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+is study proposes a home care system (HCS) based on a brain-computer interface (BCI) with a smartphone. +e HCS provides
daily help to motor-disabled people when a caregiver is not present. +e aim of the study is two-fold: (1) to develop a BCI-based
home care system to help end-users control their household appliances, and (2) to assess whether the architecture of the HCS is
easy for motor-disabled people to use. A motion-strip is used to evoke event-related potentials (ERPs) in the brain of the user, and
the system immediately processes these potentials to decode the user’s intentions.+e system, then, translates these intentions into
application commands and sends them via Bluetooth to the user’s smartphone to make an emergency call or to execute the
corresponding app to emit an infrared (IR) signal to control a household appliance. Fifteen healthy and seven motor-disabled
subjects (including the one with ALS) participated in the experiment. +e average online accuracy was 81.8% and 78.1%, re-
spectively. Using component N2P3 to discriminate targets from nontargets can increase the efficiency of the system. Results
showed that the system allows end-users to use smartphone apps as long as they are using their brain waves. More important, only
one electrode O1 is required to measure EEG signals, giving the system good practical usability. +e HCS can, thus, improve the
autonomy and self-reliance of its end-users.

1. Introduction

Individuals with locked-in syndrome (LIS), amyotrophic
lateral sclerosis (ALS), spinal cord injury, and congenital or
accidental nerve injury may experience serious obstacles in
developing motor skills in their limbs, yet most of them have
normal brain function [1–3]. When they cannot speak
clearly, the demands they are trying to articulate cannot be
understood [1, 4]. Because of the gradual loss of mobility,
such individuals may need a 24-hour personal caregiver
[5, 6]. A brain-computer interface (BCI) system would be
practical for this population. A BCI can permit them to
control external devices and enable them to perform some
tasks by themselves [7–10].

Locked-in syndrome (LIS) is a condition in which a
patient is aware but cannot communicate verbally or
move because of complete paralysis of nearly all volun-
tary muscles in the body except for vertical eye

movements and blinking [11]. It is caused by damage to
specific portions of the lower brain and brainstem, with
no harm to the upper brain. +us, such patients are fully
awake and alert and are aware not only of their abnormal
situation but also, and to a full extent, of their sur-
roundings. +ere are three categories of LIS: classic LIS,
incomplete LIS, and total LIS [4, 12]. In total LIS, even the
eyes are paralyzed [13].

ALS is a relatively rare neurodegenerative disorder
characterized by gradual loss of both upper and lower motor
neurons in the brain, brainstem, and spinal cord [14]. ALS
usually starts at around the age of 60 and, in inherited cases,
around the age of 50 [2]. +e average survival from onset to
death is 3 to 5 years [15]. Most people with classic LIS,
incomplete LIS, or ALS are free to move their eyeballs. If the
brain activity of these people is not affected and their eyeballs
are free to move, then a BCI system can help them com-
municate with others [7, 16–18].
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A BCI system is a system that connects the human brain
and its surroundings. It enables people to communicate with
others using their brain waves without muscle movement
[9, 17, 19–22]. +ere are different technologies for mea-
suring brain activity. Among these, electroencephalographs
(EEG) are the most frequently used because of their many
advantages, including lower cost, better portability, and
higher temporal resolution [23]. Over the past two decades,
there has been a dramatic proliferation of research con-
cerned with a noninvasive/stimulus-driven/visual BCI
(vBCI) system [23–25]. Such BCI systems obtain the user’s
brain potentials on the surface of the cortex via an EEG
[7, 21, 24].

+ere are four different types of EEG-based BCI mo-
dalities: event-related desynchronization/synchronization
(ERD/ERS), steady-state visual evoked potentials (SSVEP),
event-related potentials (ERP), and slow cortical potentials
(SCP). Among these, ERP and SSVEP-based BCIs are more
practical than others because they support large numbers of
output commands and need little training time [7].

Table 1 shows recent studies of BCI-based systems
implemented in real-world scenarios.

Table 1 shows that applications of BCI systems include
speller, robot control, healthcare, environmental control,
and social network use. +e graphic user interface (GUI) is
roughly divided into the row-column (RC) paradigm, as
with the speller system, and the direction paradigm, as with
robot control. +ere are two broad categories of stimulation
for ERP: flashing LED-light and motion-onset. Most studies
use more than six electrodes to collect the user’s brainwaves,
and their average accuracy is good. However, only healthy
subjects participated in these experiments. +e home care
system (HCS) in this study is an environmental control
system.+e arrangement of the options in the GUI is derived
from the row-column paradigm, but its stimulation is
motion-onset [25]. Based on our previous work [8], this GUI
with motion-onset stimulation can significantly improve the
target detection performance to achieve higher accuracy and
shorten the stimulation time, in contrast to the stimulus
intensification pattern used in the conventional P300-based
system.

Event-related potentials (ERP), proposed by Sutton in
1965, are a series of potentials of a user’s brain waves elicited
by external stimuli. +ese potentials are time-dependent
voltage fluctuations triggered by specific physical or psy-
chological events [27]. An ERP-based vBCI system usually
flashes a specific stimulus (such as text, pictures, or a
flickering strip) on the graphic user interface (GUI) many
times, and the user’s brain waves respond to each stimulus
[7, 9, 10, 28, 29]. An ERP-based vBCI system uses an EEG to
obtain the users’ brain rhythm and learn the basics of their
brain system [30]. +e EEG device amplifies and records the
potentials of the user’s brain waves [31, 32] and sends these
signals to the vBCI system to classify and to interpret the
specific features of the ERP components. Significant ERPs
may, then, be extracted from the EEG by filtering and signal
averaging methods [33]. In the final step, the BCI system
converts these signals into instructions and outputs them
[25, 34]. In this study, we use Ag/AgCl electrodes to record

the weak potential of brain waves on the user’s scalp. +e
system uses a 0.3∼15Hz band-pass filter to filter the signals
[35]. After multiple stimulations, the EEG signals are, then,
superimposed and averaged to form the results of the ERP
for each trial [8].

