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Mitochondrial dysfunction in fibrotic diseases
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Abstract
Although fibrosis is a common pathological feature of most end-stage organ diseases, its pathogenesis remains
unclear. There is growing evidence that mitochondrial dysfunction contributes to the development and progression of
fibrosis. The heart, liver, kidney and lung are highly oxygen-consuming organs that are sensitive to mitochondrial
dysfunction. Moreover, the fibrotic process of skin and islet is closely related to mitochondrial dysfunction as well. This
review summarized emerging mechanisms related to mitochondrial dysfunction in different fibrotic organs and tissues
above. First, it highlighted the important elucidation of mitochondria morphological changes, mitochondrial
membrane potential and structural damage, mitochondrial DNA (mtDNA) damage and reactive oxidative species
(ROS) production, etc. Second, it introduced the abnormality of mitophagy and mitochondrial transfer also contributed
to the fibrotic process. Therefore, with gaining the increasing knowledge of mitochondrial structure, function, and
origin, we could kindle a new era for the diagnostic and therapeutic strategies of many fibrotic diseases based on
mitochondrial dysfunction.

Facts

● Fibrosis is the major pathophysiologic basis and
ultimate pathway for most parenchymatous organ
injury.

● Mitochondria play a central role in energy
metabolism and even decide the cellular fate.

● Mitochondrial dysfunction could induce fibrotic
diseases.

● Targeting mitochondria may help alleviate fibrosis.

Open questions

● What are the mechanisms of mitochondrial
dysfunction in fibrosis?

● How are mitochondria involved in the development
of fibrosis?

● How to prevent or slow down fibrosis through
targeting mitochondria?

Introduction
The fibrotic disease is a major health problem world-

wide. As the common pathological pathway to organ
injury and failure, fibrosis usually represents an unsa-
tisfactory prognosis1. It is the major cause of death in the
world and causes substantial medical and economic
burdens1,2.
As the power house of cells, mitochondrion maintains

the basic functions of every single cell in our body,
including energy metabolism, cell differentiation mod-
ulation, signaling transduction and apoptosis3,4. Reactive
oxygen species (ROS) are byproducts of normal metabo-
lism. The functional mitochondrion has the ability to
control the balance of ROS biogenesis and scavenging.
However, severe redox stress events will lead to the dis-
ruption of homeostasis. Excessive ROS will destroy the
normal structure and function of mitochondria and
release from mitochondria via mitochondrial permeability
transition pore (mPTP) opening mechanism5. When
mitochondrial dysfunction occurs, the normal cellular
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biological processes are disrupted, and the oxygen
homeostasis is destroyed in tissue.
In the process of fibrosis, the injured tissue shows the

characteristics of oxidative stress, hypoxia, and inflam-
mation6,7. In this damaging microenvironment, mito-
chondrial dysfunction usually occurs, which is closely
related to the development of fibrotic diseases8. This
review highlighted the emerging mechanisms related to
mitochondrial dysfunction in different fibrotic organs and
tissues, including mitochondria morphological changes,
mitochondrial membrane potential damage, mitochon-
drial DNA (mtDNA) damage, ROS production, mito-
phagy abnormality, mitochondrial transfer, etc.
Furthermore, we summarized the therapeutic strategies
targeting mitochondria, aiming to provide new clinical
therapy for the combined effect of mitochondria.

Mechanism of fibrotic process
Fibrosis is the terminal development of chronic

inflammation in many organs1. When tissue damage is
severe or repeated beyond the regeneration ability of
surrounding parenchymal cells, normal tissue repair
becomes excessive, interstitial fibrous connective tissue
will repair a large number of proliferation, resulting in
pathological changes of fibrosis6. It is generally believed
that activated fibroblasts act as the key cells that ulti-
mately lead to fibrosis. Activated fibroblasts (i.e. myofi-
broblasts) express α-smooth muscle actin (α-SMA),
increase the expression of fibro-collagen (type I, III, V,
and VI) and other extracellular matrix (ECM) macro-
molecules, and inhibit ECM degrading enzymes9,10.
Moreover, transforming growth factor-β (TGF-β), a
common anti-inflammatory cytokine mainly produced by
macrophages, plays a critical role in the fibrosis devel-
opment11, which is an effective inducer of myofibroblasts,
and stimulates the expression of key genes in fibrosis
through several downstream pathways, especially Smad
signaling11–13.
Oxidative stress and hypoxia are pretty relevant to

fibrosis6,7. In fibroblasts, hypoxia could increase ROS
production in mitochondria14, in which ROS affects the
synthesis, secretion, and degradation of ECM. And there
is a strong correlation between TGF-β signal transduction
and ROS15,16.

Mitochondrial dysfunction
Normal functions of mitochondrion
Mitochondrion is the power house of cells. As a semi-

autonomous organelle, mitochondrion maintains the
basic cellular function, including adenosine-triphosphate
(ATP) production, ROS biogenesis and scavenging, cell
differentiation modulation, signaling transduction, and
apoptosis3,4. Mitochondrial inner membrane contains
enzymes involving electron transport chain (ETC) and

ATP production, and electrochemical gradients across the
inner membrane drive the process of oxidative phos-
phorylation (OXPHOS)17–23. The energy of most cells in
the body is produced by mitochondria through tri-
carboxylic acid (TCA) cycle and ETC. ETC consists of five
subunit enzyme complexes located in mitochondrial inner
membrane, including complexes I, II, III, IV, and V24.

