictyol SHHZ 71.79 0.17 0.24 15.81 12

O O

O O

O

O
H

H

H

H

MOL23
2-Isopropyl-8-methylphenanthrene-3,4-

dione
DS 40.86 1.23 0.23 14.89 19

O

O

MOL24 3α-HydroxytanshinoneIIa DS 44.93 0.53 0.44 23.78 10 O

O

O
O

H

MOL25
(E)-3-[2-(3,4-Dihydroxyphenyl)-7-hydroxy-

benzofuran-4-yl]acrylic acid
DS 48.24 0.18 0.31 8.87 6

O

O

O

O

OO

H H

H

HH

H

MOL26 Formyltanshinone DS 73.44 0.54 0.42 24.12 10

O

O

O

O

H

MOL27 Przewaquinone B DS 62.24 0.39 0.41 24.94 10 O

O

O

O
H
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Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL28 Przewaquinone C DS 55.74 0.42 0.40 23.70 15

HO

O

O

O

MOL29 Przewaquinone F DS 40.31 -0.09 0.46 22.45 8

OH

O

O

O

OH

MOL30 Sclareol DS 43.67 0.84 0.21 4.71 4

H

H

H

O

O

MOL31 Tanshinaldehyde DS 52.47 0.57 0.45 23.49 10

O

O

O

O

MOL32 Tanshinol A DS 21.31 0.36 0.41 0.00 10

O

O

O

O

H

MOL33 Danshenol B DS 57.95 0.53 0.56 4.28 7

O

O

O O
H

MOL34 Danshenol A DS 56.97 0.33 0.52 5.15 15

O O

O

O

H

MOL35 Cryptotanshinone DS 52.34 0.95 0.40 17.30 14

O

O

O
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Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL36 Danshenspiroketallactone DS 50.43 0.88 0.31 15.19 16

O
O

O

MOL37 Deoxyneocryptotanshinone DS 49.40 0.85 0.29 27.17 14

O
H

O

O

MOL38 Dihydrotanshinone I DS 45.04 0.95 0.36 18.32 16 O

O

O

MOL39 Isocryptotanshinone DS 54.98 0.93 0.39 31.92 14
O

O

O

MOL40 Isotanshinone II DS 49.92 1.03 0.40 24.73 11

O

O

O

OH

MOL41 Isotanshinone I DS 29.72 1.01 0.36 0.00 12 O

OO

MOL42 Manool DS 45.04 1.28 0.20 5.81 2

OH

MOL43 Methyltanshinonate DS 19.19 0.56 0.55 0.00 11

O

O

O

O

O

MOL44 Miltionone I DS 49.68 0.35 0.32 41.49 16

O
H

O

O
O
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Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL45 Miltirone DS 38.76 1.23 0.25 14.82 15
O

O

MOL46 Neocryptotanshinone DS 52.49 0.35 0.32 14.46 12

O

O

O

O
H

H

MOL47 Prolithospermic acid DS 64.37 0.10 0.31 8.82 10
OH

OH

OH

HO O

O

MOL48 Tanshindiol B DS 42.67 0.05 0.45 22.25 7 O

O

O

O

O

H

H

MOL49 Przewaquinone E DS 42.85 -0.04 0.45 22.44 7

H

H
O

O

O

O

O

MOL50 Tanshinone IIa DS 49.89 1.05 0.40 23.56 19 O

O

O

MOL51 Tanshinone VI DS 45.64 0.48 0.30 15.21 12

O

OH
OH

O

MOL52
2-(4-Hydroxyphenyl)ethyl (E)-3-
(4-hydroxyphenyl)prop-2-enoate

SHHZ 93.36 0.68 0.21 5.24 5

O

OO

O

H

H H

H

13Oxidative Medicine and Cellular Longevity



Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL53 Schisanhenol WWZ 22.98 1.88 0.06 0.00 8

