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An evolutionarily ancient plant hormone receptor complex com-
prising the α/β-fold hydrolase receptor KARRIKIN INSENSITIVE 2
(KAI2) and the F-box protein MORE AXILLARY GROWTH 2 (MAX2)
mediates a range of developmental responses to smoke-derived bute-
nolides called karrikins (KARs) and to yet elusive endogenous KAI2
ligands (KLs). Degradation of SUPPRESSOR OF MAX2 1 (SMAX1) after
ligand perception is considered to be a key step in KAR/KL signaling.
However, molecular events which regulate plant development down-
stream of SMAX1 removal have not been identified. Here we show
that Lotus japonicus SMAX1 is specifically degraded in the presence of
KAI2 and MAX2 and plays an important role in regulating root and
root hair development. smax1 mutants display very short primary
roots and elongated root hairs. Their root transcriptome reveals ele-
vated ethylene responses and expression of ACC Synthase 7 (ACS7),
which encodes a rate-limiting enzyme in ethylene biosynthesis.
smax1 mutants release increased amounts of ethylene and their root
phenotype is rescued by treatment with ethylene biosynthesis and
signaling inhibitors. KAR treatment induces ACS7 expression in a
KAI2-dependent manner and root developmental responses to KAR
treatment depend on ethylene signaling. Furthermore, inArabidopsis,
KAR-induced root hair elongation depends on ACS7. Thus, we reveal
a connection between KAR/KL and ethylene signaling in which the
KAR/KL signaling module (KAI2–MAX2–SMAX1) regulates the biosyn-
thesis of ethylene to fine-tune root and root hair development, which
are important for seedling establishment at the beginning of the
plant life cycle.
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The most recently discovered putative plant hormone signaling
pathway, currently called “karrikin signaling,” has been

identified in the context of postfire seed germination (reviewed
in ref. 1). Karrikins (KARs) are small butenolide compounds
which are found in the smoke of burning vegetation and trigger
germination of fire-following plants (2). They also enhance
germination of primary dormant Arabidopsis thaliana seeds (3),
which enabled the identification of the KAR perception com-
ponents, the α/β-fold hydrolase receptor KARRIKIN INSEN-
SITIVE 2 (KAI2) and the F-box protein MORE AXILLARY
GROWTH 2 (MAX2), by forward and reverse genetics (4, 5).
KAI2 is closely related to the strigolactone receptor DWARF14
(D14), which also interacts with MAX2 in strigolactone per-
ception (6). Strigolactones are well-established plant hormones
with prominent roles in the suppression of shoot branching and
in stimulating the presymbiotic growth of arbuscular mycorrhiza
fungi and seed germination of parasitic weeds in the rhizosphere
(reviewed in ref. 7). By contrast, the endogenous KAI2 ligand(s)
still need(s) to be identified. Nevertheless, the widespread phy-
logenetic distribution of KAI2 from charophyte algae to all land
plants, as well as a number of smoke detection-independent kai2
mutant phenotypes described in Arabidopsis, rice, and petunia,
indicates that the original function of KAI2 was to perceive a

plant hormone (tentatively called “KAI2 ligand”; KL) while, in
fire-following plants, KAI2 was secondarily repurposed for
smoke detection (5, 8–13). Duplications of KAI2 occurred dur-
ing plant diversification, and provided flexibility for additional
adaptations. For example, two KAI2 paralogs (KAI2a and
KAI2b) of Lotus japonicus and the fire follower Brassica tour-
nefortii diverged in their binding preference to diverse KAR
molecules (14, 15), while in parasitic plants and Physcomitrella
patens the KAI2 family has expanded to more than 10 members,
of which some have retained their ability to recognize KARs
whereas others underwent changes in their binding pocket to
bind strigolactone or a yet unknown KL-type ligand (16–19).
A key event for triggering plant hormone responses is the in-

activation of repressor proteins after hormone perception by
ubiquitylation and subsequent proteasomal degradation in most
hormone signaling pathways. Forward genetic screens have iden-
tified repressors of KAR/KL and strigolactone signaling (20–25).
They belong to the same SUPPRESSOR OFMAX2-like (SMXL)
family comprising three major clades in seed plants that are in
Arabidopsis composed of 1) SMAX1 and SMXL2 for KAR/KL
signaling, 2) SMXL6, 7, and 8 for strigolactone signaling, and 3)

Significance

Plant seedlings depend on efficient development of roots and
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SMXL3, 4, and 5 acting in a KAR/KL- and strigolactone-independent
yet unknown signaling module that controls phloem formation
(22–27). The SMXL proteins display similarity to class I Clp
ATPases. Arabidopsis SMAX1, SMXL6, 7, and 8, as well as their
rice ortholog DWARF53 (D53) were shown to interact with the
transcriptional corepressor TOPLESS through ethylene response
factor-associated amphiphilic repression (EAR) motifs (20, 21, 23,
25). Furthermore, D53 was described to promote TOPLESS–
nucleosome interactions (28). Thus, although the exact biochem-
ical function of the SMXL proteins is yet elusive, they likely act as
transcriptional repressors. Ubiquitylation and proteasomal deg-
radation upon ligand perception have been presented for the
strigolactone signaling repressors SMXL6, 7, and 8 and D53 in the
presence of D14 and MAX2 (20, 21, 23, 25, 29) and very recently
also for SMAX1 and SMXL2 in the presence of KAI2 and MAX2
(30, 31).
The role of SMAX1 and SMXL2 in plant development has