ERP research provides an impersonal and workable
discrimination method for a BCI system [36, 37]. +is study
adopts an ERP paradigm that combines oddball presentation
andmotion onset.+is paradigm primarily exploits two ERP
components, N200 and P300, instead of only P300 [25].
N200 (N2) and P300 (P3) are brain responses to specific
cognitive tasks, as shown in Figure 1. A P300 peak in an ERP
is a higher positive deflection of an event-related potential
component and usually occurs around 300ms after the
target stimulus presentation [21, 28, 35, 39–42]. Conversely,
an N200 trough is the lower negative deflection of event-
related potential, and usually occurs nearly 200ms after the
target stimulus presentation [25, 39]. +e N200 and P300
waves only occur if the subject is actively engaged in the task
of detecting the targets [40, 43] and the waveform of the
component P300 (N200) of the target stimulus is higher
(lower) than that of the nontarget stimuli [10]. +e am-
plitude of P300 (N200) depends on the improbability of the
target stimulus. +e latency of ERP components varies with
the difficulty of discriminating between the target and
nontarget stimuli [22, 35].

However, conventional BCIs have not become practical
because they lack high accuracy and reliability and have low
information transfer rate and user acceptability [44]. First, in
a visual BCI system, although gaze is not a requirement [45],
the presence of the gaze in a visual ERP-based BCI improves
its performance. +us, in the system, we prefer that the user
stares at the GUI to select an option. If the users have lost
their sight or cannot stare at the screen, it is more appro-
priate to use an auditory BCI [46] or the BCI system pre-
sented in the work of +urlings et al. [45].

A flashing stimulation paradigm such as that the row-col
paradigm [9, 22] easily leads to user eye fatigue.+emotion-
strip stimulation paradigm is more comfortable for the
user’s eyes because of the low luminance and low contrast
required by the stimuli [25]. Furthermore, the identification
rate and the accuracy of the motion-strip stimulation par-
adigm are better than that of the flashing stimulation par-
adigm [8, 25].

Second, the fewer the electrodes are, the more com-
fortable the user is. Based on the previous research results of
our laboratory, when the user stares at the GUI of a vBCI
system, the ERPs acquired from electrode O1 or O2 in the
occipital area of the skull (the visual region of the human
brain) can achieve a statistically significant difference be-
tween the target and nontarget stimuli [8, 26].+us, a system
using only one electrode can obtain outstanding accuracy.

+ird, the waveform and the amplitude of ERP (N200
and P300) of the target stimulus vary from person to person.
+us, the BCI system needs to use a more stable ERP
component to increase its accuracy. Based on the results of
our previous experiments, the accuracy from using com-
ponent N2P3 is significantly higher and steadier than the
accuracy obtained using any other ERP component. Herein,
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the N2P3 value of one option is the potential value (μV) of its
P300minus that of its N200 [8, 26].+us, the system uses the
N2P3 component online to expedite the experimental
procedures. Moreover, users receive better real-time feed-
back. Yet, to test and verify that N2P3 is the most useful
component for interpretation, we compared the ERP
components (N200, P300, and N2P3) of the target option
with those of nontarget options in an offline analysis.

According to the work of Huggins et al., if caregivers are
absent, BCI users may want to perform tasks such as
controlling the room temperature and lights or make
emergency calls by themselves and feel more comfortable
than they would using text communication [47]. However,
such BCI systems are rare.

Because of the popularity of smartphones, several studies
have applied BCI systems to control smartphones. Most of
these studies explore merely dialing numbers [48, 49],
accepting incoming calls [50], or calling contacts [49, 51].
Mart́ınez-Cagigal et al. present a BCI system for controlling
the social networking features of a smartphone [22].
Jayabhavani et al. pioneered a system which allows users to
control wheelchairs, an approach that relates more closely to
the topic of this paper [52].

+is study develops a BCI-based home care system
(HCS). +e HCS allows the end-users to control their
household appliances by themselves. +us, end-users can
reduce their dependence on the caregivers. In this study,
there are two functions of a smartphone: to make an
emergency call and to act as an adjustable infrared- (IR-)
band remote controller. +us, the user’s smartphone must
have or install an IR transmitter first.+e corresponding app
in the user’s smartphone can, then, emit an IR signal to
control the required household appliance.

Today, short-distance remote controls for devices in
daily life make wide use of IR [53–55]. IR, sometimes called
infrared light, is an electromagnetic radiation (EMR) with
wavelengths longer than those of visible light. IR cannot pass
through a wall. +us, in the adjoining room, remote controls
using the same IR wavelength do not interfere with each
other. By contrast, in a chamber, the IR wavelength of all
appliances should be distinct from each other. +erefore,
each household appliance has a dedicated remote control.

Improving the personal autonomy and the self-reliance of
end-users and giving them the ability to communicate with
others are two of the primary missions of the HCS. Since the
assessment of BCI systems with end-users is essential for en-
suring a fair evaluation [22], we invited disabled users to test the

Table 1: Recent studies of BCI-based systems implemented in real-world scenarios.