OH
O O

O

O

O

MOL54
4,7-Dimethyl-7-(4-methylpent-3-enyl)

bicyclo[2.2.1]heptan-3-ol
WWZ 30.71 0.66 0.83 9.40 1

HO

MOL55 Angeloylgomisin H WWZ 29.70 1.83 0.09 0.00 3

HO

O O

O
O

O
O

O

MOL56 Schizandrer B WWZ 25.37 0.10 0.04 0.00 2

O O

O

O

O
O

O

O
OH

MOL57 Clupanodonic acid WWZ 30.69 0.63 0.78 5.09 3
H H

H

H H
HO

OHH H

MOL58 Gomisin D WWZ 32.68 0.73 0.83 8.50 2
OH

O O

O

OO

O

O

O

HO

MOL59 Gomisin H WWZ 34.84 0.60 0.86 9.54 2

OO
OH

HO

O

O

O

MOL60 Schisanhenol acetate WWZ 27.20 1.86 0.02 0.00 4 O

O O

O

O O

O

MOL61 Schizonepetoside A WWZ 48.80 1.39 0.03 11.35 4

OH

OH

OH

OH

O

O

O
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cardiomyocytes (degree = 9), Toll-like receptor signaling
pathway (degree = 8), and T cell receptor signaling pathway
(degree = 8).

3.7. Cardiac Disease-Related Pathway Analysis. Considering
the complex mechanism of QX1 in the treatment of
cardiac-related diseases, an integrated map of “cardiac
disease-related pathways” was constructed by integrating
the key pathways that were obtained from the KEGG data-
base and combined with T-P network analysis (Figure 6).
The cardiac disease-related pathways were comprised of four
important pathways: calcium signaling pathway, MAPK
signaling pathway, PI3K/AKT signaling pathway, and TLR
signaling pathway. As shown in Figure 6, the cardiac
disease-related pathways were involved in several biological
functions, such as contraction, inflammation, proliferation,
differentiation, cell survival, cell cycle, and chemotactic
effects. The QX1 formula may play a therapeutic role in car-
diac disease by regulating these biological functions.

3.8. Target-Tissue Location Analysis. Understanding the
localization of protein targets on multiple organs at the sys-
tem level is useful to clarify the therapeutic target of QX1
against cardiac functional diseases. A total of 79 targets were
mapped on 84 normal tissues based on the BioGPS database.
The tissue distribution network of the 79 targets was divided
into heart, spleen, kidney, and brain tissue modules
(Figure 7). Most targets acted on two or more tissues, which
suggested that these tissues were closely correlated. Specifi-
cally, there were 62 targets that contained high mRNA
expression in the heart, accounting for 78% of all the targets.
Besides, 52 targets in the kidney, 47 targets in the brain, and
24 targets in the spleen were found, respectively. The results
suggested that the target of the QX1 formula is closely linked
to cardiac disease.

3.9. Identification of the Main Bioactive Compounds in
Plasma. The six main bioactive compounds, including quer-
cetin, formononetin, kaempferol, taxifolin, cryptotanshi-
none, and tanshinone IIA, were identified in plasma after
oral administration of QX1 decoction by UPLC-MS. The

chromatograms of the six main bioactive compounds at
30min after oral administration of QX1 decoction are shown
in Figure 8. The retention times were approximately 6.29min
for taxifolin, 6.78min for quercetin, 11.08min for tanshinone
IIA, 10.34min for cryptotanshinone, 7.83min for formono-
netin, and 7.32min for kaempferol. The chromatograms of
analytes in blank plasma and blank plasma spiked with the
six main bioactive compounds are shown in Supplementary
Figure 1A and B.

