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Abstract

The immune system plays an important role in controlling cancer growth. However, cancers 

evolve to evade immune detection. Immune tolerance and active immune suppression results in 

unchecked cancer growth and progression. A major contributor to immune tolerance is the tumor 

physiologic microenvironment, which includes hypoxia, hypoglucosis, lactosis, and reduced pH. 

Preclinical and human studies suggest that exercise elicits mobilization of leukocytes into 

circulation (also known as “exercise-induced leukocytosis”), especially cytotoxic T cells and 

natural killer cells. However, the tumor physiologic microenvironment presents a significant 

barrier for these cells to enter the tumor and, once there, properly function. We hypothesize that 

the effect of exercise on the immune system’s ability to control cancer growth is linked to how 

exercise affects the tumor physiologic microenvironment. Normalization of the microenvironment 

by exercise may promote more efficient innate and adaptive immunity within the tumor. This 

review summarizes the current literature supporting this hypothesis.

Introduction

Although widely used to manage chronic diseases (1, 2), incorporating exercise into cancer 

therapy is relatively new. Epidemiologic studies have shown that aerobic exercise reduces 

cancer incidence and progression after diagnosis, in a variety of malignancies (3–6). 

Clinically recommended exercise levels (e.g., 150 minutes of moderate exercise per week) 

are associated with up to 40% risk reduction for developing breast and colon cancers (4, 7, 

8). Part of these effects may be related to how exercise affects antitumor immune function 

(9–11).

Preclinical studies have revealed how exercise changes the physiologic tumor 

microenvironment. For example, exercise reduces tumor hypoxia and improves vascular 

maturity and perfusion (12–15). It is well established that tumor hypoxia contributes to 
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tumor progression, radioresistance, and chemoresistance. Improved perfusion and reduced 

hypoxia in the tumor microenvironment could improve drug delivery, enhance tumor 

response to chemotherapy, and lead to better prognosis (12, 16–18).

Current FDA-approved immune-based therapies for cancer are, in large part, designed to 

reverse tumor immune escape and tumor-induced immune suppression (for example, 

immune checkpoint blockade; ref. 19). Despite significant success with immune-based 

therapies, a substantial proportion of patients do not respond (20). Thus, there is a rationale 

for adjunct strategies to improve clinical benefit associated with immunotherapy (21, 22).

Figure 1 summarizes our hypothesis that exercise-induced normalization of tumor 

microvasculature, hypoxia, and metabolism promotes competent cytotoxic immune cell 

infiltration into tumors.

Modulation of the Tumor Microenvironment by Exercise

Immune cell trafficking into tumors

Aberrant tumor vasculature downregulates endothelial adhesion molecules, which impairs 

leukocyte entry into tumors (23, 24). The normalization of tumor vasculature increases 

endothelial cell adhesion molecule expression, facilitating leukocyte entry into tumor 

parenchyma (25, 26). In murine tumor models, the combination of anti-PD-L1 and vascular 

endothelial growth factor (VEGF) blockade increased the density of high endothelial venules 

and caused a 3- to 10-fold increase in tumor-infiltrating T and B lymphocytes (26). Vascular 

normalization of tumors also occurs following exercise in murine models of cancer (12, 16). 

Therefore, exercise-induced normalization of tumor vasculature may increase endothelial 

adhesion molecule expression and promote immune cell infiltration into tumors.

The effect of exercise on immunity toward infection

Many recent reviews have highlighted the role of exercise in maintaining a healthy immune 

system and controlling infections and chronic inflammation-associated disease (11), 

including cancer (9, 10, 27, 28). Moderate exercise in mice (20–30 minutes/day of treadmill 

running) increased the survival rate by 2-fold following influenza infection compared with 

inactivity. In contrast, intense exercise (2.5 hours/day of treadmill running) increased 

morbidity (29). Epidemiologic human studies support moderate exercise as more beneficial 

to immune function than intense exercise (30). Women who walked briskly for 45 minutes 5 

days/week had reduced duration of upper respiratory tract infection (URTI) symptoms 

compared with sedentary counterparts (5.1 days vs. 10.8; ref. 31). However, marathon 

runners who averaged >96 km/week had 2-fold higher odds of URTI compared with runners 

who averaged 32 km/week (32). Results such as those led to an “open-window” hypothesis: 

following vigorous exercise, an individual is transiently immunosuppressed (33). A recent 

review by Campbell and Turner argues that acute/vigorous exercise is not 

immunosuppressive; in the long run, exercise improves immune cell function, and exercise-

induced immune cell redistribution is beneficial (27). This hypothesis is coined the “acute 

stress” or “exercise immune-enhancement” (27, 34).
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Studies that examined the effect of exercise on immune cell phenotype and function in 

preclinical and clinical settings are listed in Tables 1A and 1B.