Study Main function Stimulation modality Electrodes Subjects Accuracy (%) Bit rate

[25] Speller ERP: motion-onset-
P300 Fz, Cz, Pz, Oz, P7, and P8 10 CS N2-91.5, P3-72.4 N2-15.91, P3-12.84

[8] Chinese speller ERP: motion-onset-
N2P3

F3, F4, C3, C4, P3, P4, O1, O2,
Fz, Cz, and Pz 7 CS 80% using O1

only 27.8

[9] Speller ERP + SSVER RC
paradigm

Cz, Pz, P3, P4, O1, O2, POz,
PO7, and PO8 14 CS After 8 trials: >95 53.6

[26] Robot control ERP: motion-onset-
N2P3 O1 12 CS 80% using O1

only
353.33 s for 26.33

comm.

[7] Robot control EOG+EEG: flash on
eight direct

Fz, Cz, Pz, Oz, P7, P3, P4, and
P8 13 CS After 5 trials:

>99.04 —

[21] Speller ERP + SSVER RC
paradigm

Fz, Cz, Pz, P3, P4, PO7, PO8,
POz, Oz, O1, and O2 13 CS 95.18 for hybrid 50.41 for hybrid

[23] Healthcare BCI
syst.

ERP + SSVER RC
paradigm Cz, Pz, O1, O2, and Oz 5 CS ERP: 95.5SSVER:

93 —

[10] Environmental
control

ERP-P300RC
paradigm

Fz, FCz, Cz, CPz, P7, P3, Pz,
P4, P8, O1, Oz, and O2

6 MDS, 2
CS 89.6 734.3 s for 30

comm.

[22] Use of social
networks

ERP-P300 RC
paradigm

Fz, Cz, Pz, P3, P4, PO7, PO8,
and Oz

18MDS, 10
CS

80.6 forMDS, 92.3
for CS

1.47 OCM for
MDS, 2.06 for CS

RC paradigm: the row-col paradigm; “N” indicates the number of subjects; “CS” stands for control abled subjects; “N2” stands for N200 evoked potential; “P3”
stands for P300 evoked potential.
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Figure 1: A waveform showing several ERP components, including
the N200 (labelled N2) and P300 (labelled P3). Note that the ERP is
plotted with negative voltages at the top, a common, but not
universal, practice in ERP research [38].
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system to learn whether the HCS is useful for motor-disabled
people.Motor-disabled people have participated in some tests of
BCI systems.+eBCI system allows such individuals to perform
actions with their brainwave signals [10, 22, 56]. For example,
these patients can now spell out words with a BCI-speller
[8, 16, 25, 57]. However, if the caregiver does not immediately
notice the text on the screen, it will not be possible to help the
patient do what they want. If such patients can control their
household appliances through a vBCI system, they can do small
activities on their own and reduce their reliance on caregivers.
+us, in this study, we propose a BCI-based home care system
(HCS). We hope that the HCS can help motor-disabled people
improve their personal autonomy and self-reliance.

2. Materials and Methods

2.1. Subjects. +e subjects used in this study were 15 healthy
people (six females, aged 19–55), six motor-disabled people,
and one man with ALS (SE7). Table 2 summarizes the
clinical data of the motor-disabled participants. All subjects
were volunteers and had normal vision or vision corrected to
normal, and they were without mental illness, head injuries,
or drug treatments. No subjects underwent a training phase
before the experimental procedure. Only subject E3 has
experience in using an ERP-based visual BCI system. All
subjects signed informed consent before participation in the
study, which was approved by the National Cheng Kung
University Human Research Ethics Committee. If a subject
decided to quit during the experiment, we ended the ex-
periment and deleted their data.

2.2. *e vBCI-Based Home Care System (HCS)

2.2.1. *e Prototype of the HCS. In this study, the BCI
module in the home care system is derived from the BCI
module of our Chinese spelling system [8]. Figure 2 shows
the design of the essential process of the vBCI-based home
care system. +e prototype includes three parts: signal ac-
quisition, signal processing, and signal application.

+e proposed vBCI module of the prototype, such as
other human-machine interface systems for communication
or control, comprises input/output processes. +e BCI
module requires the input of signals gained from the user’s
brain waves through an EEG.+e EEG device in this system,
which contains 32 channels, uses a typical noninvasive
method [24]. +e positions of electrodes accorded with the
international 10–20 location system [58], and the vBCI
module obtained signals from electrode O1 [8].

In all GUIs of the BCI module, there are several graphic
options arranged in sequence on each GUI, as shown in Fig-
ure 3. Each option has a box, with a motion-strip as the visual
stimulus, under it [25]. Allmotion-stripsmove from right to left
to evoke ERPs, and the onset time of all motion-strips on the
same GUI are inconsistent with each other [8]. Following the
recommendations of the U.S. Department of Labor Occupa-
tional Safety and Health Administration, we let users sit
60∼80 cm away from the screen to reduce fatigue and eye strain
[59]. +e subject has to stare at the motion-strip of their choice
during each trial. At the same time, the vBCI module obtains

signals from the user’s brain waves to gain the available ERPs
components, including N200 and P300 [8, 60, 61]. +us, the
vBCI module can distinguish what the user wants and, then,
output the control signal to the user’s smartphone.

+e vBCI module outputs communication signals to the
user’s smartphone via Arduino and the HC-5 Bluetooth
module. +e communication signals first execute an app on
the user’s smartphone designated ICAI1101, an application
developed by the author. ICAI1101, then, triggers the cor-
responding app to make an emergency call or to send an IR
signal to control a household appliance.