been genetically addressed in Arabidopsis; smax1 smxl2 double
mutants display mild, kai2-opposing phenotypes, such as slightly
faster seed germination, shorter hypocotyls, bigger cotyledons, and
longer root hairs (12, 24). Molecular events occurring downstream
of SMAX1 SMXL2 degradation and regulating these phenotypes
are currently unknown. We have previously observed that the le-
gume L. japonicus responds to pharmacological KAR treatment
with a reduction in primary root growth (14). Here we analyzed
the role of SMAX1 and found that in contrast to Arabidopsis smax1
smxl2 mutant seedlings, L. japonicus smax1 mutant seedlings have
a dramatic root phenotype, with 50% shorter primary roots (PRs)
than the wild type and a 300% increase in root hair (RH) length.
We show that expression of the ethylene biosynthesis gene ACC
synthase 7 (ACS7), as well as ethylene release, is increased in
smax1 mutants and that the increased ethylene production causes
the smax1 root phenotype. Congruously, with degradation of
SMAX1 upon KAR/KL perception, KAR treatment enhances
ACS7 expression in the wild type. Furthermore, reduced PR
growth in response to KAR depends on ethylene signaling. Thus,
we reveal a connection between KAR/KL and ethylene signaling,
which fine-tunes root development in L. japonicus.

Results
The SMXL Protein Family in L. japonicus. To identify SMAX1 in L.
japonicus, we constructed a phylogenetic tree with SMXL protein
sequences of L. japonicus, A. thaliana,Medicago truncatula, Sorghum
bicolor, and Oryza sativa. Similar to other non-Brassicaceae dicoty-
ledons, the L. japonicus genome does not contain close homologs to
all Arabidopsis SMXL genes, indicative of recent SMXL gene du-
plications and losses in the dicotyledons (27). In the KAR/KL sig-
naling clade, L. japonicus maintains one SMAX1 homolog (SI
Appendix, Fig. S1). There are three SMXLs in the strigolactone
signaling clade (SMXL7a, SMXL7b, SMXL8), in which SMXL7a, 7b,
and 8 seem to have originated from a common ancestor gene, which
has duplicated independently in Arabidopsis and L. japonicus.
SMXL5 is not found in the L. japonicus genome, but SMXL3 and 4
as well as an additional SMXL9 are present (27).
The L. japonicus SMXL genes differ in their transcript accu-

mulation in the leaf, stem, flower, and root of L. japonicus (SI
Appendix, Fig. S2). SMAX1 transcripts accumulate consistently
across all tested organs, while SMXL7a, SMXL7b, and SMXL8
transcripts accumulate to higher levels in leaf, stem, and root,
and to lower levels in flowers. SMXL3, SMXL4, and SMXL9
transcript levels are generally low.

SMAX1 Is a Proteolytic Target of the KAR Receptor Complex in L.
japonicus. Arabidopsis SMXL6, 7, and 8 and their rice ortholog
D53 are degraded after GR24 treatment in a D14- and MAX2-
dependent manner (20, 21, 23, 25), and evidence for karrikin-
induced and KAI2- and MAX2-dependent degradation of Ara-
bidopsis SMAX1 and SMXL2 has just been published (30, 31).

To examine whether L. japonicus SMAX1 is a specific proteo-
lytic target of the KAR/KL receptor complex, we tested its sta-
bility in transiently transformed Nicotiana benthamiana leaves in
the presence of L. japonicus KAI2 and MAX2. We coexpressed
L. japonicus SMAX1-GFP (green fluorescent protein) together
with MAX2 and one of the α/β-fold hydrolase receptors KAI2a,
KAI2b, or D14 under the control of strong promoters from a
single plasmid, which additionally contained an expression cassette
for free mCherry as a transformation marker (Fig. 1A). SMAX1-
GFP was clearly visible in the nuclei of N. benthamiana leaf epi-
dermal cells coexpressing MAX2 and the strigolactone receptor
D14 (Fig. 1 B and E). In contrast, no GFP signal was observed in
the presence of MAX2 and the KAR/KL receptors KAI2a or
KAI2b, even in the absence of KAR treatment, indicating that
SMAX1 is specifically degraded in the presence of the two KAI2
isoforms. We scrutinized the specificity of SMAX1 degradation by
testing the stability of other GFP-labeled SMXLs, namely SMXL8
(strigolactone signaling in Arabidopsis) and SMXL3, 4, and 9
(phloem formation in Arabidopsis). As expected for a repressor of
strigolactone responses, SMXL8-GFP was not detected in the
presence of D14 and MAX2, but it accumulated when D14 was
exchanged for KAI2a or KAI2b (Fig. 1 B and E). GFP fusions of
SMXL3, 4, and 9 accumulated under all conditions, showing that
they are targeted by neither KAI2 nor D14 in the presence of MAX2
(SI Appendix, Fig. S3 A and B). Degradation of both SMAX1 and
SMXL8 depends on the presence of L. japonicus MAX2, as both
SMXL-GFP fusion proteins accumulated in the nuclei in the ab-
sence of L. japonicus MAX2 even in the presence of the cognate
α/β-fold hydrolase receptor (Fig. 1 C and F). Thus, N. benthamiana
receptor components are insufficient to mediate full removal of L.
japonicus SMAX1 and SMXL8. A 5-amino acid deletion in the P
loop of the SMXL6,7,8, rice ortholog D53 (GKTGI) renders the
resulting d53 mutant resistant to proteasomal degradation (20, 21).
At the same location, a similar amino acid motif (GKTAL) has been
found by sequence alignment in Arabidopsis SMAX1 (32) and we
hypothesized that deletion of this motif may also protect SMAX1
from degradation. Indeed, deletion of the corresponding motifs from
L. japonicus SMAX1 (GKTAF) and SMXL8 (GKTTI) allowed
SMAX1d53-GFP and SMXL8d53-GFP to accumulate in the nuclei of
N. benthamiana leaf epidermal cells despite the presence of MAX2
and the cognate α/β-fold hydrolase receptors (Fig. 1 D and E). The
receptor- and P loop-dependent stability patterns of SMAX1,
SMXL8, and SMXL3, 4, and 9 were confirmed by Western blot (SI
Appendix, Fig. S3C).
In summary, we show that SMAX1 is specifically degraded in