Exercise and the innate immune system

Exercise studies reported increased natural killer (NK) cell and macrophage reactivity 

against tumors. NK cells directly kill tumor cells via a perforin-dependent mechanism (35, 

36). Subsets of NK cells are also involved in cross-talk with dendritic cells (37). This cross-

talk can enhance antigen presentation and downstream effector cell responses (38–41). 

Pedersen and colleagues demonstrated that voluntary wheel running halved tumor incidence 

compared with sedentary controls in mice with diethylnitroasmine-induced liver tumors 

(42). Further, exercise prior to melanoma implantation in mice exhibited a 6-fold increase in 

NK cell infiltration into primary tumors, reduced tumor growth rate (by 60%), and halved 

the number of lung metastases compared with sedentary controls (42). Activity of adrenergic 

receptors on immune cells was key to the stimulation of NK cell activity; beta-blockers 

inhibited the activation of NK cells associated with exercise (42).

Tumor-associated macrophages (TAM) also contribute to innate antitumor immunity (43). 

Antitumor/M1 macrophages secrete proinflammatory cytokines (i.e., IFNγ and IL12), which 

support NK cell activation and Th1 T-cell immunity. However, in advanced cancer, TAMs 

differentiate to a protumor/M2 phenotype and secrete immunosuppressive cytokines such as 

IL10 (44).

In murine mammary carcinoma models, swimming promoted antitumor/M1 polarization of 

peritoneal macrophages following lipopolysaccharide (LPS) stimulation, whereas similarly 

treated macrophages in sedentary controls maintained a protumor/M2 phenotype (44). 

Additionally, chronic treadmill training increased tumor cell cytolysis by peritoneal 

macrophages by 50% (45). These data suggest that exercise-mediated shifts in macrophage 

polarization may increase antitumor function of TAMs.

Exercise and the adaptive immune system

In humans, large increases in the number of circulating low-, medium-, and high-

differentiated T cells occur during or shortly after exercise. Exercise intensity increases the 

relative distribution of low-, medium-, and high-differentiated T cells with main effects seen 

in medium-differentiated CD4+ T cells and low- and medium-differentiated CD8+ T cells 

(46). These cells exhibit higher cytokine production and enhanced response to 

cytomegalovirus. Upon exercise cessation, circulating lymphocyte and NK cell numbers 

rapidly decline, even to levels below baseline, suggesting that they quickly enter back into 

tissues (47).

In post-chemotherapy patients with breast cancer, 12 weeks of supervised exercise did not 

change the mean circulating numbers of CD3+, CD4+, CD8+, B or NK cells, but increased 

the percentage of CD4+/CD9+cells (CD9 is a marker of T-cell activation) by 50% compared 

with controls who did not exercise. In comparison, the percentage of CD9+ lymphocytes 

declined in the control group. In vitro response to lymphocyte mitogens in the exercising 

group was increased, compared with controls (48). These results suggest that immune 

competency is increased by exercise in post chemotherapy breast cancer patients who 

Zhang et al. Page 3

Cancer Res. Author manuscript; available in PMC 2020 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exercise. It is not known whether this change in immune competency extends to tumor 

immunity, however.

To our knowledge, the role of exercise on regulatory T cells (Treg) has not been examined 

clinically; results in murine models have been mixed. In the MMTV-PyMT transgenic 

mouse mammary carcinoma, 10 weeks of voluntary wheel running decreased tumor size and 

caused a 4-fold reduction in CCL22 expression. CCL22 is an M2 macrophage-associated 

chemokine responsible for recruiting Tregs (49). There was no difference in numbers of M1 

or M2 macrophages between groups, suggesting that the reduction in CCL22 is related to 

functional, rather than quantitative, change in M2 macrophages. A second study reported 

that physical activity decreased the percentage of splenic Tregs in mammary carcinoma-

bearing mice (50). However, others have suggested that exercise increases Tregs (51). To 

date, the impact of exercise on Treg function and distribution has not been systemically 

evaluated. Understanding the relationship between exercise and Treg levels with various 

exercise conditions could be used to increase effector T-cell/Treg ratio; the ratio of effector T 

cells to Tregs is associated with cancer therapy response (52–54).