2.2.2. Brain-Computer Interface for Stimulation. In this
study, there are four GUIs in the BCI module, including the
main screen, TV control screen, air conditioner control
screen, and TV channel shift screen, as shown in Figure 3.
Blue strips in the white box below each option on the GUIs
of Figure 3 represent the motion-strip stimuli. In a single
trial, all stimulus strips on the GUI move quickly from right
to left six times. +e onset time of the stimulus strips on the
same GUI are asynchronous with respect to each other.
+us, the vBCI module reacts more rapidly and achieves
higher accuracy [8]. Moreover, there is some complexity in
the interface in most vBCI systems [22, 56, 60]. In this study,
except for the TV channel shift screen, there are only four or
six options on the other three screens to provide a faster,
more intuitive, and friendlier interface for end-users.

2.2.3. Smartphone Interface Design for Caregivers. When the
BCI module identifies the option the user wants, it will send
a command signal to the user’s smartphone to control
ICAI1101. +en, the GUI of the user’s smartphone changes
based on the user’s selection. If there is a caregiver around
the user, they can follow-up on the user’s demands and help
the user by using the GUI of the user’s smartphone directly.
Figure 4 shows the app interfaces on the user’s smartphone.

2.2.4. Stimulation Trials. In this study, a stimulus is defined
as the motion-strip of an option moving from right to left
once, about 200ms, as shown in Figure 3. +e interval
between two stimulus onsets in the same option was 200ms.
+e stimulus onset asynchrony (SOA) between the two
options was 50∼100ms, depending on the number of op-
tions on the same GUI. SOA prevents stimuli from inter-
fering with each other and shortens all stimulation time. In
each trial, each option performs six stimuli in a regular
sequence. Figure 5 shows the stimulation sequence in a trial
on the main screen. +us, the time of 1 trial is roughly
3.0–3.8 sec (including roughly 500ms for the system re-
sponse), and the system can output the user’s choice to the
application immediately.

2.2.5. *e ERP Features of a Trial. In Figure 3(a), there are
four options on the main screen. If the user stared at the
motion-strip of the TV option, then the final ERP figure of
this trial resembled Figure 6. +e option with the red curve
(TV) has the highest event-related potential for the N2P3
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component. +us, it is the target option and is the one (TV
control) that the user selected and wanted to execute.

In Figure 6, the positions marked with red circles are the
N200 troughs of the waveforms, and green circles indicate
the P300 peak. +e N200 potential has the smallest ERP
value within 150ms∼250ms, while the P300 potential has
the highest ERP value within 250ms∼350ms. +e N2P3
value of one option is its P300 potential minus its N200
potential.

2.3. Experimental Procedure

2.3.1. Overview of the Experimental Procedure. Each subject
took about 0.5 to 1 hour to complete the experiment,
depending on the accuracy of the trials. Figure 2 shows the
experimental setup. Before the test, the subject sat in front of
the computer screen at a distance of roughly 80 cm. +e
procedure included four steps: (1) attaching the electrodes
and checking the signals- 10mins; (2) illustrating the
experimental scheme and performing two trial runs as
practice- 10mins; (3) running the experimental procedure-
5∼35mins; and (4) removing the electrodes and cleaning up-
5mins.

+e first step of the experiment was to attach electrodes
to the subject’s scalp and check the signals. +e BCI module,
then, connects with the user’s smartphone via its Bluetooth
module. Next, each subject performs 15 trials during the
experimental procedure. In each trial, the user must choose
an option from the GUI designed for the BCI module on the
computer screen.

In each test, the subject had to gaze at the blue motion-strip
of the option they wanted to choose.+e system, then, collected
the ERPs of all options available on the GUI from the EEG.
After that, the BCI module identified the highest potential from
the ERP components N200, P300, or N2P3.+e option with the
highest N2P3 potential should be the one the user was gazing at
during the trial.+e BCImodule then sent a command signal to
the user’s smartphone via Bluetooth to make an emergency call
or to control a household appliance via IR.

2.3.2. Flowchart of the HCS Operating Procedures.
Figure 7 shows a flowchart of the BCI module operation.
Each subject had to make 15 selections in the experimental
procedure, representing 15 trials. In Figure 7, step 1∼step 15
represent the trial sequences.

Table 2: Clinical data of the motor-disabled participants.

Subject Age Gender DD Disease
SE1 35 M Moderate Spinal cord injury
SE2 37 M Moderate Tetraplegia
SE3 46 M Moderate Spinal cord injury
SE4 42 M Mild Spinal cord injury
SE5 39 M Moderate Spinal cord injury
SE6 43 M Mild Spinal cord injury
SE7 50 M Marked ALS
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acquisition

Signal
digitization

Feature
extraction

Control
device

instruction

Digitized
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Translation
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Figure 2: System architecture of the proposed HCS, including the ERP-based vBCI system and its applications.
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Each subject performed their experimental procedure
using the four GUIs. +e TV and the air conditioner were
under control during the process. +ey also made an
emergency call before the end of the procedure. Table 3
shows the details of the trial sequence. If the command
given by the system is correct during a trial, the subject
performs the following step of the procedure directly.
Otherwise, the tester will discuss the cause of the error
with the user and help the user return to the previous trial
and try again.

2.4. Experimental Setup

2.4.1. Experiment Equipment. +e equipment used to ac-
quire the EEG data included a 32-channel EEG amplifier, an
ISO-1032CE, and the control unit, CONTROL-1132, pro-
duced by Braintronics B.V. Company. +e system uses PCI-
1713 to convert analog data to digital data.+e authors wrote
the vBCI module using Borland C++ Builder and wrote the
ICAI1101 smartphone app in Java. +e BCI module used an
Arduino Uno and HC-05 Bluetooth module to communi-
cate with the user’s mobile phone.