3.10. Effect of the QX1 Formula on the Activity of Cardiac
Disease-Related Pathways. In order to evaluate the conse-
quences of systematic pharmacological analysis, we exam-
ined the effect of the QX1 formula on key proteins in the
integrated “cardiac disease-related pathways,” including cal-
cium, MAPK, PI3K/AKT, and TLR4 signaling pathways
using Western blot. CLP surgery significantly increased the
expression of P-CaMKII protein in the cardiac tissue of mice
compared with the sham group, while low or high dose of
QX1 formula treatment inhibited this increase (Figures 9(a)
and 9(b)). Compared with the sham group, expression of P-
AKT protein was decreased in the CLP group (Figures 9(c)
and 9(d)). Compared with the CLP group, expression of P-
AKT protein was increased in the QX1 High group, but not
in the QX1 Low group. Furthermore, we investigated the
effect of the QX1 formula on the activity of three well-
characterized subfamilies of MAPK pathways, ERK1/2,
JNK, and p38 (Figures 9(e) and 9(f)). CLP surgery induced
the activation of ERK1/2, JNK, and P38 compared with the
sham group, whereas the CLP-induced activation of JNK
was inhibited by low or high dose of QX1 formula treatment.
Compared with the CLP group, decreased expression of P-
ERK1/2 and P-P38 was observed in the QX1 Low group
and QX1 High group, respectively. In addition, the activity
of the TLR4 pathway was also examined. CLP treatment sig-
nificantly increased the expression of TLR4, and this increase
was inhibited by low or high dose of QX1 formula treatment
(Figures 9(g) and 9(h)). Compared with the sham group,
increased expression of P-NF-κB p65 downstream of TLR4
was observed in the CLP group, whereas this increase was
inhibited by high but not low dose of QX1 formula treatment.

Table 1: Continued.

Molecular ID Compounds Herb OB Caco-2 DL HL Degree Structure

MOL62 Thuja alcohol WWZ 46.27 1.08 0.84 8.72 5 O

H

H

MOL63 Kaempferol-3-O-α-L-rhamnoside SHHZ 41.88 -1.29 0.69 16.15 1

OH

O

O
O

O

OH

OH

HO

OH

OH
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3.11. Effect of the QX1 Formula on Serum Cytokine
Production. Cytokines have been thought to play an impor-
tant role in the induction of cardiac dysfunction during sep-
sis. The production of 20 cytokines in serum of mice was
determined by a multiplex assay after CLP or QX1 formula
treatment (Figure 10). Compared with the sham group, the
levels of eight cytokines (IFN-γ, IL-1β, IL-3, IL-4, IL-6, IL-
10, IL-17, and TNF-α) were significantly upregulated in the
CLP group. Among them, IL-1β, IL-3, IL-4, IL-6, and IL-10
increased in the CLP group were markedly reduced in both
the QX1 Low and QX1 High groups. Compared with the
CLP group, the levels of IL-17 and TNF-α were reduced in

the QX1 Low group and the level of IFN-γ was reduced in
the QX1 High group.

4. Discussion

In this study, we demonstrated that the QX1 formula
improved the survival outcome and ameliorated cardiac dys-
function in septic mice induced by CLP surgery. Based on the
complex multicomponent property of the QX1 formula, a
systems pharmacology approach was applied to explore the
potential active components, targets, and networks. After in
silico TCMSP-based prediction, we performed Western blot
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and mouse cytokine array experiments to verify our pre-
dicted pathway and elucidated the preliminary mechanism.
We found that QX1 formula treatment enhanced the activa-
tion the PI3K/AKT pathway and attenuated the activity of
the calcium, MAPK, and TLR4/NF-κB pathway in the septic
mice. To our knowledge, this is the first report to comprehen-
sively elucidate the protective mechanism of the QX1 for-
mula on sepsis-induced cardiac dysfunction.

Cardiac dysfunction is a common complication in
patients with sepsis and dramatically increases mortality
from 20% to as high as 70%–90% in patients with sepsis
[18, 19]. CLP surgery in mice is the most frequently used
experimental model and is considered the gold standard in
sepsis research [20]. The position of cecal ligation in mice is
the primary determinant of sepsis severity and mortality.
Reduction of sepsis mortality is one of the most important
indicators to evaluate the efficacy of drug therapy. The QX1
formula is an applicable TCM prescription for sepsis-
related cardiac dysfunction and has been used in the clinical
practice for more than 30 years. Our previous study showed
that the high-dose QX1 formula significantly increased the