Mitochondrial dysfunction
Mitochondrial dysfunction refers to the damage of

mitochondrial structure, respiratory chain defects, bio-
genic dysfunction, gene damage, reduction of mitochon-
dria number and changes in oxidative protein activity in
cells and tissues. ROS is a byproduct of oxygen metabo-
lism, and mitochondria have been found to serve as the
main source of ROS in mammals. The imbalance between
ROS production and removal results in cumulative ROS
contacting with mitochondria and cellular components,
leading to oxidative damage to mitochondrial proteins,
DNA, and lipids25,26. The mPTP located in the mito-
chondrial inner membrane could be open under the
conditions of increasing ROS. Mitochondrial permeability
transition can induce mitochondrial depolarization and
swelling, decrease of ETC activity and release of apoptotic
factors27–29. In addition, mtDNA lacking histone protec-
tion is highly sensitive to ROS and prone to be damaged
and mutated under oxidative stress, resulting in respira-
tory chain defects and decrease of mitochondrial
biogenesis30,31.

Mechanisms of mitochondrial self-repair
Meanwhile, mitochondria have multiple mechanisms of

self-repair and renewal. Enzymatic defense systems play
an antioxidant role such as superoxide dismutase (SOD),
catalase (CAT). Mitochondrial biogenesis maintains the
number and size of mitochondria. Several transcription
factors regulate mitochondrial biogenesis32,33. Peroxisome
proliferator-activated receptor (PPAR)-γ coactivator-1α
(PGC-1α) interacts with many transcription factors/pro-
teins to promote mitochondrial biogenesis and OXPHOS
via acting as a transcription co-activator for nuclear
receptors34,35.
Furthermore, mitochondrial dynamics is a process in

which mitochondria form a network through dynamic
balance of fission and fusion. Mitophagy can remove
dysfunctional mitochondria by fusion with lysosomes36,37,
thereby controlling the number of mitochondria and
maintaining energy metabolism stability38,39. ROS can
induce mitophagy by activating phosphatase and tensin
homology deleted on chromosome 10 (PTEN) induced
putative kinase 1 (PINK1)/Parkin pathway40. As a ubi-
quitin kinase, cellular prion protein (PrPc) binds PINK1,
enters the mitochondrial inner membrane and is degra-
ded under normal physiological conditions. Under
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oxidative stress, PINK1 recognizes and aggregates on the
surface of damaged mitochondrial extracorporeal mem-
brane, activates phosphorylation, and recruits Parkin
translocation. Ubiquitous mitochondria are encapsulated
to form mitophagosome, which are fused with lysosomes
and reduced by hydrolases41,42.

Mitochondrial dysfunction in solid organ fibrosis
Mitochondrial dysfunction in cardiac fibrosis
Cardiac fibrosis with ECM deposition can lead to

impaired cardiac function and potential heart injury43. ROS
could directly regulate the production of interstitial ECM by
modulating both expression and metabolism of matrix
protein44. Importantly, the majority of ROS in cardiac
fibrosis comes from mitochondria45. Therefore, treatment
strategies targeting mitochondria are critical. For example,
Dai et al. confirmed that the overexpression of antioxidant
enzyme CAT targeted to mitochondria, but not wild-type
peroxisomal CAT, alleviated mitochondrial oxidative
damage, cardiac fibrosis and hypertrophy46. Mitoquinone
(MitoQ), a mitochondrial-targeted antioxidant, could inhi-
bit fibrosis in pressure overloaded hearts via targeting
mitochondrial ROS-mediated signaling TGF-β1, NADPH
oxidase 4 (NOX4), and Nrf2 pathway47. Bendavia and alo-
gliptin could improve mitochondrial dysfunction, relieved
cardiac fibrosis by improving mitochondrial biogenesis48,49.
Furthermore, mitochondria in cardiac fibrosis often

show diverse dysfunctional forms. The mtDNA lacking
histone protection is highly sensitive to ROS. The deletion
of mtDNA induced by angiotensin II was reported in
cardiac fibrosis of hypertensive cardiomyopathy. Primary
damage to mtDNA induced by zidovudine or homo-
zygous mutation of mitochondrial polymerase γ, could
also improve cardiac fibrosis46. Valli et al. showed that
age-dependent cardiac fibrosis was closely associated with
mitochondrial dysfunction due to PGC-1β deficiency, a
transcriptional regulator of mitochondrial genes50.
Nucleotide-binding domain and leucine-rich repeat

containing PYD-3 (NLRP3) is a pattern recognition
receptor, and it usually responds to inflammation in the
form of a multiprotein platform (NLRP3 inflamma-
some)51. Recent studies displayed that NLR family, pyrin
domain containing 3 (NLRP3) regulated mitochondrial
ROS production in human cardiac fibroblasts. NLRP3
localized to mitochondria regulated myofibroblast differ-
entiation and Smad signal transduction by inducing ROS.
Notably, this mechanism is independent of inflamma-
some. This study indicates the new role of mitochondrial
NLRP3 protein involved in fibrosis in non-professional
immune cells52.
Mitochondrial membrane potential and membrane

structural damage are also important characteristics in
cardiac fibrosis. It is reported that alogliptin alleviated
interstitial fibrosis in diabetic rabbits by reducing the

production of mitochondrial ROS, preventing the mito-
chondrial membrane depolarization, and improving the
swelling of mitochondria49. Similarly, melatonin and
ephedrine-4 could alleviate oxidative stress and cardiac
fibrosis through maintaining the integrity of mitochondrial
membrane and preventing the release of cytochrome C53.
Additionally, the dysfunction of oxidative respiratory