2.4.2. Data Acquisition. In the EEG acquisition settings, the
sampling rate is 500Hz, and the impedance remains below
10 kΩ. +e EEG acquires the subject’s brain waves from
electrode O1 on the user’s scalp. +e electrodes for eye
movement detection are FP1 and FP2. +e reference elec-
trodes are A1 and A2. +e ground electrode is FPz [8]. All
electrodes are wet Ag/AgCl electrodes. +e EEG amplifier
(ISO-1032CE) amplifies and records the potentials of the

user’s brain waves. +e data are filtered with a 0.3∼15Hz
band-pass filter in the control unit, CONTROL-1132. +en,
PCI-1713 converts the analog data to digital data and sends
the data to the vBCI module for interpretation.

2.4.3. Data Processing. (1). ERPs acquisition: in each trial,
each motion-strip moves from right to left six times, as
shown in Figure 5. +e system records the time of onset for
each motion-strip and obtains the brain waves of the sub-
jects. +e system, then, segments the EEG into ERPs within
intervals ranging from‒100ms to 800ms of the onset time.
+us, there are six segments for each option. +e system,
then, sums the six ERP segments of each option and averages
them to obtain the final ERPs for each option.

(2). ERPs analysis: the system saves and analyses the final
ERPs for each option in each trial.+e system, thus, finds the
N200 value and the P300 value of each option and, then,
determines the N2P3 value. Next, the system compares the
N2P3 value of all options to each other to identify which
option the user selected.

(3). Instruction output: the system translates the ERP
analysis results into a BCI instruction and sends it to the
user’s smartphone via Bluetooth. When the smartphone
receives a BCI instruction, it runs the application to make an
emergency call or to control an appliance via IR.

2.5. System Assessment with Bit Rate. In addition to the
accuracy rate, the rate at which information per unit of time
is obtained is particularly important for evaluating a BCI
system. To calculate the number of bits available per minute,

Main screen

TV Air
conditioner

Emergency
call

System
off

(a)

TV control screen

Channel
switch

Volume
switch

Channel
shi�

Main
screen

(b)

Air conditioner
control screen

Temp. Air
flow

Turn on

Turn offMain
screen

(c)

TV channel shi� screen

1 3 42

5 7 86

9 0 Back OK

(d)

Figure 3: Four GUIs in the BCI module. (a) Main screen with four options; (b) TV control screen with six options; (c) air conditioner
control screen with six options; and (d) TV channel shift screen with 12 options.
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the bit-rate calculation in this study uses the definition of
Wolpaw [62], as follows:

bit − rate � M log2 N + P log2 P +(1 − P)log2
(1 − P)

(N − 1)
􏼢 􏼣􏼨 􏼩,

(1)

whereM indicates the number of choices made in a minute,
N is the number of options, and P is the accuracy rate.

3. Results and Discussion

Table 2 shows information about all the subjects who par-
ticipated in the experiment. Although the participants could
ask to stop the procedure at any time, no one did.+e system
used the N2P3 component to interpret the output of the EEG
online. However, to find the optimal solution, we analyzed
the features of ERP components N200, P300, and N2P3 of all
users offline. +e experimental results were analyzed as
follows.

3.1. Discriminating Features of ERPs. Figure 8 illustrates the
discriminating features of ERPs. Figure 8(a) is the output
figure obtained from the 1st trial of E14, while Figure 8(b) is
the output figure from the 3rd trial of SE1.

In Figure 8(a), the red curve represents enter the TV
control screen, the dotted green curve represents enter the
air conditioner control screen, the dotted yellow curve
represents making an emergency call, and the blue segment
curve represents shut down the system.

In Figure 8(b), the red curve represents change to the
next channel, the dotted green curve represents enter the TV
channel shift screen, and the dotted yellow curve represents
increasing the volume.+e blue segmented curve is a change
to the previous channel, the dotted white curve represents
backing to the main screen, and the dotted gray curve
represents decreasing the volume.

Figure 8(a) shows that the N200 value (−1.7969 µV) of
the solid red curve (TV option) on the main screen is the
lowest ERP, and P300 value (3.5418 µV) of the dotted green
curve (AC option) is the highest ERP. Table 4 shows that the
maximum ERP of N2P3 (4.0814 µV) is obtained from the

Off 1st 2nd 3rd 4th 5th 6th

1st 2nd 3rd 4th 5th 6th

1st 2nd 3rd 4th 5th 6th

1st 2nd

0.2 0.4 0.6 0.8 1.0
Time after the first stimulus onset (sec)

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.5

3rd 4th 5th 6th

EC

AC

TV Time
(sec)

DelayStimulationOnset
200
ms

200
ms

100
ms

Figure 5: A stimulation schematic of one trial for the four options on the main screen.+ere are six instances of stimulation for every option
in a single trial.

(a) (b) (c) (d)

Figure 4: +e caregiver GUIs of the ICAI1101 smartphone app: (a) main app screen on the smartphone; (b) TV remote controller; (c) air
conditioner remote controller; and (d) TV channel shift screen.
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solid red curve (TV option). +us, the user wanted to access
the function of the TV control during the online experi-
mental process. +is result complies with the requirements
of the experimental procedure. +e offline analysis shows
that the result is correct if using N200 for interpretation.

However, the result when using P300 for interpretation, AC,
is wrong.