the presence of KAI2a or KAI2b and MAX2, while SMXL8 is spe-
cifically degraded in the presence of D14 and MAX2. Thus, SMAX1
is a bona fide target of the KAI2–MAX2 receptor module and the
canonical SMAX1–KAI2 and SMXL8–D14 relationships suggested
by genetic analysis in Arabidopsis (reviewed in ref. 33) are valid for L.
japonicus proteins.

SMAX1 Is Required for Primary Root Elongation and for Restricting
Root Hair Growth. Having unequivocally identified SMAX1 in L.
japonicus through phylogenetic analysis and degradation assays,
we searched for smax1 retrotransposon (LORE1) insertion mu-
tants (34) to investigate the role of SMAX1 in L. japonicus de-
velopment. We found three mutants (smax1-1, smax1-2, smax1-
3) with insertions in the first exon of the gene (SI Appendix, Fig.
S4A). Because segregating seeds carrying the smax1-1 insertion
had a strong germination defect, we focused on smax1-2 and
smax1-3. As previously shown in Arabidopsis smax1 mutants (22),
transcripts of the KAR/KL marker gene DLK2 (5, 14) accumu-
late at high levels in the roots of both allelic mutants, confirming
that SMAX1 is nonfunctional (see Fig. 3B).
Interestingly, both allelic smax1 mutants display a strong seed-

ling root phenotype (Fig. 2). The PR length is strongly reduced,
whereas the number of postembryonic roots (PERs), including
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lateral and adventitious roots (14), is similar to the wild type,
resulting in an increased PER density (Fig. 1 A and B). Associa-
tion of this phenotype with the homozygous LORE1 insertion in
SMAX1 was confirmed by cosegregation analysis with a population
segregating for the smax1-2 insertion (binomial linear regression
for PR length, P = 0.001144 and for PER density, P = 6.59 × 10−5;
Fig. 1C). From a population of 72 individuals, 13 seedlings were
homozygous wild type for the SMAX1-2 locus, 44 were heterozy-
gous, and 15 were homozygous mutant, respecting a Mendelian
segregation (χ2 = 3.67, P = 0.16).
In addition to a reduced PR length, the smax1 mutants display

elongated root hairs, which are on average three times longer than
those of the wild type (Fig. 2 D and F). Furthermore, the first root
hairs emerge 400 μm closer to the root tip quiescent center
(Fig. 2E). We examined whether the shorter PR length and dis-
tance between quiescent center and first root hairs of smax1
mutants are caused by a defect in root cell elongation. Longitu-
dinal sections at the root tip region revealed that the transition
zone above the root tip of smax1mutants is swollen with compact-
looking cells (SI Appendix, Fig. S5A). We determined the cumu-
lative length for the 25 first observable cortical cells situated

directly below the epidermis starting from the meristematic zone,
because these are most continuously observable in the longitudinal
sections (SI Appendix, Fig. S5B). In the wild type, the cells above
cell 6 or 7 start to elongate whereas, in the two smax1mutants, cell
elongation is delayed, and starts only at cell numbers 14 and 15. In
addition, smax1 mutants display enhanced cortical cell and root
widths as compared with the wild type (SI Appendix, Fig. S5 C–E),
suggesting that the cells may be defective in anisotropic growth.
To examine whether smax1 is epistatic over kai2a and kai2b

for root phenotypes, we compared smax1 with the kai2a kai2b
smax1 triple mutant. The triple mutant recapitulated the PR and
root hair phenotypes of smax1, showing that smax1 is fully epistatic
over kai2a kai2b (SI Appendix, Fig. S6). Interestingly, and in contrast
to previously reported Arabidopsis kai2 mutant phenotypes (12), L.
japonicus kai2a kai2b mutant roots resembled the wild type and did
not display longer PRs and had only marginally shorter root hairs.

The smax1 Root Phenotype Is Not Caused by Low Sugar or Phosphate
Supply. Seed nutrient reserves are essential for early seedling devel-
opment and growth (35). We investigated whether the smaller root
system of smax1 mutants may be caused by reduced seed reserves,
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Fig. 1. SMAX1 is specifically degraded in the presence of KAI2 and MAX2. (A) Schematic representation of the expression cassettes in the T-DNA contained in
the Golden Gate plasmids used for transient transformation of N. benthamiana leaves for the SMXL degradation assay (LB, left border; RB, right border). All
coexpressed proteins were encoded on the same plasmid. (B and C) Confocal microscopy images of N. benthamiana leaves expressing SMAX1 or SMXL8 fused
with GFP, a free mCherry transformation marker, and any of the α/β-hydrolase receptors hemagglutinin (HA)-D14, HA-KAI2a, or HA-KAI2b in the presence (B)
or presence/absence of MYC-MAX2 (C). For each combination, the green fluorescence of SMXL-GFP fusions (Left), red fluorescence of the mCherry trans-
formation marker (Middle), and an overlay of green and red fluorescence and bright-field images (Right) are shown. (B and C, Insets) A single nucleus at
higher magnification. (Scale bars, 25 μm.) (D) Representation of the amino acid deletions which give rise to degradation-resistant SMXL8d53 and SMAX1d53

