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In the process of brain-computer interface (BCI), variations across sessions/subjects result in differences in the properties of
potential of the brain. This issue may lead to variations in feature distribution of electroencephalogram (EEG) across subjects,
which greatly reduces the generalization ability of a classifier. Although subject-dependent (SD) strategy provides a promising
way to solve the problem of personalized classification, it cannot achieve expected performance due to the limitation of the
amount of data especially for a deep neural network (DNN) classification model. Herein, we propose an instance transfer
subject-independent (ITSD) framework combined with a convolutional neural network (CNN) to improve the classification
accuracy of the model during motor imagery (MI) task. The proposed framework consists of the following steps. Firstly, an
instance transfer learning based on the perceptive Hash algorithm is proposed to measure similarity of spectrogram EEG signals
between different subjects. Then, we develop a CNN to decode these signals after instance transfer learning. Next, the
performance of classifications by different training strategies (subject-independent- (SI-) CNN, SD-CNN, and ITSD-CNN) are
compared. To verify the effectiveness of the algorithm, we evaluate it on the dataset of BCI competition IV-2b. Experiments
show that the instance transfer learning can achieve positive instance transfer using a CNN classification model. Among the
three different training strategies, the average classification accuracy of ITSD-CNN can achieve 94:7 ± 2:6 and obtain obvious
improvement compared with a contrast model ðp < 0:01Þ. Compared with other methods proposed in previous research, the
framework of ITSD-CNN outperforms the state-of-the-art classification methods with a mean kappa value of 0.664.

1. Introduction

A brain-computer interface (BCI) is a communication
method between a user and a computer that does not rely
on the normal neural pathways of the brain and muscles.
Motor imagery (MI), one of the paradigms of BCI, is a way
of thinking that imitates the motor intention without real
motion output; that is, the brain imagines the entire move-
ment without contracting the muscles [1]. Research has
shown that motor imagery (MI) can produce the same
change of sensory motor rhythms as a real movement [2].
This phenomenon will cause energy increase or decrease in
specific frequency bands of EEG, which are called event-
related desynchronization (ERD) and event-related syn-
chrony (ERS) [3]. The differences of ERD/ERS are always

used to decode mental intentions, control a robot, and exe-
cute rehabilitation training for stroke patients [4]. During
this process, the accurate decoding of MI is the essential fac-
tor that determines the effectiveness and quality of the reha-
bilitation. However, due to the differences in physiological
structure and physiological condition across subjects/trials,
there will be obvious variations in feature distribution for
EEG signals. Especially, as a spontaneous potential activity,
the signal of MI is extremely weak and always accompanied
with nonlinearity and nonstationary. It brings a huge chal-
lenge for the decoding model for MI.

With the development of machine learning (ML) and
deep learning (DL) technology, more classification models
are widely used for EEG decoding [5]. During the training
stage of the classification model, strategy can be divided into
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two ways: subject-dependent (SD) and subject-independent
(SI). As shown in Figure 1, SD strategy is aimed at training
a subject-specific model using their own data. In contrast,
SI strategy utilizes data from other subjects to train a gener-
alized decoding model for a new subject [6]. One of the main
assumptions of ML and DL is that training data and test data
belong to the same feature space and subject to the same
probability distribution. But it is often violated in the field
of EEG signal processing. In other words, the SI strategy can-
not satisfy performance of accuracy and generalization due to
the individual differences across subject/sessions. SD strategy
provides an effective way to optimize this issue; however, it
requires long calibration sessions to collect the high-quality
and large amounts of EEG datasets. All these restrictions
greatly affect the application of BCI in practice.

One effective approach to solve this problem is instance
transfer learning (ITL) [7], which combined the advantages
of training strategy of SI and SD, i.e., training personalization
classification model with enough data. The definition of
transfer learning is that given a source domain Ds and learn-
ing task Ts and a target domain DT and learning task TT
transfer learning are aimed at helping improve the perfor-
mance of target predictive function f Tð·Þ using the knowl-
edge from Ds. ITL is one of the typical TL methods, which
transfer instance knowledge by reweight the data from Ds
to improve generalization ability for f Tð·Þ.