Figure 8(b) shows that the N200 value (−1.6458 µV) of
the solid red curve (Next Channel) on the TV screen is the
lowest ERP, and P300 value (3.0962 µV) of the dotted yellow

Step 2
Step 3

Step 5
Step 6

Step 10
Step 11
Step 12Step 7

TV control
screen (b)

Air conditioner
control

screen (c)

TV channel
shi�

screen (d)

Step 4

Step 1

Step 8 Main screen
screen (a) Step 13

Step 9

Step 15Step 14

Emergency
call

Turn off
system

Figure 7: Flowchart of the vBCI operating procedures. +e solid arrow line shows that the system sends an instruction to switch the screen
of the system to the target GUI. +e dotted arrow line shows that the system is only sending a command to do something, and the screen
remains on the same GUI.
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Figure 6:+e ERPs of four options on the main screen from the output of the first trial of SE3.+e red circle indicates the potential of N200,
while the green circle represents the potential of P300.
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curve (volume up) is the highest ERP. Table 5 shows that the
maximum ERP of N2P3 (4.3471 µV) gains from the solid red
curve (next channel). +us, it means the user wanted to
access the function of the next channel during the online

experimental process. +is result complies with the re-
quirements of the experimental procedure. +e offline
analysis shows that the result, the solid red curve (next
channel), is right if using N200 for interpretation. However,
the result obtained when using P300 for interpretation,
volume up, is wrong.

3.2. Experimental Results for Healthy Subjects

3.2.1. Accuracy and Bit-Rate Analysis. Fifteen healthy
subjects participated in the experiment. +e experimental
results showed that the feature of N2P3 enabled the best
discrimination. +e average accuracy across all 15 users was
81.78%, meaning that of all 15 commands, 12 were

O1

uV

–1

0

1

2

3

–80 –60 –40 –20 0 20 40 60 80
ms

100 120 140 160 180 200 220 240 260 280 300 320 340

Main screen

TV
AC

EC
OFF

(a)

O1

uV

–1

0

1

2

3

–80 –60 –40 –20 0 20 40 60 80
ms

100 120 140 160 180 200 220 240 260 280 300 320 340

Tv control

Next channel
Channel shift
Volume up

Main screen
Volume down

Previous channel

(b)

Figure 8: Two ERP samples from onemotor-disabled subject. (a)+e ERPs from themain screen of the BCI system (4 options); (b) the ERPs
from TV control screen of the BCI system (6 options).

Table 4: +e ERP values (µV) of all options in the main screen
obtained from the first trial of subject E14.

Options N200 P300 N2P3
Result

Online Offline
TV −1.7969 2.2845 4.0814 ✓ N200, N2P3
AC 0.6518 3.5418 2.8900 P300
EC 0.0030 1.0302 1.0272
Off −1.7847 −0.9263 0.8584

10 Computational Intelligence and Neuroscience



performed right. +e precision attained by 10 of the 15
subjects was greater than 80%.+e accuracy of E10 was even
100%. However, the accuracy of E1 and E15 was unac-
ceptable. +ese two subjects may not be able to adapt to the
BCI system or were disturbed by other factors, resulting in
reduced efficiency. Figure 9 summarizes the accuracy levels
and bit rate acquired by the 15 healthy subjects.

+e average bit rate attained by all 15 healthy subjects is
27.11. It is better than that of other studies [25, 62, 63].

3.2.2. Analysis of Sum of Correct Choices Made by All Healthy
Subjects in Each Trial. Figure 10 shows that if the system
uses N2P3 to interpret the EEG, the average number of
correct selections for each healthy subject was 12.27 on
average, while N200 it is only 8 and 11.07 for P300. It is
important to note that the 6th and 7th trials exhibited lower
online performance with the system choosing the right
option for only 10 of 15 users (66.67%). By contrast, all the
subjects chose the correct option on the 4th trial, and the
number of correct selections in 10 of all 15 trials is greater
than 12 (80%). +us, using N2P3 for interpretation is the
optimal solution.

3.2.3. *e Paired-Sample t-Test Analysis of the Results of the
Targeted Option vs. Nontargeted Options. Table 6 shows the
paired-sample t-test analysis of the ERP components of the
target option and the nontarget options. +e results show
that the features of the ERP components, P300 and N2P3,
can be used as discriminating features. However, there was a
significant difference in the results between N2P3-targeted
and P300-targeted. +us, using the component N2P3 for
interpretation is the optimal solution.

3.3. Experimental Results for Motor-Disabled People and ALS

3.3.1. Accuracy and Bit-Rate Analysis. Six motor-disabled
people and one man with ALS participated in the experi-
ment. +e experimental results showed that the feature of
N2P3 offered the best discrimination. +e average accuracy
across all seven users was 78.10%, meaning that of all 15
commands, 11 were performed right. However, the accuracy
of SE2 is not acceptable. +is subject may not be able to
adapt to the BCI system or was disturbed by other factors,
resulting in reduced efficiency. Figure 11 summarizes the
accuracy levels acquired by the seven with physical
disabilities.

+e average bit rate attained by all seven disabled
subjects is 22.37. Although the average bit-rate attained by
the disabled group is lower than that of the healthy group, it
is also better than that of other studies [25, 62, 63].

3.3.2. Analysis of Sum of Correct Choices Made by All Motor-
Disabled Subjects in Each Trial. Figure 12 shows that if the
system uses N2P3 to interpret the EEG, the average number
of disabled subjects selecting correctly is 5.47, 2.13 for N200
and 3.67 for P300. It is important to note that the 10th and
11th trials exhibited lower performance online. By contrast,
all the subjects chose the correct option in the 1st, 4th, 9th,
12th, and 14th trials. +us, using N2P3 for interpretation is
the optimal solution for motor-disabled subjects. +ese
results are the same as those of the group of healthy subjects.