and the accumulation of SMXL8d53- and SMAX1d53-GFP fusions in nuclei of N. benthamiana leaf epidermal cells in the presence of HA-KAI2a, HA-KAI2b, or
HA-D14 and MYC-MAX2. (E and F) Percentage of green fluorescent nuclei (indicating the presence of SMAX1 or SMXL8) per red fluorescent nucleus (indi-
cating successful transformation) in microscopy images of leaf epidermal cells of N. benthamiana in the presence of the HA-tagged α/β-fold hydrolase re-
ceptor indicated on the x axis and the presence (E) or presence/absence (F) of MYC-MAX2. In each graph, 23 to 113 (E) or 3 to 9 (F) nuclei were analyzed in n ≥
2 images per protein combination.
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and weighed the seeds from homozygous and heterozygous smax1
parents and measured their two-dimensional area, which is a good
proxy for L. japonicus seed weight (SI Appendix, Fig. S7 A–C).
Seeds from homozygous smax1 mutants are around 25% lighter
and smaller than wild-type seeds, while segregating seeds from
heterozygous parents have on average an intermediate weight,
size, and size distribution (SI Appendix, Fig. S7). This raises the
possibility that growth of smax1 mutant seedlings suffers from a
reduced nutrient (for example, carbon) supply from their seed.
However, addition of 1% sugar to the medium did not rescue

root growth of smax1, although it strongly improved primary root
growth of the wild type (SI Appendix, Fig. S8A). Furthermore, it
positively affected PER number, such that PER density remained
higher in the smax1 mutants as compared with the wild type, to-
gether making it unlikely that reduced sugar supply is causative of
the smax1 root phenotype.
Decreased PR length can also be caused by phosphate star-

vation (36) and, since the smax1 root phenotype was observed on a
medium with a low concentration of phosphate (2.5 μM), the smax1
root phenotype may be a symptom of hypersensitivity to phosphate
starvation. However, smax1 mutant root growth cannot be restored
on medium containing a high phosphate concentration (2.5 mM). In
this condition, L. japonicus wild-type plants responded with reduced
PR length whereas PR length of smax1 remained unchanged (SI
Appendix, Fig. S8B). The phosphate conditions did not affect the
PER number and PER density of both genotypes. Together, this

indicates that the smax1 root architecture phenotype is not caused
by low phosphate availability. Thus, the root phenotype does not
seem to be determined by seed reserves, but the small seed size may
be a result of the smaller size of the mother plant.

Transcriptome Patterns of KAR/KL Signaling Mutants. To identify
pathways which may be deregulated in smax1 mutants and re-
sponsible for their primary root and root hair phenotypes, we per-
formed Illumina RNA sequencing (RNA-seq) from roots of the two
allelic smax1 mutants and the KAR/KL perception mutants kai2a
kai2b and max2. After read mapping to the L. japonicus MG20
messenger RNA reference (version 3.0), exploratory analysis for
assessing genotype-specific transcriptome variation, and differential
expression analysis comparing each mutant with the wild-type
transcriptome (adjusted P value ≤ 0.01 and log2FC ≥ |0.48|; FC,
fold change), we found a total of 7,759 unique differentially
expressed genes (DEGs) (SI Appendix, Figs. S9–S11 and Datasets
S1, S2, and S3). Since the current version of the L. japonicus ref-
erence genome contains a considerable number of false positive
gene annotations or duplicate annotations, a LegumeMine search
was performed for each mutant DEG list to filter for bona fide
genes conserved among legumes. This reduced the number of
original DEGs to a total of 5,340 unique DEGs (SI Appendix, Fig.
S9 and Dataset S2). Most DEGs (4,420 DEGs) were found in the
smax1 mutants and 57% (2,511) of them overlapped between the
two smax1 mutant alleles (SI Appendix, Fig. S12A and Tables S8
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from the QC (E) and RH length at 1.5 to 2 mm from the apex (F) in the wild type, smax1-2, and smax1-3 (n ≥ 6). (E) Asterisks indicate significant differences
compared with the wild type (ANOVA, post hoc Dunnett test; N.S., not significant, P > 0.05; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). (B, C, E, and F) Letters indicate
significant differences (ANOVA, post hoc Tukey test).
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and S9). Since these 2,511 “smax1 DEGs” were robustly confirmed
in two independent allelic mutants, we used them for further
analyses. In kai2a kai2b and max2 roots, we found a total of 2,431
DEGs (SI Appendix, Fig. S12B and Tables S8 and S9). Between
these mutants, 765 (31.5%) DEGs overlapped and are therefore
robust candidates for targets of KAR/KL signaling. A total of 506
DEGs overlapped for all mutants (SI Appendix, Fig. S12C). Unex-
pectedly, only 4 DEGs were significantly regulated in opposite di-
rections in kai2a kai2b and max2 versus the smax1 mutants,
although SMAX1 is a proteolytic target of the KAR receptor
complex (SI Appendix, Fig. S12E). The well-known KAR signaling
marker gene DLK2 (Lj2g3v0765370; Fig. 3B), Lj3g3v0139639 (un-
known), and Lj4g3v2400850 (coatomer subunit beta′-2-like isoform
X1) were up-regulated in the smax1 mutants and down in kai2a
kai2b and max2, whereas Lj2g3v1155500 (peptide transporter 5)
showed the opposite expression pattern. Low fold-change value in
the comparison of the mutant versus the wild type may prevent
many genes from passing the significance threshold for a fraction of
mutants. Alternatively, yet unknown feedback mechanisms may
cause a range of genes (275 up, 226 down; SI Appendix, Fig. S12D)
to be regulated in all mutants in the same direction. A number of
genes were dysregulated in the smax1mutants but in the kai2a kai2b
and max2 mutants their transcript accumulation did not differ from
the wild type. These may not be regulated in the wild type under our
growth conditions or they could be candidates for secondary re-
sponse genes to the removal of SMAX1. All transcript accumula-
tion patterns were validated by qRT-PCR on a subset of 18 genes
(Fig. 3B and SI Appendix, Fig. S13).