Humoral Immunity and Exercise

B cells, like T and NK cells, are mobilized by exercise. Short bouts of cycling in healthy 

human subjects increased circulating levels of multiple B-cell subsets, with the largest 

proportionate increase in immature B cells. Immature B cells may redistribute to peripheral 

tissues for maturation and antigen detection (55). In elderly patients, 10 months of aerobic 

exercise, compared with flexibility and balance training, increased antibody responses to 

influenza vaccine (56). However, it is not known whether such effects influence tumor 

immunity.

Exercise-induced modulation of the tumor physiologic microenvironment and its role in 
immune response

To our knowledge, there are no studies that directly link exercise-induced changes in the 

tumor physiologic microenvironment with changes in tumor immune response. However, the 

literature highlighted below supports the hypothesis that modulation of the physiologic 

microenvironment by exercise can improve antitumor immunity.

We discuss four features: hypoxia, glucose concentration, lactate concentration, and 

extracellular pH (pHe). Although discussed separately, these physiologic conditions often 

occur simultaneously in space and time. Future exercise intervention studies should consider 

simultaneous measurement of these four features coincident with the evaluation of immune 

function.

Tumor hypoxia and innate and adaptive immune function

Most tissues possess physiologic oxygen tension above 20 mmHg (57). Whereas oxygen 

delivery matches metabolic demand in normal tissue, oxygen demands overpower limited 

supply in tumors (58). The imbalance between supply and demand leads to intratumoral 

hypoxia (pO2 < 10 mmHg; refs. 58, 59). Hypoxia is prevalent in many solid cancers and 

contributes to chemoresistance, radioresistance, and reduced survival (6, 60, 61).
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Hypoxia inhibits macrophage and NK cell activities (62, 63). Hypoxic conditions reduce the 

expression of NK cell surface receptor NKG2D, as well as its ligand in vitro (64, 65). 

Hypoxia impairs NK cytolysis of cancer cells of both hematopoietic and solid tumor origin 

(66). Hypoxia post-translationally upregulates the HIF1α subunit of the transcription factor, 

hypoxia inducible factor-1 (HIF1), in nearly all mammalian cells, including tumor, 

endothelial, and stromal cells (67). Upregulation of HIF1 induces the production of VEGF, 

granulocyte-stimulating factors, and IL8. This in turn recruits myeloid-derived suppressor 

cells (MDSC) and TAMs to tumor sites (68–70). High levels of HIF1 promote myeloid cell 

differentiation into immunosuppressive protumor/M2 TAMs and MDSCs (71, 72).

Hypoxia also inhibits adaptive immune cell function. Hypoxia interferes with immune 

plasticity and disrupts the balance between effector T cells and Tregs (25, 73). Further, T-

cell motility is reduced in hypoxia (74). In murine models of colorectal carcinoma, hypoxia 

reduced differentiation of CD4+ T cells by 20% to 40%, while enhancing the number and 

function of Tregs (75). Hypoxic effector T cells exhibit decreased IFNγ and IL2 production 

(62).

Although there are many studies investigating T-cell function in the context of the hypoxic 

tumor microenvironment, few have examined B-cell function under hypoxic conditions. 

Studies indicate that hypoxia and oxygen gradients vary in lymphoid tissues, which could 

impact B-cell function (76–79). Germinal centers in lymph nodes and spleen are important 

for B-cell maturation. Germinal centers are hypoxic with high levels of HIF1α. Thus, B 

cells encounter varying conditions of hypoxia as they migrate to and from lymphoid organs 

into circulation. It is plausible that hypoxia controls B-cell migration, differentiation/

function, and activation in response to antigens as well as tolerance (76–79). Lee and 

colleagues identified B cells as key immune cells in pancreatic cancer progression (80). In a 

mouse model of pancreatic ductal adenocarcinoma (PDAC), they demonstrate the 

importance of hypoxia and stabilization of HIF1α. They show that pancreas-specific Hif1a 
deletion promotes PDAC initiation with a concurrent increase of B cells in the pancreas, 

whereas B-cell depletion suppresses pancreatic cancer progression (80).