3.3.3. *e Paired-Sample t-Test Analysis of the Results of the
Targeted Option vs. Nontargeted Options. Table 7 shows the
paired-sample t-test analysis of the ERP components of the
target option and the nontarget options. Although the p-value
(.004) of case N200 is less than 0.01, Figure 11 shows that the
average accuracy is 30.48% if the system used the component
N200 for interpretation. +us, only N2P3 can be used as the
discriminating feature for motor-disabled subjects.

3.4. Independent-Sample t-Test for the Results for the Healthy
Subjects and the Motor-Disabled Subjects (including One
ALS). In this study, we conducted experiments with 15
healthy subjects, six motor-disabled subjects, and one ALS.
+e average accuracy attained by the 15 healthy subjects was
81.78% if using N2P3 (online) for interpretation, while the
average accuracy attained by the seven motor-disabled
subjects was 78.10%. +e disabled group has a lower ac-
curacy level than the healthy group. However, both groups
had an average accuracy of more than 75%.

We compared the results of these two independent sam-
ples, as shown in Table 8. +e results show that if the system
used theN200 or P300 component for interpretation, there was
a significant difference in the results between the healthy group
and the disabled group. +at is, the system may not be ac-
ceptable for disabled people. Yet, when the system uses N2P3
for interpretation, there is no significant difference between the
two groups (t� 0.6258, p � 0.5385). +us, the proposed vBCI
system appears to be suitable for our end-user, motor-disabled
people, when the system uses N2P3 for interpretation online. It
enables the HCS to reach a desirable level.

+e average bit rate attained by all 15 healthy subjects is
27.11 (Figure 9). +e average bit rate attained by all seven
disabled subjects is 22.37 (Figure 11). Although the average
bit rate attained by the disabled group is lower than the
average bit rate attained by the healthy group, the difference
is not significant (t� 0.8793, p � 0.3897).

4. Discussion

+e aim of the present study is two-fold: (1) to develop a
BCI-based home care system to help end-users control their

Table 5: +e ERP values (µV) of all options in the main screen
obtained from the 3rd trial of subject SE1.

Options N200 P300 N2P3
Result

Online Offline
Next channel −1.6458 2.7013 4.3471 ✓ N200, N2P3
Channel shift −0.3196 2.5717 2.8913
Volume up 0.9145 3.0962 2.1817 P300
Prev. channel −0.5131 1.4089 1.9220
Main screen 0.8788 1.0479 0.1691
Volume down 1.3293 1.1093 −0.2200
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household appliances and (2) to assess whether the archi-
tecture of the HCS is easy for motor-disabled people to use.

First, we designed and developed a BCI-based home care
system (HCS). We designed the HCS to make an emergency
call or control the household appliances, such as TV and air

conditioner, via a smartphone. +us, end-users can improve
personal autonomy and reduce their dependence on
caregivers.

Second, most previous research has not experimented
with end-users.+us, the second purpose of this study was to
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Table 6: Paired-sample t-test results of all trials for the 15 healthy subjects. α� 0.01, N� 225.

Case T value p value
N200 Targeted vs. nontargeted 0.747 0.467
P300 Targeted vs. nontargeted 6.225 0.000∗∗∗
N2P3 Targeted vs. nontargeted 8.998 0.000∗∗∗
N2P3 vs. P300 N2P3-targeted vs. P300-targeted 2.276 0.039∗
∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001.
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assess the usefulness of the system with motor-disabled
subjects. We conducted experiments with both healthy and
motor-disabled subjects. One subject had ALS.

Previous researchers attempted to improve the perfor-
mance of their BCI systems [7, 9, 21, 23, 60]. +us, improving
the accuracy of the HCS is the primary mission of our study.
To improve the efficiency of HCS, we adjusted three details:
the number of electrodes, the brain-computer interface, and
the method the system uses to interpret the ERPs.

Most BCI studies use Fz, Cz, Pz, Oz, and other electrodes
to collect data [9, 22, 23, 29, 34, 45, 60]. Of these, Zhang et al.
also used the O1 and O2 electrodes to obtain data [10]. Based

on the previous research results of our laboratory, the ERPs
acquired from electrodes O1 and O2 yield outstanding
accuracy and are better than ERPs from other electrodes
when we asked the user to stare at the GUI [8, 26]. Fur-
thermore, the fewer the electrodes are, the more comfortable
the user is.+us, the system used electrode O1 only to obtain
the ERP data in this study.

To use an electrode, Q1, to gain the data, we ask the user
to stare at the GUI when using the system. +e system
asynchronously shows the stimuli to shorten stimulation
times. In the HCS there are four options on the main screen,
six options on the TV and AC control screen, and 12 options
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on the TV channel shift screen. Figures 10 and 12 show that
the number of options on the GUI has nothing to do with the
number of users correctly selecting in each trial. +e average
bit rate in both groups was better than that of related studies.
Although the average bit rate attained by the disabled group
is lower than that attained by the healthy group, the dif-
ference is not significant (t� 0.8793, p � 0.3897). +erefore,
we inferred that the interface of the HCS is also applicable to
motor-disabled people.

Previous studies have stated that component P300
provided an excellent level of discrimination [29, 60, 61].
However, in earlier studies in our laboratory, component
N2P3 presented the best level of discrimination [8].+us, we
compared ERP components N200, P300, and N2P3 to de-
termine what the best feature for discrimination is.