Increased Transcript Accumulation of the Ethylene Biosynthesis Gene
ACS7 in smax1 Mutants. Hierarchical clustering on the 5,340
DEGs (using the r–log-transformed read count dataset) followed
by gene ontology (GO) enrichment of each cluster (Fig. 3A, SI
Appendix, Fig. S14, and Dataset S4) as well as GO enrichment
analysis for each mutant versus the wild type (SI Appendix, Fig.
S15 and Dataset S5) revealed enrichment of the term “cell wall
metabolic process” for all mutants. smax1 mutant transcriptomes
specifically displayed a deregulation of secondary metabolite pro-
cessing, such as flavonoid, steroid, and phenylpropanoid metabolic
processes, whereas kai2a kai2b and max2 transcriptomes displayed
an enrichment of isoprenoid and terpenoid biosynthetic processes.
Furthermore, transcripts overaccumulating in smax1 mutants were
enriched for GO terms related to transcriptional regulation, re-
sponse to biotic stimulus, meristem maintenance, and responses to
hormone stimuli, especially to auxin and ethylene.
Ethylene is known to inhibit primary root cell elongation and

to promote root hair elongation in Arabidopsis (reviewed in ref.
37), thus causing similar phenotypes as observed in the L. japo-
nicus smax1 mutants. Several AP2 transcription factor genes an-
notated as ethylene response factors (ERFs) are present in cluster
6 (Fig. 3A), which contains genes that are up-regulated in smax1
mutants, as well as an ACC-SYNTHASE gene (Lj2g3v0909590),
which is homologous to Arabidopsis ACS7 (Fig. 3B and SI Ap-
pendix, Fig. S16). ACSs are rate-limiting enzymes in ethylene
biosynthesis and it has been demonstrated that transcriptional
regulation of ACS genes is an important factor in regulating
ethylene biosynthesis (reviewed in ref. 38). We identified all ACS
genes (and corresponding protein sequences) in the L. japonicus
genome and assessed their transcript read count in the RNA-seq
dataset. Only ACS7 transcripts and those of the closely related but
weakly expressed duplicated gene ACS7-like overaccumulated in
smax1 mutants (SI Appendix, Fig. S16 A–C). In Arabidopsis,
overexpression of ACS7 causes short primary roots and elongated
root hairs, resembling the L. japonicus smax1 root phenotype (39).
Furthermore, 14 N-terminal amino acid residues, which make
AtACS7 susceptible to proteasomal degradation (39, 40), are not
conserved in LjACS7 (SI Appendix, Fig. S16D). Together, this

bolsters the hypothesis that the increase in ACS7 transcripts may
explain the smax1 root phenotypes.

Root Growth Inhibition in smax1 Is Caused by Increased Ethylene
Biosynthesis. We measured by gas chromatography whether in-
creased ACS7 expression results in elevated ethylene biosyn-
thesis in the smax1 mutants. Both smax1 mutants released at least
2.5 times more ethylene than the wild type (Fig. 4A). Nevertheless,
the smax1 mutants were responsive to pharmacological pertur-
bation of ethylene biosynthesis through the ethylene precursor
ACC (1-aminocyclopropane-1-carboxylic acid) and the ACC bio-
synthesis inhibitor AVG (aminoethoxyvinylglycine) in a similar
manner as the wild type (Fig. 4A).
To understand whether increased ethylene levels can cause

short primary roots and elongated root hairs in L. japonicus, we
treated wild-type seedlings with the ethylene precursor ACC and
the ethylene-releasing chemical ethephon. With this treatment,
the wild type recapitulated smax1 root and root hair phenotypes
(SI Appendix, Fig. S17). Importantly, treatment with AVG, which
specifically blocks the synthesis of the ethylene precursor ACC
through inhibition of ACS (41), or with silver nitrate, which
blocks multiple ethylene receptors such as ETHYLENE RE-
CEPTOR 1 (ETR1) and thereby ethylene perception (42), re-
stores wild type-like primary root and root hair development in
both allelic smax1 mutants (Fig. 4 B–F and SI Appendix, Fig.
S18). Thus, the overproduction of ethylene in the smax1 mutants
causes the defects in primary root and root hair development.