Key mechanisms underlying hypoxic immunosuppressive effects include (i) signaling 

through adenosine receptors (A2A adenosine receptors), (ii) desensitization of chemokine 

receptors, (iii) downregulation of major histocompatibility complex (MHC) class I 

molecules on tumor cells (81, 82), and (v) recruitment of immunosuppressive cells into the 

tumor microenvironment. Hypoxia-induced inhibitory effects may be reversible, however. 

Supplemental oxygen breathing revives effector immune responses. Housing tumor-bearing 

mice at hyperoxic conditions (60% O2) reversed hypoxia-driven adenosinergic action, 

enhanced tumor infiltration by CD8+ T cells by 3-fold, and shifted cytokine production 

toward immunostimulatory cytokines (IFNγ; ref. 81).

Exercise modulates tumor hypoxia

Several studies show that exercise reduces tumor hypoxia. In an orthotopic rat prostate 

cancer model, acute exercise increased tumor blood flow 2-fold, thereby increasing O2 

delivery to tumors. Tumor hypoxic fraction was reduced by up to 15% (14, 16). Treadmill 

running increased microvessel density, promoted vessel maturity, and reduced hypoxic 
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tumor fraction compared with sedentary controls (12,13,16). Chronic voluntary wheel 

running increased microvessel density by 50%, tripled the area of pericyte-covered 

vasculature, and halved hypoxic fraction (12) in mice bearing the 4T1 tumor. Schadler and 

colleagues demonstrated that increased vascular maturity associated with exercise was 

related to activation of calcineurin-NFAT_TSP-1 signaling induced by increased 

intravascular shear stress (16). In theory, reduced tumor hypoxia should destabilize HIF1α 
expression. Interestingly, however, Jones and colleagues showed increased HIF1α in the 

MDA-MB-231 xenograft with exercise, despite decreases in hypoxia (13). These findings 

suggest that exercise alters intratumoral HIF1α expression in ways independent of the 

improved oxygenation level. The fact that HIF1 levels can be upregulated in some tumors, 

regardless of the oxygenation status, leads to a cautionary note about the downstream effects 

of exercise on tumor growth. More studies are required to understand these implications.

Exercise and glucose deprivation

The high rate of glucose consumption in tumors, and deficiencies in glucose delivery by 

dysfunctional tumor vasculature, can lead to tumor subregions with near-zero glucose 

concentrations, even in nonnecrotic regions (83). Viable tumor cells residing in hypoglucotic 

(low glucose concentration) regions likely rely on other substrates to maintain viability, such 

as glutamine or fatty acids (84). Glucose availability is essential for effective immune 

function, because activated immune cells rely on glycolysis to produce precursors for cell 

division (85). Thus, one might expect that immune function would be inhibited in 

hypoglucotic tumor subregions. The effects of exercise on glucose metabolism in immune 

cells are understudied, however.

Glass and colleagues reported on the effects of daily treadmill exercise in three claudin-low 

murine tumor models (86). “Claudin-low” represents breast tumors that express genomic 

markers of dedifferentiation (87). Exercise inhibited growth compared with sedentary 

controls in one tumor line but stimulated growth in a second one. The tumor line that 

showed an accelerated growth rate with exercise had upregulated HIF1 levels. HIF1 is a 

master transcriptional regulator of glycolysis (88). Glycolysis is associated with accelerated 

tumor growth, because it generates precursors necessary for cell division (88). Corroborating 

the HIF1 result, metabolomic analysis revealed that glycolysis was upregulated by exercise 

in the growth-accelerated tumor. Exercise slowed tumor growth in three of six colorectal 

cancer patient-derived xenograft (PDX) tumors, whereas it exerted no effect on tumor 

growth in three others (89). The growth-inhibited lines showed metabolomic changes 

consistent with reduced mitochondrial metabolism. It is unknown whether exercise affects 

the nature of glucose consumption in tumor-associated immune cells and, if so, how that 

might affect the immune function.

Lactate metabolism

Tumor cells exist in an acidic microenvironment as a result of either anaerobic or aerobic 

glycolysis. In hypoxic conditions, cells must use glycolysis to generate energy (90). Aerobic 

glycolysis produces precursors for DNA and lipid synthesis (91). Lactic acid is the end-

product of glycolysis, expelled from cells via monocarboxylic acid transporters (MCT; ref. 

92). Acidity is created mainly by lactic acid via glycolysis (93). Although lactate was 
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traditionally thought to be a glycolytic waste product, it is now established that lactate can 

be consumed by aerobic tumor cells; alanine and glutamate are primary catabolites (94). 