When using component P300, the healthy and the motor-
disabled subjects had an average efficiency of 73.78%
(SD� 14.79) and 52.38% (SD� 18.23), respectively. Although
the precision attained by 8 of the 15 healthy subjects was greater
than 80%, only SE7 (ALS) obtained an accuracy of 80% when
using P300 for interpretation. However, for the online ex-
perimental results (using component N2P3), the healthy and
the motor-disabled subjects exhibited an average efficiency of
81.78% (SD� 13.69) and 78.10% (SD� 10.69), respectively.+e
precision attained by 10 of the 15 healthy subjects was greater
than 80%, and the precision obtained by three of the seven
motor-disabled subjects was greater than 80%. Furthermore,
Figure 11 shows that, from SE1 to SE6, the accuracy using
N2P3 for interpretation is the best. SE7 (ALS) had an accuracy
of 80% using component N2P3 and again using P300.

Although the disabled group has a lower accuracy level
than the healthy group, the difference is not significant
(t� 0.6258, p � 0.5385). +e average accuracy attained by
the seven motor-disabled subjects was 78.10%, more than
the 75% when using N2P3 for interpretation. To this point,

these results are consistent with those of Huang [8] which
show that the ERP component N2P3 is the optimal solution
for discrimination in the HCS. +us, the HCS is suitable for
end-users, including motor-disabled people. +e HSC
proposed in this study reaches a desirable level of perfor-
mance when the system uses N2P3 for interpretation.

+e second issue in system construction is making the
system easy for end-users. +is question included two key
points: whether the GUI of the HCS is friendly and whether
the remote controls for all appliances can be integrated into
one remote control.

First, Figure 10 shows that more than 12 subjects made
the right selections in 10 of 15 trials (over 80%). Figure 12
shows that more than six subjects made the right selections
in 8 of 15 trials (over 85%). Most trials exhibited a high
correct selection rate. Coupled with speedy bit rate, we
reason that the interface in the system is easy to use.

Second, there are often two common household appli-
ances, TVs and air conditioners, in the same room. Every
home appliance has a dedicated remote control. If all home
appliances can share the same remote control, the system
can be easy for end-users to use. In this study, we added a
smartphone to the HCS. A smartphone with IR commu-
nication technology may act as a remote control. It can emit
a distinct IR wavelength to control any household appliance.
+us, we developed an app called ICAI1101 to control the
TV and air conditioner using a smartphone via IR. Such a
BCI system would make it easier for the end-user to control
their home appliances.

ICAI1101 is first installed on a smartphone. When the
user makes a choice during use, ICAI1101 can act following
the user’s choice. Furthermore, ICAI1101 not only makes
emergency calls and controls the TV or air conditioner but
can also integrate other apps. +e rapid growth of the In-
ternet and the popularity of smartphones have had an
immense impact on human life in the last two decades [22].
Innumerable apps designed for smartphones reside in
mobile app stores. Millions of apps are aimed at motor-
disabled people. ICAI1101 can easily integrate these apps
into the BCI system. In the future, we plan to integrate other
apps into the BCI system. +us, the HCS could help end-
users to learn and communicate with others.

Tables 3 and 5 show that the accuracy of E1, E15, and SE2
is not acceptable. +ese subjects may have individual factors
that resulted in lower efficiency. Development of the sub-
sequent vBCI system should address the aforementioned
personal questions.+is will allow the HCS to help end-users
achieve better quality of life.

5. Conclusions

In this study, we have proposed a home care system that
combines BCI with a smartphone.+e HCS helps end-users,
motor-disabled people, make an emergency call or control
their household appliances. +us, end-users can take care of
themselves with only eye muscle movement. Fifteen healthy
subjects and seven motor-disabled subjects (including one
with ALS) participated in clinical trials. Because of the high
accuracy-rate and rapid response of the system during the

Table 7: Paired-sample t-test results of all trials for the seven
motor-disabled subjects. α� 0.01, N� 105.

Case T value p value
N200 Targeted vs. nontargeted −4.509 0.004∗∗
P300 Targeted vs. nontargeted 0.346 0.741
N2P3 Targeted vs. nontargeted 6.953 0.000∗∗∗
∗∗p< 0.01; ∗∗∗p< 0.001.

Table 8: Independent-sample t-test of the accuracy of the healthy
subjects and of the motor-disabled subjects, α� 0.01.

Case F-test p

value T value p value

N200
targeted

Healthy vs.
disabled 0.1596 3.1693 0.0048∗∗

P300
targeted

Healthy vs.
disabled 0.2428 2.9396 0.0081∗∗

N2P3
targeted

Healthy vs.
disabled 0.2817 0.6258 0.5385

Bit rate Healthy vs.
disabled 0.2576 0.8793 0.3897

∗∗p< 0.01; ∗∗∗p < 0.001.
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online experimentation, most subjects of both groups can
rapidly complete the experimental procedure in less than the
preset time, 35 minutes. In the offline analytics, the data
collected enabled us to evaluate and improve the perfor-
mance of the system. +e results showed that the disabled
group has a lower accuracy level than that of the healthy
group, but the difference is not statistically significant. +e
average accuracy of the disabled group (78.10%) not only
exceeded the chance level but was also higher than 75%. +e
bit-rate analysis yielded conclusions similar to those of the
accuracy analysis. +us, when a user chooses an option, the
accuracy of the target option in a short period exceeds three-
fourths.We, therefore, reason that the HCS is a viable system
for motor-disabled people.

+e HCS is a system that can be used without prior
training. +e bit rate of the HCS is close to that of a previous
study, the Chinese Spelling System, performed in our Lab
[8], and is better than that of other studies [25, 62, 63]. Such a
fast bit rate and high accuracy rate make the HCS easy to use.
Even if the user selects the wrong option, the system can be
returned to the correct position in a short time by rese-
lection. More importantly, only one electrode, O1, is re-
quired to measure the EEG signals, enabling the HCS to have
good usability in practical use. +us, we confirmed the
feasibility and practicability of this home care system
approach.
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