chain and metabolic-related enzymes is also emerging as
the pivotal mechanism of cardiac fibrosis. Kennedy et al.
identified that the deficiency of nuclear-encoded mito-
chondrial inorganic pyrophosphatase (PPA2) due to
biallelic missense mutations was associated with cardiac
fibrosis by using whole-exome sequencing, of which
mechanism is related to suppress the activity of respira-
tory chain complex I and IV, and decreased the expression
of citrate synthase in fibroblasts54. According to the study
by Fraccarollo et al. the activation of nitric oxide (NO)/
heme-independent soluble guanylate cyclase (sGC) pro-
vided protection through increased expression of uncou-
pling protein 3 (UCP3) and manganese SOD (MnSOD)
genes against mitochondrial SOD production and pro-
gressive fibrotic remodeling. Ultimately, this process
inhibited human cardiac fibroblast differentiation and
ECM accumulation55. And one of the mitochondrial sir-
tuins, Sirt4, accelerated Ang II-induced pathological car-
diac hypertrophy via suppressing MnSOD activity in
cardiomyocytes from transgenic mice56. Among them,
UCP3 had an effect on ETC, which could decrease pro-
tonmotive force and attenuate ROS production through
mild uncoupling57. And the deletion of MnSOD would
have adverse effects on mitochondrial ETC, TCA cycle,
mtDNA stability, and iron metabolism58.
We summarized the details of every mechanism above

in Fig. 1.

Mitochondrial dysfunction in pulmonary fibrosis
Pulmonary fibrosis, a pathological change in the devel-

opment of various and age-related end-stage lung dis-
eases, generally is featured by not only activation and
proliferation of fibroblast accompanied by tissue damage
and inflammation, but also increased deposition of
mesenchymal collagen59. The vast majority of patients
with pulmonary fibrosis have an unknown cause (idio-
pathic), defined as idiopathic interstitial pneumonia (IIP)
or idiopathic pulmonary fibrosis (IPF)60. Recently, there is
growing evidence that mitochondrial dysfunction may
contribute to the pathogenesis of IPF. We have sketched
Fig. 2 to summarize the key information of every
mechanism below.
The mitochondrial abnormalities and mitochondria-

mediated apoptosis in alveolar epithelial cells (AECs)
could conduce to pulmonary fibrosis in a critical way.
Mitochondrial ROS, always with an increased level,
mediated by a variety of mechanisms. Hypoxia and high
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CO2 level can decrease oxygen consumption and ATP
production in AECs and impair cell proliferation through
mitochondrial ROS61,62. Furthermore, EMT of AECs was
induced by hypoxia through hypoxia inducible factor
(HIF), high level of mitochondrial ROS, and endogenous
TGF-β1 signaling61. It was reported that oxidative stress
induced preferential mtDNA damage in a variety of AECs.
Sirtuin (silent mating type information regulation 2
homolog) 3 (SIRT3) deficiency could improve lung
fibrosis by augmenting apoptosis and mtDNA damage in
AECs63. As a key enzyme for base excision repair with the
function of alleviating pulmonary fibrosis, 8-oxoguanine
DNA glycosylase (Ogg1) associated with aconitase-2
(Aco-2) could prevent mtDNA damage, p53 mitochon-
drial translocation, and intrinsic apoptosis in AECs64.
Furthermore, thyroid hormone could increase biogenesis
via activating PGC-1α and promote mitophagy via PINK1
in mice, which helped suppress mitochondria-mediated
apoptosis and reversing bleomycin-induced mitochon-
drial abnormalities in AECs65.
Compared with the normal lung fibroblasts, there had

been shown that not only a decrease of mitochondrial
mass and morphologic alteration, but also the low level of
oxygen consumption rate and ATP production in the
ones of pulmonary fibrosis66. Excessive TGF-β pathway
could result in robust profibrotic gene expression in
fibroblasts, leading to fibrosis. It was confirmed that ROS
produced by complex III were required for TGF-β to
induce gene expression in primary normal human lung

fibroblasts67. TGF-β could also directly or indirectly
increase the ROS level through various mechanisms, such
as inhibition of complex IV and activation of NADPH
oxidase61. Moreover, generation of hydrogen peroxide
(H2O2) dependent on NOX4 was demanded for myofi-
broblast differentiation, which was induced by TGF-β168.
Also, lysocardiolipin acyltransferase (LYCAT) could pro-
tect against pulmonary fibrosis through negatively mod-
ulating TGF-β-induced lung fibroblast differentiation via
the decline of NOX-dependent H2O2 generation and
mitochondrial superoxide69. In addition, augmented gly-
colysis contributed to pulmonary fibrosis via promoting
the stabilization of HIF-1α in myofibroblast, which could
increase the expression of TGF-β1 and regulate the gly-
colytic enzymes70. In lung fibroblasts, NOX4 inhibited
mitochondrial bioenergetics and biogenesis through
decreasing induction and activation of endogenous
nuclear factor (erythroid-derived-2)-like-2 factor (Nrf2)
and mitochondrial transcription factor A (TFAM) or
directly inhibiting complex I of ETC, whereas inactivation
of TORC1/PGC-1 axis could repress mitochondrial bio-
genesis and bioenergetics via downgrading the expression
of Nrf1 and TFAM71,72. Metformin could attenuate lung
fibrosis development through NOX4 inhibition. Activa-
tion of AMPK mediated by metformin inhibits NOX4
expression induced by TGF-β73. It was reported that
AMPK activity was lower in fibrotic regions. AMPK-
deficient fibroblasts reduced basal oxygen consumption,
diminished mitochondrial reserve capacity and maximal