3-day survival rate in mice with severe sepsis from 22% to
40% [7]. In the present study, a CLP-induced moderate sepsis
model was established and 60% of mice died during 7 days.
Administration of low (5 g/kg) or high dose of QX1
(10 g/kg) improved the survival outcome in septic mice and
led to an increase in the 7-day survival rate to 50% and
60%, respectively. Echocardiography is the most effective tool
to evaluate the cardiac function of sepsis. The LVEF and
LVFS are well-known powerful factors for predicting the
mortality and outcome in heart failure patients [21, 22]. We
found that QX1 formula treatment notably elevated LVEF
and LVFS in septic mice. Moreover, QX1 formula treatment
alleviated the sepsis-induced damage of cardiac histological
and ultrastructure. The effects of the high-dose QX1 formula
on the survival outcome, LVEF and LVFS, and cardiac mor-
phological structure damage were comparable to those of
TMZ treatment. Our results suggested that administration
of the QX1 formula effectively improved the survival out-
come and ameliorated sepsis-induced cardiac dysfunction.

Deeply studying the molecular mechanism of TCM is dif-
ficult due to its multicomponent property. Now, systems
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pharmacology has become a promising approach to elucidate
the mechanisms of multiple target components in TCM [23].
Using the ADME system, 63 QX1 potential active com-
pounds were screened out in this study based on the
standards of OB ≥ 28%, DL ≥ 0:18, HL ≥ 4, and Caco-2 cell
permeability ≥ –0:4. Among them, quercetin (MOL02),
formononetin (MOL13), kaempferol (MOL15), taxifolin
(MOL21), cryptotanshinone (MOL35), and tanshinone IIA
(MOL50) are also identified and quantified using UPLC-
MS/MS analysis in our previous study, which confirmed the
reliability of systematic pharmacological screening of herbal
active ingredients [7]. In the present study, these six active
compounds were also detectable in rat plasma after treatment
of QX1 decoction. QX1 formula treatment ameliorates myo-
cardial tissue damage in mice suffering from sepsis partly by
inhibiting endoplasmic reticulum- and mitochondria-related

apoptosis [7]. In this study, as predicted by a systems phar-
macology approach, QX1 may play a therapeutic role in
sepsis-induced cardiac dysfunction primarily by regulating
calcium signaling, MAPK, PI3K/AKT, and TLR pathways.
To further validate this prediction, we evaluated the effect
of QX1 on the key protein expression in these pathways in
septic mice using Western blot. QX1 formula treatment sig-
nificantly inhibited the sepsis-induced activation of CaMKII,
MAPK (P38, ERK1/2, and JNK), and TLR4/NF-κB pathways
and promoted the activation of AKT. This study proved the
reliability of the systems pharmacology approach in explor-
ing cardiac protective effect and the underlying mechanism
of QX1.

Accumulating evidence has documented that calcium
signaling plays a pivotal role in sepsis-induced cardiac dys-
function [24, 25]. CaMKII is a molecular switch that
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regulates myocardial Ca2+ signaling, and excessive CaMKII
activation is detrimental to the integrity and function of the
heart [26, 27]. The activity of CaMKII was significantly
increased in septic mice [25]. In this study, QX1 treatment
decreased the level of P-CaMKII. Cryptotanshinone
(degree = 14) and tanshinone IIA (degree = 19), the primary
bioactive compounds in Danshen, ameliorate hypoxia-
induced damage of cardiomyocyte H9c2 cells by regulating
intracellular NO, calcium, and mitochondrial ROS produc-

tion [24]. It was proposed that the bioactive compounds
cryptotanshinone and tanshinone in the QX1 formula may
alter Ca2+ handling to exert their cardiac protective effects.