Increased Ethylene Biosynthesis Does Not Affect Hypocotyl Development
in smax1 Mutants. To understand whether increased ethylene bio-
synthesis in smax1 mutants also affects the seedling shoot, we per-
formed hypocotyl triple-response assays [for reduced hypocotyl
growth, increased hypocotyl thickening, and exaggerated apical
hook curvatures (43)] with etiolated seedlings (SI Appendix, Fig.
S19 A–C). smax1 mutants do not show a constitutive triple re-
sponse, but they respond to increasing concentrations of added
ACC in a dose-dependent manner, similar to the wild type. How-
ever, the dark-grown (SI Appendix, Fig. S19 A–C) as well as light-
grown (SI Appendix, Fig. S19D and E) smax1 hypocotyls are shorter
than those of the wild type, and this is not rescued by AVG or silver
nitrate (SI Appendix, Fig. S19 D and E). Nevertheless, ACS7 tran-
script accumulation was increased in smax1 mutants (SI Appendix,
Fig. S19F). This suggests that the increased ethylene biosynthesis in
L. japonicus smax1 mutants specifically affects the root, possibly
because hypocotyls are less sensitive to ethylene than roots. Fur-
thermore, mechanisms other than ethylene signaling seem to in-
fluence hypocotyl elongation in smax1 mutants.

Ethylene-Dependent and -Independent Transcriptional Regulation in
smax1 Mutants. We examined whether transcript regulation in
smax1 roots is a secondary response to ethylene by testing the ex-
pression of eight of the qRT-PCR–confirmed DEGs (SI Appendix,
Fig. S13) after treatment with AVG and silver nitrate (SI Appendix,
Fig. S20). The elevated transcript accumulation of three genes in the
smax1 mutants, annotated as Germin-like (Lj3g3v2601420), IAMT1-
like (Lj2g3v3222870), and Auxin-Induced-5NG4-like (Lj6g3v2244450),
was suppressed by both AVG and silver nitrate treatment, demon-
strating that their increased expression is ethylene-dependent. Inter-
estingly, an Expansin gene (Lj0g3v0287409) is repressed only upon
AVG but not silver nitrate treatment, suggesting that this gene is
likely not regulated in response to ethylene but possibly to ACC
perception (44, 45). In contrast, transcripts of DLK2 as well as of a
gene of unknown function (Lj0g3v0127589), a gene annotated as
serotonin receptor-like (Lj4g3v0496580), and an AP2 transcription
factor gene annotated as ERF (Lj2g3v1068730) overaccumulated in
smax1 mutants independent of ethylene inhibitor treatment. We
called the ERF gene ERIK (for ERF INDUCED BY KARRIKIN;
see below).
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To test if the ethylene signaling-independent smax1 DEGs are
early targets of KAR/KL signaling, we analyzed their expression after
2- and 6-h treatments by KAR1 in roots. KAR1 caused a significant
induction of DLK2, ERIK, and the serotonin receptor-like gene in a
KAI2a KAI2b- and MAX2-dependent manner (SI Appendix, Fig.
S21). As expected, the ethylene-dependent Germin-like gene, in-
cluded as a control, was not induced by KAR1 treatment. Thus, we
confirm that DLK2 is an early KAR response gene and, in addition,
we present two KAR/KL marker genes in L. japonicus, the ethylene-
independent ERF gene ERIK (Lj2g3v1068730) and the serotonin
receptor-like gene (Lj4g3v0496580).

Ethylene Signaling Is Required for the Effect of KAR1 on Root Development.
If increased ACS7 expression is a direct effect of SMAX1 re-
moval, then expression of this gene should also be induced by
treatment of wild-type roots with KAR. Indeed, KAR1 induced
a small increase of ACS7 transcript accumulation after 2 h and
a significant increase after 6 h of treatment in a KAR/KL
receptor-dependent manner (SI Appendix, Fig. S22 A and B).
However, we were unable to detect increased ethylene release
in response to KAR treatment of wild-type roots (SI Appendix,
Fig. S22C), possibly because ethylene release may be triggered
in the wild type only in a small number of cells, thus remaining
under the detection limit. We have previously observed that
treatment of wild-type roots by KAR1 leads to a mild inhibition
of PR length and a resulting increase in PER density (14). We
examined whether this effect is dependent on ethylene signal-
ing by cotreating wild-type plants with silver nitrate and with
KAR1. KAR1 treatment alone led to inhibition of PR growth
and an increase of PER density but this was not observed when
plants were cotreated with silver nitrate (SI Appendix, Fig.
S21D). Furthermore, an ein2a ein2b ethylene perception mu-
tant (46) did not respond to KAR1 treatment with reduced PR
growth (SI Appendix, Fig. S22E), corroborating that ethylene
signaling is required for the response. Together, these data in-
dicate that increased ethylene production is a bona fide down-
stream response to KAR perception and demonstrate that
ethylene signaling is required for the effect of KAR1 on L. japonicus
PR growth.