Fig. 1 Mitochondrial dysfunction in cardiac fibrosis. Cardiac fibrosis, heart injury, and mitochondrial dysfunction are mutually causal, and the
mechanisms overlap. Mitochondrial dysfunction is accompanied by morphological changes, mitochondrial membrane potential, and structural
damage, and mtROS production. Excessive mtROS will destroy the normal structure and function of mitochondria, which further leads to the disorder
of mitochondrial metabolic function. The release of risk factors like ROS and CytC from mitochondria further aggravates injury and inflammation.
Meanwhile, transcriptional regulator deficiency and inhibited mitochondrial biogenesis pathways limit the self-repair function. NLRP3 which was
localized to mitochondria regulates myofibroblast differentiation and Smad signal transduction by inducing ROS. As one of the protective pathways,
UCP3 and NO/sGC can reduce ROS by mild decoupling and upregulating MnSOD.
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respiration74. In a bleomycin model, metformin could
reverse the established lung fibrosis. Metformin could
active AMPK reprogramming metabolism of IPF fibro-
blasts via diminishing mTOR activation and promoting
autophagy, as well as downregulating homeostasis levels
of ECM proteins. AMPK activation also upregulated

mitochondrial biogenesis. Furthermore, it restored myo-
fibroblast sensitivity to intrinsic apoptosis, particularly
induced by antimycin A, a mitochondrial inhibitor of ETC
complex II74.
Importantly, there was evidence of vital role of alveolar

macrophages (AMs) in the process of pulmonary fibrosis.
Dioscin could alleviate crystalline silica-induced excessive
mitochondrial ROS release, AMs apoptosis, and mito-
chondrial dysfunction, such as MMP depolarization and
low ATP production. Dioscin promoted AMs autophagy,
decreasing production of inflammatory factors in vivo and
in vitro, thereby reducing collagen deposition and
inflammatory infiltration75. In AMs, Akt1-mediated
mitochondrial ROS could cause mitophagy, which con-
tributed to the apoptotic resistance of pro-fibrotic AMs,
expression of TGF-β1 and activation of myofibroblasts76.
TGF-β1 could induce mitochondrial dysfunction in AMs,
such as suppression of the OXPHOS, low level of mito-
chondrial ATP production, and MMP depolarization77.
Notably, the ROS production in AMs induced NLRP3
inflammasome activation, which was related to mito-
chondrial dysfunction78. And in the mouse model of
NLRP3-mediated Streptococcus pneumoniae infection, the
deficiency of NOX4 reduced the mitochondrial fatty acid
oxidation, which could inhibit LRP3 inflammasome acti-
vation and improved survival5. The mechanisms of
mitochondria involved in NLRP3 inflammasome activa-
tion further suggested that mitochondria may play a cri-
tical role in chronic inflammation.

Mitochondrial dysfunction in renal fibrosis
Renal fibrosis is the formation of scars in the par-

enchyma, which is the commonly accepted to serve as
ultimate pathway for almost all chronic and progressive
nephropathy1. Like other organs, decreased expression of
Gα-binding protein (GABP), PGC-1α, and PPAR-α indi-
cated a decrease of mitochondrial biogenesis in fibrosis79.
Additionally, the integrity of mitochondrial morphology
and structure was often destroyed in renal fibrosis80. It
was reported that melatonin prevented mitochondrial
edema, cristae dilatation and maintained the integrity of
mitochondrial membrane, thereby alleviating renal fibro-
sis8. TNF receptor-associated protein 1 (TRAP1) could
inhibit the fibrosis-related proteins expression in renal
tubular epithelial cells (TECs) and tubulointerstitial
fibrosis by alleviating mitochondrial vacuolation, swelling,
matrix density reduction and mitochondrial cristae rup-
ture, and increasing the number of mtDNA copies81.
Moreover, the changes in mitochondria permeability

could lead to the release of cytochrome C and other
substances, which mediated apoptosis82. The oxidative
damage of cardiolipin-sensitized mitochondria to calcium,
induced mitochondrial permeability transition and
destroyed the permeability barrier of IMM, which caused

Fig. 2 Mitochondrial dysfunction in pulmonary fibrosis. The
mitochondrial dysfunction of different cells shows different
characteristics in pulmonary fibrosis. The mitochondrial abnormalities
and mitochondria-mediated apoptosis in AECs could conduce to
pulmonary fibrosis in a critical way. HIF, high level of mtROS and
endogenous TGF-β1 signaling interact with apoptosis and EMT. In
AMs, Akt1-mediated mtROS could cause mitophagy, which
contributed to the apoptotic resistance of pro-fibrotic AMs. As a risk
factor in fibrosis, TGF-β1 was activated in response to ROS and NLRP3
inflammasome, which could also induce mitochondrial dysfunction in
AMs. The deficiency of NOX4 reduced the mitochondrial fatty acid
oxidation, which could inhibit NLRP3 inflammasome activation. ROS
produced by complex III were required for TGF-β to induce gene
expression in human lung fibroblasts. In turn, TGF-β could also
increase the ROS level through the mechanism like inhibition of
complex IV. Moreover, generation of H2O2 dependent on NOX4 was
demanded for myofibroblast differentiation induced by TGF-β.
Furthermore, the metabolic reprogramming in myofibroblast shows a
augmented glycolysis, which contributed to pulmonary fibrosis via
promoting the stabilization of HIF-1α.
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the collapse of mitochondrial potential, the decoupling of
OXPHOS and apoptosis, and the release of cytochrome C
to cytosol83,84. A cell-permeable peptide Bendavia (SS-31)
targeted the inner mitochondrial membrane and binded
to cardiolipin, which could protect mitochondria in
medullary TECs83. Bendavia improved oxidative stress
and tubulointerstitial fibrosis and restored renal vascular
endothelial function in vivo and in vitro84. The anti-
fibrotic mechanism was to reduce oxidative damage of
mitochondrial cardiolipin.
According to the study of Zhang et al.85 after renal