Consumption of lactate by aerobic tumor cells reserves glucose for hypoxic tumor cells 

deeper within the tumor (90). The sharing of energy substrates between aerobic and hypoxic 

tumor cells is a key mechanism for hypoxic tumor cell survival (90). It is not known whether 

immune cells can catabolize lactate.

Lactate, acidosis, pH, and immune response

In contrast to normal tissues, which possess an extracellular pH (pHe) of about 7.5, the 

median pHe in solid tumors is 6.8–7.0 (95, 96). Elevated lactate and the associated low 

tumor pHe impair lymphocyte cytotoxicity, chemotaxis, cellular respiration, and 

proliferation (97). At pHe < 6.5, in vitro random leukocyte motility is greatly decreased (98). 

At pHe < 6.7, lymphocyte and NK cell cytotoxic activities against leukemia target cells are 

approximately halved (99,100). Similarly, NK cells cultured with 10 to 15 mmol/L lactate, a 

physiologic tumor lactate range (101, 102), exhibit 5-fold reduction in target cell 

cytotoxicity (103).

Immunosuppression in acidic environments may partially be a consequence of compensatory 

shifts in T-cell metabolism (104), as activated T cells are particularly reliant on glycolysis 

(105). High lactate generated by tumor cells (106) disturbs the gradient that drives T-cell 

lactate efflux, because MCT1 facilitates lactate transport out of cells in a manner that is 

dependent upon the concentration gradient across the cell wall (107). Increased intracellular 

lactate suppresses T-cell metabolism and function (105).

Exercise and tumor lactate/acidity

Aerobic exercise normalizes the immunosuppressive, acidic tumor microenvironment. 

Treadmill running in mice with mammary carcinomas reduced tumor and circulating lactate 

concentrations by approximately 17% compared with sedentary counterparts (108). In 

sarcoma bearing rats (109), treadmill running decreased glucose conversion to lactate by 

approximately 50% in peripheral macrophages and lymphocytes. The reduction in tumor 

lactate production was accompanied by a 2-fold increase in peripheral macrophage 

phagocytic activity and a 75% increase in peripheral lymphocyte proliferation (measured in 
vitro). Although changes in the profile of peripheral immune cells in response to exercise do 

not necessarily reflect changes in the tumor, the study, nevertheless, demonstrates that 

reducing lactate exposure potentiates the immune function.

Future Directions and Conclusion

In this review, we explore the hypothesis that exercise modulates the tumor physiologic 

microenvironment and, consequently, influences immune function and activity. The current 

literature supports the concept that well-oxygenated, less acidic environments (i) improve 

the function of T cells and NK cells; (ii) promote antitumor activity in TAMs; and (iii) 

reduce expression of some immune checkpoints. Additional preclinical and clinical trials of 

exercise should be conducted in which immune function is studied in the context of the 
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tumor physiologic microenvironment, with particular attention paid to hypoxia, glucose 

concentration, lactate concentration, and extracellular pH (pHe).

More work is required to establish how physiologic effects of exercise modulate the tumor 

microenvironment. Corroborative measurements of circulating and intratumoral immune 

cells may help to clarify the link between tumor microenvironment changes and changes in 

immune function/activity. Additionally, metabolic profiling of immune cells isolated from 

tumors of exercising and sedentary subjects would shed light on the metabolic adaptations in 

an exercise-primed tumor microenvironment. In order to be interpretable, preclinical and 

clinical studies of exercise require carefully defined and controlled exercise regimens. 

Preclinical models of exercise in tumor-bearing animals can shed light on underlying 

mechanisms and help to optimize combinations of exercise with other therapeutic 

approaches.

Rigorous studies that elucidate the link between exercise and immune cell function in the 

tumor microenvironment and in the periphery will also serve as a guide of how to implement 

exercise in the context of immunotherapies that harness the immune system against cancer. 

Successful immunotherapy relies upon the ability of innate and adaptive immune cells, such 

as macrophages, NK cells and T cells, to infiltrate the tumor parenchyma and eliminate 

tumor cells. The factors in the tumor physiologic microenvironment that inhibit the 

penetration and function of host immune cells will likely also interfere with 

immunotherapies. To elaborate further, two examples are provided below:

1. CAR T cells are engineered to express chimeric antigen receptors (CAR) that 

specifically target and eliminate tumor cells, independent of the MHC (110). 