A. thaliana ACS7 Is Required for KAR-Induced Root Hair Growth.
Ectopic expression of ACS7 causes increased root hair growth
in Arabidopsis (39). Furthermore, we previously reported that
Arabidopsis smax1 smxl2 double mutants display an increased
root hair length and that KAR induces root hair elongation in
the wild type (12). smax1 smxl2 double mutants also had slightly
shorter PRs than the wild type, but the phenotype was very mild
as compared with L. japonicus (SI Appendix, Fig. S23 A and B).
Nevertheless, we examined whether the negative impact of
SMAX1 SMXL2 on ACS7 transcript accumulation is conserved
in Arabidopsis roots. Along with DLK2, ACS7 transcripts accu-
mulated to higher levels in smax1 smxl2 mutants as compared
with the wild type, although this was only significant at the 90%
level (SI Appendix, Fig. S23C). However, Arabidopsis acs7-1 as
well as the ein2-1 mutants failed to respond with increased root
hair elongation to KAR treatment (SI Appendix, Fig. S23D).
Thus, we demonstrate that ACS7-mediated ethylene production
as well as ethylene perception are required for root hair elon-
gation downstream of KAR/KL signaling in A. thaliana, and that
the KAR/KL ethylene signaling module is conserved between L.
japonicus and A. thaliana, despite some observed differences in
phenotypic output.
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Fig. 3. Differential gene expression in L. japonicus KAR/KL signaling mu-
tants. (A) Hierarchical clustering of 3,748 unique DEGs (comparing each
mutant vs. WT). Z scores were obtained by scaling the r–log-transformed
count data. Red represents lower and green indicates higher transcript ac-
cumulation. The clusters are indicated by a dendrogram (Left) and illustrated
by different colors and a number (Right). Gene ontology enrichment analysis
was performed using AgriGO for each cluster separately. Negative
log10(FDR) represents the statistical significance (FDR, false discovery rate) of
the enrichment, with higher values representing stronger enrichment
(cutoff, −log10FDR ≥ 1.3). (B) Transcript accumulation of D14like2 (DLK2) and
ACS7 genes in roots of the indicated genotypes as determined by qRT-PCR.
Expression values were normalized to the expression of ubiquitin. Letters

indicate statistical differences between genotypes (ANOVA, post hoc Tukey
test (n = 3 or 4). Numbers above the data points indicate, if significant, the
log2 fold change for the mutant vs. wild type comparison as determined by
RNA-seq analysis.
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Discussion
A hallmark of most plant hormone signaling pathways is the
proteasomal degradation of negative regulators after hormone
perception to release downstream responses from repression.
The mechanistic functions and regulatory roles of SMAX1, the
negative regulator of KAR/KL signaling (22), are largely elusive.
Here we demonstrate that L. japonicus smax1 mutant roots
overaccumulate ACS7 transcripts, as well as ethylene, causing
typical ethylene-related phenotypes such as inhibition of primary
root (cell) elongation and increased root hair length (47–49), and

these phenotypes are rescued by treatment with inhibitors of
ethylene biosynthesis and perception. We confirm that tran-
scriptional activation of ACS7 is a downstream response of
KAR/KL signaling because the gene is induced by KAR1 in a
KAI2a KAI2b- and MAX2-dependent manner. Therefore, we
propose that in the L. japonicus wild type, the KAI2–MAX2–
SMAX1 module regulates primary root and root hair develop-
ment by controlling the homeostasis of ACS7 gene expression and
of ethylene biosynthesis (Fig. 5). In nature, this signaling module
thus likely plays an important role in supporting the establishment
of small seedlings, which quickly need to reach and maintain ac-
cess to water. This is also the case in Arabidopsis, in which a short-
root hair phenotype of max2 mutants, which we recently showed
to be a consequence of disruption of KAR/KL signaling (12), was
rescued by ACC treatment (50). Here we demonstrate that KAR-
induced root hair elongation in Arabidopsis depends on ACS7 and
does not seem to rely on additional ACS isoforms. Given the
evidence presented here, this sole dependence on ACS7 (and
possibly ACS7-like) is likely conserved in L. japonicus. Ethylene
signaling downstream of KAR signaling may play a role also in
seed germination since an increase in ACS activity and ethylene
release from germinating Brassica oleracea seeds upon exogenous
KAR1 treatment was recently reported (51).
Interestingly, untreated L. japonicus kai2a kai2b double mu-

tants do not display obvious root phenotypes, although by extrap-
olation from the smax1 root phenotype, increased primary root
growth and shorter root hairs may be expected. Nevertheless, L.
japonicus seedlings respond to KAR1 treatment with a suppression
of primary root elongation in an ethylene signaling-dependent
manner (14) (this study). Perhaps the biosynthesis of endogenous
KL or yet unknown properties of the KL receptor complex change
dynamically in response to environmental conditions, and the con-
dition, which would reveal differences between the wild type and
kai2a kai2b, is not met in our experimental system.
In Arabidopsis, under standard growth conditions, kai2 and

smax1 smxl2 root and root hair phenotypes manifest in an op-
posite fashion: kai2 mutants display clear phenotypic differences
from the wild type, with longer primary roots and shorter root
hairs, while smxl2 and smax1 smxl2 double mutants show only a
small difference in primary root growth (this study) and also a
slighter increase in root hair length as compared with L. japo-
nicus (12). It is possible that Arabidopsis and L. japonicus diverge
in their ethylene sensitivity, amount of ethylene produced, mo-
lecular wiring of ethylene signaling, or other physiological op-
tima. Any of these may cause differences in phenotypic
consequences of mutations in KAR/KL signaling genes. In this
context, it is worth highlighting that both species also respond
differently to mutation of the ethylene signaling gene EIN2 with
respect to lateral root formation. Arabidopsis ein2 mutant seed-
lings develop increased numbers of lateral roots (52), while L.
japonicus ein2a ein2b double-mutant seedlings rarely develop any
postembryonic roots (SI Appendix, Fig. S20D). Our study em-
phasizes the need to study and understand signaling modules
across diverse plant species to 1) grasp the full phenotypic space
controlled by these modules and 2) allow agricultural application
of molecular knowledge to a diversity of crops.
We demonstrate that L. japonicus SMAX1 and SMXL8 are