ischemia reperfusion injury (IRI), ROS production and
mtDNA damage increased, which could lead to EMT and
further renal fibrosis. Postconditioning (POC) therapy can
reduce renal fibrosis by protecting mitochondria from
oxidative stress-induced mtDNA damage. Furthermore,
in renal fibrosis and renal injury induced by AAI, decrease
of mtDNA-encoded cytochrome C oxidase subunit 1
(COX-1) and nuclear DNA (nDNA)-encoded nicotina-
mide adenine dinucleotide dehydrogenase (ubiquinone)-
1b subcomplex 8 (NDUFb8) suggested that mtDNA and
nDNA were both victims. However, with the progression
of aristolochic acid nephropathy (AAN) in renal cortex,
NDUFb8 level restored, while COX-1 level maintained
low80. Similarly, the activity of respiratory complex 1,
which is partly encoded by mtDNA, was more sig-
nificantly impaired than that of respiratory complex II,
completely encoded by nDNA86. These results suggested
that mtDNA damage would be more severe than nDNA
damage on fibrosis.
In terms of oxidative respiratory chain and metabolic

enzymes, cardiolipin peroxidation disrupts respiratory
chain complex and inhibits mitochondrial respiratory
compounds83,84. As mentioned before, COX-I and
NDUFb8 defects also played critical roles in respiratory
chain damage80. Moreover, Ang-II induced renal injury by
alleviating mitochondrial dysfunction, which was related
to the decrease of ATP synthase activity, 1,25-dihydrox-
yvitamin D3 alleviated this situation87.
NLRP3 could be considered as another important risk

factor. It is reported that activated NLRP3 inflammasome
is involved in kidney injury process via mitochondrial
dysfunction in TECs and macrophages. NLRP3 caused
mitochondrial dysfunction, increased ROS and finally led
to fibrosis88,89. However, studies also showed that NLRP3
promoted the TGF-β/Smad signaling pathway in TECs
independent of the inflammasome90. In renal tubular
cells, NLRP3 transferred from the cytosol to the mito-
chondria and targeted to mitochondrial antiviral signal
protein (MAVS) during hypoxia, which played a critical
role in mitochondrial ROS accumulation and disfunc-
tion91. Therefore, the deletion of NLRP3 is emerging as a
potential therapeutic target, which can attenuate fibrosis
via protecting the damaged mitochondrial function.

During the treatment of chronic kidney disease (CKD)
based on mesenchymal stem cells (MSCs), MSCs in
patients with CKD experienced accelerated aging and
suppressed efficacy. It is reported that melatonin enhances
the role of MSCs in CKD treatment and alleviates fibrosis,
which improves mitochondrial function through high
expression of PrPc. High expression of PrPc can increase
the activity of complexes I and IV, thereby enhancing
OXPHOS of mitochondria. Moreover, PINK1 could pro-
mote mitochondrial dynamics and metabolism92.

Mitochondrial dysfunction in hepatic fibrosis
Hepatic fibrosis is the major pathophysiologic basis and

final common pathway of various chronic hepatic dis-
eases, such as alcoholic liver disease, viral infection and
non-alcoholic steatohepatitis (NASH)93. In the process of
liver injury94, HSCs transform from static physiological
state to fibrotic phenotype95,96. This transformation is
induced by inflammatory mediators, ROS and apoptotic
bodies arising from dying hepatocytes and activated
HSCs. Growing evidence supported that the hepatic
fibrosis via HSCs activation was associated with mito-
chondrial dysfunction.
According to the chemiosmotic theory, mitochondrial

electron transfer is accompanied by proton flux and
coupled by redox proton pump mediated by mitochon-
drial complexes (CI, CIII, and CIV). Mitochondrial
uncouplers can make the energy generated by electron
transfer in the respiratory chain not be used for the
phosphorylation of ADP, but can only be emitted in the
form of heat. A recent study suggested that mitochondrial
uncouplers could inhibit HSCs activation via reducing
ATP and ROS level97.
Augmenter of liver regeneration (ALR) is a hepatocyte

survival factor induced by mitochondrial dysfunction/
damage and cell death upon inhibition of its synthesis. Ai
et al. found that inhibition of ALR expression aggravated
hepatic fibrosis, probably through enhancing mitochon-
drial fusion and HSCs migration. In HSCs, ALR could
induce the mitochondrial Ca2+ influx increase, which
attributed to the HSCs migration. ALR transfection
retarded HSCs migration and suppressed F-actin assem-
bly, while promoting mitochondrial fission and dimin-
ishing ATP synthesis98. ALR gene therapy, which has
been shown to improve the hepatic fibrosis effectively,
could inhibit the ATP loss, reduce intrahepatic ROS level,
enhance the activity of ATPase, and decrease expression
of TGF-β1, PDGF, and α-SMA99.
NLRP3 inflammasome induces caspase 1-dependent

release of proinflammatory cytokines IL-1 β and IL-18,
which induce cell death under inflammatory and stress
conditions. As one of many important NLRP3 inflam-
masome activators, ROS have been reported to promoting
the chronic liver disease, including hepatic fibrosis.
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Especially in HSCs, the up regulation of NOX4 expres-
sion, which is a producer of ROS, has been found to be
related to the activation of NLRP3 inflammatory and the
increase of collagen production. Didymin can notably
ameliorate chronic hepatic injury and collagen deposition,
with inhibition of HSCs proliferation and induction of
apoptosis, and it also significantly causes mitochondrial
membrane depolarization, usually accompanied by cyto-
chrome C release in HSCs. Didymin can improve the
hepatic fibrosis mainly by inhibition of ERK/MAPK and
PI3K/Akt pathways through increasing Raf kinase inhi-
bitor protein (RKIP) expression in HSCs100. p66Shc, a
redox enzyme that regulates mitochondrial ROS genera-
tion, contributes to hepatic fibrosis, whereas its inhibition
can ameliorate the liver fibrosis through restraining the
activation of HSCs via down-regulating mitochondrial
ROS production and NLRP3 expression101.
For mitochondrial homeostasis and normal ATP level, it