The PI3K/AKT pathway is a classical pathway that regu-
lates cell proliferation, survival, and cell homeostasis [28].
The previous study has shown that inhibition of PI3K
increased the inflammatory and apoptotic processes and
mortality in septic mice [29]. By contrast, the activation of
the PI3K/AKT pathway improved cardiac dysfunction and
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Figure 9: Continued.
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reduced sepsis mortality in an animal sepsis model [30, 31].
Formononetin (degree = 16), a methoxyisoflavone widely
found in many herbs, has been shown to protect cardiomyo-
cyte H9c2 cells from oxygen-glucose deprivation and reoxy-
genation injury via suppression of reactive oxygen species
(ROS) formation by promoting AKT activation and GSK-
3β phosphorylation [32]. Quercetin, a natural flavonoid, is
the key component of QX1 and displayed the highest number
of target interactions (degree = 56). Besides, quercetin post-
conditioning significantly alleviates cardiac ischemia/reper-
fusion injury in rats via activating the PI3K/AKT pathway
[33]. Our study demonstrated that formononetin and quer-
cetin in the QX1 formula may activate the PI3K/Akt path-
way, which partially contributes to their curative effects.

MAPK, as the serine-threonine kinases, regulates several
important cellular processes, including cell proliferation,
inflammation, survival, stress response, and apoptosis [34].
A recent study revealed that inhibition of MAPK signaling
pathways could alleviate sepsis-induced cardiac injury in
AT1R-knockdown rats [35]. ERK1/2, JNK, and p38 are the
three major subfamilies of MAPK signaling proteins. Taxifo-
lin (degree = 11), an active flavonoid, was shown to exert a
cardioprotective effect against cardiac ischemia/reperfusion
injury by modulating oxidative stress and attenuating mito-
chondrial apoptosis [36]. Kaempferol (degree = 33), a dietary
flavonoid, has been indicated to ameliorate myocardial ische-
mic injury by inhibiting the phosphorylation of JNK and p38
proteins and activation of ERK1/2 [37], which may be
responsible for the inhibitory effect of the QX1 formula on
the MAPK pathway in septic mice.

In sepsis, the activation of the MAPK pathway might
result from aberrant upstream signaling, such as TLR4 [38].
TLR4 is one of the most studied members of the TLR family,
which plays a pivotal role in the signal transduction of sepsis-
induced inflammatory response. It has been reported that
activation of TLR4 induces inflammation and aggravates car-
diac dysfunction in severe sepsis, while knockout of the TLR4
gene improves sepsis-induced cardiac dysfunction [39].
Therefore, TLR4 has been considered a potential therapeutic
target for controlling inflammatory response and improving
cardiac function [40]. The NF-κB pathway, a typical inflam-
matory signaling pathway, can be activated by TLR4 and lead
to the excessive release of proinflammatory cytokines leading
to secondary sepsis myocardial injury [41]. In the present
study, we found that the TLR4/NF-κB signaling pathway
was activated during sepsis. QX1 formula treatment signifi-
cantly inhibited the activation of the TLR4/NF-κB inflamma-
tory signaling pathway. It was reported that in mice,
quercetin protects mice from LPS-induced sepsis by inhibit-
ing proinflammatory cytokine TNF-α and IL-1β expression,
NF-κB activation, and apoptosis [42]. Quercetin in the QX1
formula may play an important role in preventing myocar-
dial dysfunction via the TLR4/NF-κB signaling pathway dur-
ing sepsis.