degraded in N. benthamiana leaves in the presence of MAX2 and
their cognate α/β-fold hydrolase receptors KAI2a/KAI2b or D14,
respectively. Surprisingly, the presence/absence of nuclear SMAX1-
and SMXL8-GFP was observed without adding artificial ligands
such as KAR or the synthetic strigolactone analog rac-GR24. This
contrasts with other recently published studies performed with
Arabidopsis SMAX1 and SMXL2, in which degradation was only
observed in the presence of ligands (30, 31). However, the experi-
mental setting in these studies differed from ours, as they expressed
SMAX1 and SMXL2 in the homologous Arabidopsis background as
well as in Arabidopsis protoplasts [SMXL2 (31)] or N. benthamiana
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Fig. 4. Primary root and root hair phenotypes of smax1 mutants are caused
by increased ethylene production. (A) Ethylene released by L. japonicus wild
type, smax1-2, and smax1-3 seedlings and in response to treatment with 0.1
μM AVG or 1 μM ACC as determined by gas chromatography (n = 5). (B and
C) Representative images (B) and quantification (C) of PR length, PER
number, and PER density of 10-d-old wild-type and smax1-3 seedlings grown
in the presence of 50 μM silver nitrate (AgNO3) or 0.1 μMAVG (n ≥ 24). (Scale
bars, 1 cm.) (D–F) Representative images of the root tip (D) and quantifi-
cation of the distance between the first RH and the QC (E) and of the RH
length (F) of wild-type and smax1-3 seedlings in the presence of 50 μM silver
nitrate or 0.1 μM AVG (n ≥ 7). (Scale bars, 500 μm.) (A, C, E, and F) Letters
indicate significant differences (ANOVA, post hoc Tukey test, P ≤ 0.001).

Carbonnel et al. PNAS | September 1, 2020 | vol. 117 | no. 35 | 21763

PL
A
N
T
BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2006111117/-/DCSupplemental


leaves without coexpressing Arabidopsis KAI2 and MAX2 [SMAX1
(30)]. Possibly, in our study, the L. japonicus α/β-fold hydrolase
receptors respond to a ligand present in N. benthamiana leaves.
Alternatively, crowding of highly expressed proteins in the nuclei
allows protein complex formation and SMAX1/SMXL8 degrada-
tion in the absence of a ligand. Whatever the case, the result of the
assay suggests specific interaction surfaces between the repressors
and their cognate receptors, since SMAX1- and SMXL8-GFP dis-
appeared only in the presence of KAI2a/b and D14, respectively,
while SMXL3, 4, and 9 remained stable in the presence of all re-
ceptors. The specificity of the assay is further supported by the
accumulation of SMAX1- and SMXL8-GFP in the absence of L.
japonicus MAX2 or, when the P-loop motifs GKTAF (SMAX1) or
GKTTI (SMXL8) are deleted, like in rice d53 (SI Appendix, Fig.
S3 B and C) (20, 21, 29).
We generated genome-wide transcriptional profiles of KAR/

KL signaling mutant roots, which will be a useful resource to
mine for pathways and functions downstream of KAR/KL sig-
naling. Compared with other hormone signaling pathways such
as auxin or jasmonate, the amplitude of transcriptional responses

to treatment with strigolactone or KAR has been reported to be
low (3, 14, 53, 54). This is also reflected in transcriptional dif-
ferences between L. japonicus KAR/KL signaling mutants and
the wild type (Dataset S3) and may be due to transcriptional
changes in only a limited number of cells. Nevertheless, in addi-
tion to revealing the link between KAR/KL and ethylene biosyn-
thesis (ACS7 expression), we identified additional early KAR
response genes (ERIK and a Serotonin Receptor-like gene) in L.
japonicus (Fig. 4) complementing the well-established marker
gene DLK2 (5, 14). Like DLK2, they are characterized by a higher
expression in smax1 mutants as well as a KAR/KL receptor-
dependent induction by a 2-h KAR treatment. It will be inter-
esting to determine whether the AP2 transcription factor ERIK
regulates secondary target genes of KAR/KL signaling and
whether it regulates any important KAR/KL-related phenotype(s).
To understand the KAR/KL signaling pathway and the regu-

lation of its downstream targets, it is critical to identify the
transcription factor(s), which is directly inhibited by SMAX1 and
which regulates primary KAR/KL response genes. In rice, one
target of D53 in strigolactone signaling, the SQUAMOSA
PROMOTER BINDING PROTEIN-LIKE family transcription
factor IDEAL PLANT ARCHITECTURE 1 (IPA1), has been
identified. D53 interacts with IPA1 and represses its transcrip-
tional activity (55). However, one early strigolactone response
gene encoding CYTOKININ OXIDASE/DEHYDROGENASE
9 in rice is induced by rac-GR24 in an IPA1-independent man-
ner. This indicates that D53 likely targets more than one tran-
scription factor (56). Given the diversity of phenotypes regulated
by KAR/KL signaling (7), it is possible that also SMAX1 inhibits
more than one target protein.

Data Availability. The RNA-seq data reported in this manuscript
have been deposited in the National Center for Biotechnology
Information database, https://dataview.ncbi.nlm.nih.gov/object/
PRJNA591291?reviewer=vhn4av2bafiiutcnb53pd72ego (BioProject
no. PRJNA591291). All study data are included in the article and
SI Appendix.
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