is critical to keep the normal ETC and normal activity of
enzyme related to respiratory chain. Poly (ADP-ribose)
polymerase (PARP) is a key mediator of liver fibrosis, and
its inhibition or genetic deletion can protect against
hepatic fibrosis via ameliorating the abnormal ETC and
improving the activation of complex I and IV102. Enzyme
activity related to respiratory also plays a very important
role in the entire unit. Nabanita et al. found that mela-
tonin could ameliorate hepatic fibrosis via restoring the
enzymatic activities associated with respiratory chain,
decreasing mitochondrial ROS production and inhibition
of HSCs activation103. As we already know, the activation
of HSCs around hepatic sinusoids is the main source of
liver fibrosis in any etiology. So promoting HSCs apoptosis
is a strategy worth considering. Chen et al. found that
dihydroartemisinin prevented liver fibrosis through pro-
moting HSCs apoptosis via down-regulating the PI3K/Akt
pathway. Dihydroartemisinin could induce HSCs apopto-
sis via promoting loss of mitochondrial transmembrane
potential (MTP) in HSCs, transfer of cytochrome C from
mitochondria to cytoplasm, and the decreased ratio of
anti-apoptotic BCL-2 to pro-apoptotic Bax.
Mitochondrial autophagy is a specific selection process,

which is precisely regulated by various factors such as
PINK1, Parkin, and so on. It is an important regulatory
mechanism for cells to clear damaged mitochondria and
maintain their homeostasis. Qiu et al. found that PM2.5
induced liver fibrosis through triggering mitophagy
mediated by ROS. PM2.5 could induce mitophagy
through up-regulating PINK1/Parkin signal pathway via
increased ROS, and thus activate HSCs104. Additionally,
melatonin could protect against liver fibrosis via upregu-
lating mitophagy and mitochondrial biogenesis in mice105.
In addition, NLRP3 inflammasome activated by NOX4-
independent ROS could induce pro-inflammatory factors,
including IL-1β, which increased chronic liver inflammation

and promoted activation of HSCs. Cai et al. found that
angiotensin-(1–7) improved hepatic fibrosis via modulating
the NLRP3 inflammasome through redox balance regula-
tion including upregulation of GSH, Nrf2, antioxidant
response element (ARE), and down-regulation of hydrogen
peroxide, NOX4106. In hepatic cells, the overexpression of
BCL-2, which is the anti-apoptotic protein with the func-
tion of inhibiting hepatic cells apoptosis, can delay fibrosis
progression via maintaining the normal ROS level107.
Figure 3 shows the keynotes of all the mechanisms

above.

Mitochondrial dysfunction in tissues
Mitochondrial dysfunction in skin fibrosis
Radiation‐induced dermatitis can cause skin fibrosis, and

radiation also damages mitochondria108. Radiation-
induced subcutaneous fibrosis can also be associated with
genetic variation of thioredoxin reductase 2 (Txnrd2), a
mitochondrial enzyme involved in removal of ROS109. This
reveals that the lost control of ROS clearance and pro-
duction in mitochondria will lead to serious consequences.
JP4-039 is a ROS scavenger with the significant affinity for
mitochondrial inner membrane. Topical JP4-039 could
prevent skin damage and fibrosis from radiation110.
Treatment that selectively induces apoptosis of myofi-

broblasts could reverse established fibrosis, like scler-
oderma111,112. In fact, the apoptosis induction targeting
mitochondria has been gradually applied in the fibrosis
treatment. It is reported that increasing of the mito-
chondrial priming could promote myofibroblast activa-
tion, which primed by proapoptotic BH3-only protein
BIM. But meanwhile, the antiapoptotic protein BCL-XL

sequestered BIM to ensure myofibroblast survival. The
“BH3 mimetic” drug (ABT-263) can induce myofibro-
blasts apoptosis through inhibiting BCL-XL

113.

Mitochondrial dysfunction in islet fibrosis
Activated pancreatic stellate cells (PSCs) regulates the

remodeling of peripheral ECM and plays a paracrine role
in adjacent cells. Activated PSCs mainly relies on
OXPHOS of mitochondria rather than glycolysis to
maintain ATP energy levels and sustained energy-
dependent processes114,115. Rottlerin acts as an
OXPHOS uncoupling agent of mitochondria, which can
rapidly depolarize mitochondria, reduce mitochondrial
mass, change dynamics, decrease ATP level, activate
AMP-activated protein kinase (AMPK), unfolded protein
response (UPR) signaling transduction, inhibit mTOR
pathway, and block autophagic flux. Therefore, rottlerin
reduces the expression of α-SMA and other ECM proteins
in PSCs115. In addition, we have known that alternatively
activated macrophages (AAMs) depend on IL-4 signal
transduction, and PSCs are the source of IL-4116. Inter-
estingly, the increased expression of IL-4 induced by
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rottlerin indicates that IL-4 is more easily expressed under
low cell energy115. This suggests that metabolic repro-
gramming of PSCs may also play an immunomodulatory
role in fibrotic microenvironment. Moreover, PSCs pro-
mote islet fibrosis and β cell apoptosis in type 2 diabetes
mellitus. The mechanism is that PSCs cause mitochon-
drial dysfunction, including loss of mitochondrial mem-
brane potential, mitochondrial permeability transition,
and mitochondrial apoptosis117. Treatment that selec-
tively induces PSCs apoptosis is a feasible strategy, like
Tocotrienol can selectively induce the death of PSCs by
targeting MTP118. An overview landscape of all the
mechanisms above is shown in Fig. 4.