Because MHC expression is downregulated by hypoxia (81, 82), CAR T cells 

have an advantage over host T cells that rely on the MHC-based recognition of 

tumor cells in the hypoxic tumor microenvironment. However, T-cell (including 

CAR T-cell) trafficking to the tumor via the vasculature and penetration into the 

tumor bed are inhibited by hypoxia. In other words, the T cell has to reach tumor 

cells before it can kill them. Thus, the tumor physiologic microenvironment, and 

not the MHC, is the gatekeeper for effective T-cell infiltration into the tumor bed. 

As discussed above, high lactate concentrations and low pH can interfere with 

the ability of T cells to kill tumor cells. These effects are not reliant on MHC 

expression. It is important to note that CARs have been effective in treating 

certain types of lymphomas (111, 112). The physiologic microenvironment of 

lymphomas or blood cancers may be more permissive toward an effective 

immune function. For example, lymphomas are only mildly hypoxic (113). 

However, results regarding lactate levels are mixed. Elevated lactate levels are 

not common in CNS lymphomas (114). Further, there is some evidence that 

lymphomas are more reliant on oxidative phosphorylation than glycolysis (115), 

which would reduce lactate concentrations. However, elevated lactate 

concentrations and lowered pHe have been observed in preclinical lymphoma 

models (116, 117). Compared with normals, blood lactate concentrations are 

relatively high in dogs with non-Hodgkin lymphoma (118). These data suggest 

that lactate levels may be relatively normal in some lymphomas, but not all. If 
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lymphomas are relatively oxic, then the physiologic microenvironment would be 

permissive to enhanced CAR T-cell function; however, lactate levels may 

counterbalance the positive effects of normoxia. The effects of elevated lactate 

on the CAR T-cell immune function are relatively unexplored in lymphomas. 

Further, the role that exercise may play in the lymphoma physiologic 

microenvironment is not defined.

2. Immune-checkpoint inhibitors are antibodies that bind immune receptors to 

inhibit T-cell function. T-cell function is inhibited when PD-1 on T cells interacts 

with its ligand, PD-L1, on tumor cells or myeloid immune cells. PD-L1 is 

regulated by HIF1, so in situations where exercise reduces hypoxia and its 

dependent transcription factor, HIF1, one would expert decreased PD-L1 

expression (119–121). Reduced PD-L1 would reduce PD-L1/PD-1 interaction 

and improve T-cell function within the tumor. It is unknown whether T-cell 

function would be improved in conditions where hypoxia is lowered but lactate 

levels remain the same. Thus, correction of hypoxia by exercise may be 

insufficient to restore immune cell function if lactate concentrations remain 

elevated as a result of aerobic glycolysis.

It is clear that additional studies are required to resolve the effects of exercise on the 

physiologic microenvironment. Parallel studies examining the function of innate and 

adaptive immunity in the microenvironment, as influenced by exercise, are necessary to 

decipher the full potential of this therapy.
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Figure 1. 
Exercise primes the tumor toward a more aerobic, less glycolytic physiologic 

microenvironment. The schematic demonstrates the large-scale vascular (top) and 

microscale physiologic microenvironment (bottom) changes within the tumor of an 

exercised versus sedentary individual. It is not drawn to scale. Exercise, in normalizing 

tumor vasculature, increases endothelial adhesion molecule expression, promotes the 

extravasation of cytotoxic immune cell (NK cells, CD8+ T cells, and type 1 macrophages) 

and infiltration of these cells into the tumor. Conversely, under the sedentary condition, 

tumors manifest a hypoxic, aberrantly vascularized, and highly glycolytic tumor. The two 

tumor cross-sections on the bottom represent the physiologic microenvironment of a 

sedentary versus exercised individual. High lactate, low pHe, and hypoglucotic environment 

within the sedentary tumor promote immune-suppressive Tregs but inhibit the function of 

tumor-infiltrating cytotoxic immune cells. The immune cells that are in the sedentary tumor 

microenvironment are metabolically outcompeted by the highly proliferative cancer cells. 

Exercise, by normalizing tumor vasculature, yields a better perfused tumor, with improved 

energy substrate (glucose availability), improved oxygen concentrations, and decreased 

glycolytic lactate production. The net effect of this is an enhanced metabolic and 

immunologic environment, one that results in more potent immune activation and more 

effective tumor cell cytolysis.
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