An acute severe systemic inflammatory response known
as “cytokine storm” is a key factor in the development and
progression of septic cardiac dysfunction [43]. Both proin-
flammatory and opposing anti-inflammatory responses
occur concomitantly in sepsis, and sepsis is regarded as an
immunosuppressive disorder [44]. Analysis of cytokine
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Figure 9: Effects of the QX1 formula on the sepsis-induced cardiac dysfunction pathway. (a, b) Western blot analysis of total CaMKII and P-
CaMKII protein expression in heart tissues. (c, d) The expression levels of P-AKT and AKT proteins were determined in cardiac tissue. (e, f)
Protein levels of ERK1/2, P-ERK1/2, P38, P-P38, JNK, and P-JNK were detected by Western blot. (g, h) Protein levels of TLR4 and NF-κB
were detected by Western blot. Data were presented as means ± SD, and differences between means were compared using one-way
ANOVA with Tukey’s multiple comparison test. ∗∗P < 0:01 compared to the sham group, #P < 0:05, ##P < 0:01 compared to the CLP group.
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Figure 10: Effects of the QX1 formula on cytokine expression. The levels of (a) IFN-γ, (b) IL-1β, (c) IL-3, (d) IL-4, (e) IL-6, (f) IL-10, (g) IL-
17, and (h) TNF-α in serum were quantified by a mouse cytokine assay. Data were presented asmeans ± SD, and differences between means
were compared using one-way ANOVAwith Tukey’s multiple comparison test. ∗∗P < 0:01 compared to the sham group. #P < 0:05, ##P < 0:01
compared to the CLP group.
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profiles and mortality in 464 patients showed that a high
ratio of IL-10 to TNF-α is associated with mortality in
patients with community-acquired infection [44]. In this
study, we observed that sepsis led to cytokine storm accompa-
nied by the upregulated serum levels of IFN-γ, IL-1β, IL-3, IL-
4, IL-6, IL-10, IL-17, and TNF-α, whereas QX1 treatment
decreased the production of typical Th1/Th2-associated pro-
inflammatory cytokines (IFN-γ, IL-1β, IL-3, IL-6, and TNF-
α) and Th17-associated proinflammatory cytokines (IL-17).
Our study also found that QX1 markedly downregulated
the levels of typical Th2-associated anti-inflammatory cyto-
kines (IL-4, IL-10). Elevated concentrations of TNF-α and
IL-1β are found in the serum of septic patients and are
responsible for sepsis-related cardiac depression [45]. The
IL-1β level is also increased in LPS-treated mice and plays
an important role in suppressing myocardial contractility
[46]. TNF-α is a proinflammatory cytokine mainly expressed
in the initial hyperinflammatory stage of sepsis and is respon-
sible for myocardial diastolic and systolic dysfunction [47].
In sepsis, overexpression of TNF-α increases the level of
NO by inducing the production of inducible nitric oxide syn-
thase (iNOS), which leads to apoptosis of myocardial cells
and heart failure [48]. Suppression of the systolic function
of cardiomyocytes in vitro is associated with IL-6 production,
and removal of IL-6 in the culture supernatant significantly
improves the systolic function of cardiomyocytes [49]. IL-3
plays a critical role during sepsis. It was reported that the
addition of a CD123 (IL-3 receptor alpha chain) antibody
reduces mortality and alleviates organ dysfunction by
restraining the JAK2-STAT5 signaling pathway and reduces
serum cytokines in the development of early sepsis in a rat
model induced by CLP [50]. IL-6 contributes to host defense
against infections and tissue injuries; however, excessive
levels of IL-6 lead to cytokine storm via inhibiting cardiac
function but activating the coagulation pathway and vascular
endothelial cells [51]. In the CLP-induced sepsis, calcium-
sensing receptor activation promotes T cell apoptosis and
the secretion of the proinflammatory cytokine TNF-α and
the anti-inflammatory cytokine IL-4 probably through NF-
κB and partial ERK and JNK signal transduction pathways
[52]. Our results suggested that the QX1 formula may consti-
tute a novel therapeutic strategy for suppressing the activity
of CaMKII, TLR4/NF-κB, andMAPK pathways, but promot-
ing the activation of AKT, thereby decreasing the release of
downstream inflammatory cytokines and thus controlling
cytokine storm and regulating immune balance in sepsis.

In conclusion, the QX1 formula improved cardiac dys-
function in sepsis mice by inhibiting calcium, MAPK, and
TLR4 signaling pathways, activating PI3K/AKT pathways,
and reducing the subsequent release of inflammation cyto-
kines. This study demonstrated the multicomponent, multi-
target, and multipathway characteristics of QX1, which
provided a novel understanding of QX1 in the clinical appli-
cation on cardiac dysfunction during sepsis.
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