Mitophagy and fibrotic disease
Mitophagy can remove damaged mitochondria and

alleviate mitochondrial dysfunction in order to inhibit the
development of fibrosis. The defects of mitophagy in
fibrosis has been widely reported. In animal models of
renal vascular hypertension, mitophagy was inhibited,

such as Parkin, LC3-II, ATG5 protein deficiency,
accompanied by renal fibrosis119. Inhibition of mitophagy
activates platelet-derived growth factor receptor
(PDGFR)/PI3K/AKT signaling pathway and increases
ROS production, accompanied by enhanced differentia-
tion and proliferation of myofibroblasts. Inhibitory
mechanism of mitophagy involves the knockdown of
PARK2 and the low expression of BECN1 induced by
microRNA-1224–5p120–122. It is also reported that TGF-β
induces the production of ROS and mitochondrial depo-
larization in pulmonary epithelial cells. However, TGF-β
can stabilizes the key mitophagy initiating factor PINK1
on the surface of mitochondria, abrogates ROS, prevents
cell death, which is necessary to limit fibrosis123. So, the
appropriate mitophagy activation in fibrosis may be
regarded as a cell self-protection mechanism.
Reducing mitochondria dysfunction by targeting mito-

phagy has the potential therapeutic value in fibrosis. Mela-
tonin inhibits liver fibrosis by up-regulating PINK, increasing
autophagy flux, and upregulating light chain-3 (LC3-II)

Fig. 3 Mitochondrial dysfunction in hepatic fibrosis. The proliferation and activation of HSCs is the central process during the development of HF.
Inhibition of ALR expression aggravates liver fibrosis, probably via promoting HSC migration and mitochondrial fusion. The increased mitochondrial
Ca2+ influx induced by ALR in HSCs attributes the HSC migration. The activation of PARP can aggravate hepatic fibrosis via deteriorating the
abnormal ETC including the inhibition of complexes I and IV. p66Shc can contribute to hepatic fibrosis through the activation of HSCs via
upregulating mtROS production and NLRP3 expression. Didymin can improve the hepatic fibrosis main by inhibition of ERK/MAPK and PI3K/Akt
pathways via up-regulation of RKIP expression in HSCs. The NLRP3 inflammasome activated by NOX4-independent ROS can mediate activation of
HSCs via inducing pro-inflammatory factor including IL-1β.
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degradation105. PINK1-mediated mitophagy reduces the
accelerated aging of MSCs in patients with CKD and
enhances the therapeutic effect of transplanted MSCs on
renal fibrosis92. Interestingly, when mitophagy is excessive, it
also mediates the initiation of apoptotic processes. BCL-B
belongs to the BCL-2 protein family, inhibits autophagy by
binding Parkin signal and inhibiting its phosphorylation.
BCL-B knockdown activates mitophagy, promotes apoptosis
of HSCs and prevents fibrosis124. However, self-renewal
mediated by mitophagy is not always beneficial to alleviating
fibrosis. Akt1 produces apoptotic resistance in IPF AMs by
inducing increased ROS and mitophagy, and increasing the
expression of TGF-β1 to promote pulmonary fibrosis76.
PM2.5 activates PINK1/Parkin pathway by inducing exces-
sive ROS to trigger mitophagy, which activates LX-2 cells and
primary HSCs104.

Mitochondrial transfer and fibrosis
It is believed that mitochondrial transfer as a new mode

of cell–cell communication can effectively replace defec-
tive mitochondria125. There are many different ways to
transfer mitochondria, including microinjection, incuba-
tion with intact purified mitochondria, gap junction
channel-mediated cell attachment, and direct transfer
from donor cells such as MSCs125,126. Extensive studies
have confirmed that mitochondrial transfer plays a pro-
tective role in diverse organs127,128. We have seen bur-
geoning interest in the relationship between
mitochondrial metastasis and fibrosis. MSCs directly
transfer mitochondria to receptor cells through sponta-
neously generated cytoplasmic bridges called tunnel
nanotubes (TNT)129. Li et al. documented that intrave-
nous injection of bone-marrow-derived MSCs (BM-

MSCs) suppressed cigarette smoke (CS)-induced pul-
monary fibrosis. However, it is notable that the treatment
and mitochondrial transfer to co-cultured bronchial epi-
thelial cells of induced pluripotential cell-derived MSCs
(iPS-MSCs) were more effective130. In addition, renal
scattered tubular cells (STC-like cells)-extracellular vesi-
cles (EV) have capacity for repairing injured TECs and
decreasing interstitial fibrosis, partly through transferring
STC-like cells functional mitochondria131.
As mitochondrial transfer is relatively new research

direction, there is still a gap to be filled in fibrotic field.
The mechanism, function, and potential clinical applica-
tion of mitochondrial transfer in fibrosis need and deserve
further investigation.

Therapeutic strategies targeting mitochondria to
alleviate fibrosis
In Table 1, we made a summary of therapies targeting

mitochondrial dysfunction, which had been mentioned in
each organ and tissue section above. These treatment ideas
can be summarized as follows: (1) maintain the integrity of
the mitochondrial membrane and prevent the release of pro-
inflammatory or pro-apoptotic substances; (2) enhance
mitochondrial self-repair ability, such as mitophagy, mito-
chondrial biogenesis; (3) reduce oxidative damage to mito-
chondrial structure, like mtDNA and cardiolipin; (4) inhibit
oxidative stress through exogenous ROS scavenger; (5)
restore mitochondrial function or increase the quantity of
normal mitochondria through exogenous carriers like MSCs.
We also found that melatonin and some small molecular
peptides showed therapeutic effects combined with diverse
mechanisms. Moreover, cell therapy gradually presents its
amazing potential for repair and treatment.

Fig. 4 Mitochondrial dysfunction in islet fibrosis. Activated PSCs play a critical role in the remodeling of peripheral ECM, which mediates
apoptosis and islet fibrosis by inducing mitochondrial dysfunction of islet cells. Selectively inducing PSCs apoptosis via mitochondrial pathway is a
feasible strategy. Furthermore, activated PSCs mainly relies on oxidative phosphorylation of mitochondria to maintain ATP energy levels. The
uncoupling of mitochondria decreases oxidative phosphorylation and ATP level to inhibit PSCs activation. But this low cell energy situation can
promote the phenotype transformation of AAMs through IL-4 secretion.
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Table 1 Therapies targeting mitochondrial dysfunction to alleviate fibrosis.

Organ/disease Therapeutic strategies Mechanism Reference

Heart/ventricle diastolic

dysfunction

Alogliptin (a dipeptidyl peptidase-4

inhibitor)

1. Preventing the production of mitochondrial ROS and

mitochondrial membrane depolarization; 2. Improving

mitochondrial biogenesis by PGC-1α/NRF1/Tfam pathway.

49

Heart/cardiorenal syndrome Melatonin and ephedrine-4 Alleviating oxidative stress, maintaining the integrity of

mitochondrial membrane and preventing the release of

cytochrome C

53

Heart/heart failure Mitoquinone (a mitochondrial-

targeted antioxidant)

1. Inhibiting TGF-β1 and NOX4 expression; 2. Preventing Nrf2

downregulation and activation of TGF-β1-mediated profibrogenic

signaling in cardiac fibroblasts

47

Heart/hypertensive

cardiomyopathy

Overexpress catalase targeted to

mitochondria

Alleviating cardiac hypertrophy, fibrosis, and

mitochondrial damage

46

Heart/renovascular

hypertension

Bendavia (a mitochondrial targeted

peptide)

Reducing oxidative stress through improving mitochondrial

biogenesis

48

Lung 8-oxoguanine DNA glycosylase (Ogg1)

and aconitase-2 (Aco-2)

Preventing mtDNA damage, p53 mitochondrial translocation, and

intrinsic apoptosis in alveolar epithelial cells

64

Lung Thyroid hormone Increasing biogenesis via activating PGC-1α and promote

mitophagy via PINK1

65

Lung Lysocardiolipin acyltransferase (LYCAT) Negatively modulating TGF-β-induced fibroblast differentiation via

the decline of NOX-dependent H2O2 generation and

mitochondrial superoxide

69

Lung Metformin 1. Activation of AMPK mediated by metformin inhibits NOX4

expression induced by TGF-β; 2. AMPK activation also upregulates

mitochondrial biogenesis and restores myofibroblast sensitivity to

intrinsic apoptosis; 3. AMPK activation reprograms metabolism of

IPF fibroblasts via diminishing mTOR activation and promoting

autophagy

73

Lung BM-MSCs transplantation MSCs directly transfer mitochondria to receptor cells through

spontaneously generated cytoplasmic bridges called tunnel

nanotubes

130

Renal Melatonin Maintaining the integrity of mitochondrial morphology and

structure

8

Renal TNF receptor-associated protein 1

(TRAP1)

1. Maintaining the integrity of mitochondrial morphology and

structure; 2. Increasing the number of mtDNA copies

81

Renal Bendavia Reducing oxidative damage of mitochondrial cardiolipin 83,84

Renal/renal ischemia

reperfusion injury

Postconditioning therapy Protecting mitochondria from oxidative stress-induced

mtDNA damage

85

Renal 1,25-dihydroxyvitamin D3 Maintaining the ATP synthase activity 87

Renal Deletion of NLRP3 Alleviating oxidative stress and ROS production 88–91

Renal Combined treatment of MSC and

melatonin

1. Melatonin enhanced the role of MSC in fibrosis treatment; 2.

Melatonin improved MSC mitochondrial function and enhanced

oxidative phosphorylation through high expression of PrPc; 3.

PINK1-mediated mitophagy reduces the accelerated aging of

MSCs in patients with CKD and enhances the therapeutic effect

92

Renal STC-like cells-extracellular vesicles Transferring STC-like cells functional mitochondria to repair

injured TECs

131
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Concluding remarks
Mitochondrial dysfunction has long been thought to be

closely related to the progression of fibrosis in many end-
stage viscera diseases. Mitochondrial dysfunction can lead to
changes in mitochondrial morphology, dynamics, metabolic
pathways, mtDNA, increased oxidative stress and other
harmful substances, and ultimately exacerbate the biogenesis
and development of fibrosis. Additionally, the abnormality of
mitophagy and mitochondrial transfer also played vital roles
in the fibrotic process. Therefore, understanding the process
and mechanism of mitochondrial dysfunction is of great
therapeutic value for diseases characterized by fibrosis as
their pathological feature. With our comprehending of
mitochondrial structure, function, and origin in recent years,
the diagnosis and treatment of many fibrosis diseases are
expected to find a breakthrough in mitochondria.
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