The essence of ITL does not change the feature space or
property of signals in MI task, but it finds the optimal trans-
fer weighting coefficient for source data by similarity mea-
surement [8–10]. The transfer weighting coefficient is then
weighted with the number of corresponding data from Ds.
As shown in Figure 2, wk

Si/T represents the transfer weighting
coefficient for Ds data. k represents the serial number of the
subject, and i is the ith trials. During the training stage,

weighted data from Ds were combined with DT data to train
classifier. Based on this, we could utilize similar EEG data
from other subjects or sessions to help reduce system calibra-
tion time and train decoding model for target subject [11].
For example, Azab et al. proposed a weighted transfer learn-
ing for improving MI task that they use Kullback–Leibler
divergence to measure the similarity between two feature
spaces of signal. According to the results of similarity, the
weight coefficient is assigned to the source data to optimize
the small sample problem in classification model training
[12]. A Jensen-Shannon ratio method is used to measure
similarity between target data with source data in Giles
et al.’s work [13]. Based on this method, they propose a target
subject identification framework based on rule adaptation
transfer learning, which can reduce the calibration time of
the online BCI system by reusing the data with the highest
similarity between Ds and DT .

However, due to the obvious individual differences across
subjects, the direct instance transfer method may bring neg-
ative transfer effects. In addition, traditional measurement
does not concentrate on the specific feature of EEG data,
which will affect the performance of the transfer learning.
Especially for motor imagery signals, the traditional time-
series signals cannot effectively reflect the feature of motor
intention, but the energy feature of signal can represent the
distribution of feature well. Therefore, choose the transloca-
table objects and assign transfer weights reasonably to the
core research for instance transfer learning [14]. In the
computer vision field, content-based image retrieval (CBIR)
is an important research topic [15]. The goal of CBIR is to
find images from the source domain that belongs to the
same category. MI spectrogram image contains abundant
information of frequency and energy feature, which is suit-
able for extracting feature of motor intention. Therefore, we
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Figure 1: A diagram representing the (a) subject-dependent (SD) and (b) subject -independent (SI) training strategy.
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assume that technology of CBIR may implement effective
data matching across subject and achieve the effective
instance transfer from Ds to DT . The perceptive Hash (p-
Hash) algorithm is one of the typical CBIR methods, which
is used to judge the similarity between different images by
transforming these images to perceptual hash code and
measure its distance [16].

With the development of deep neural network (DNN)
technology, EEG decoding based on DNN has attracted
wide attention. Due to the excellent ability of fitting and
automatic feature extraction, DNNs achieve outperformed
results for EEG classification. In Reference [17], a convolu-
tional neural network (CNN) and variational autoencoder
(VAE) were used for two-class MI classification task. The
CNN utilized multiple hidden layers to extract the features,
and the VAE was used for feature classification. The CNN-
VAE method achieved a 3% improvement in classification
accuracy than the best methods in their referred literature.
Lu et al. [18] proposed a novel method based on restricted
Boltzmann machines (RBMS) for EEG classification. Fast
Fourier transform (FFT) and wavelet packet decomposition
(WPD) were used to extract the frequency-domain features
of signals, which were used as inputs of the network. Three
RBMs were stacked with an additional output layer to train
the classification network. The authors verified that the clas-
sification performance of this network was better than state-
of-art methods evaluated by public datasets ðp < 0:01Þ. In a
recent study [19], the researchers compared the classifica-
tion performance of a CNN and long short-term memory
(LSTM) network for classifying the time-frequency domain
signals of MI. The authors evaluated the adaptability
between different network structures to individual differ-
ences and showed that CNN provided better performance
for detecting the differences across subjects, and its classifi-
cation rate was significantly higher than that of the LSTM.
In summary, CNN shows satisfactory classification perfor-
mance in MI-BCI task compared to traditional machine
learning methods or other networks. However, the limita-
tion of the amount of dataset hinders the practical applica-
tions of DNN. Especially for SD training strategy, it is
difficult for a subject to collect enough high-quality EEG
data. Therefore, we propose a novel instance transfer learn-
ing based on p-Hash to improve the utilization efficiency of
data and build a CNN for MI classification.

Based on the problems mentioned above, we propose a
novel instance transfer learning strategy combined with
CNN for subject-dependent MI classification. The main con-
tributions of this paper are as follows:

(1) To address the issue of individual differences across
subjects/sessions in MI classification, we creatively
apply the methodology of content-based image
retrieval to EEG classification. Based on this, we pro-
posed a novel instance transfer learning (ITL) strat-
egy using the p-Hash algorithm, which is aimed at
calculating the transfer weight coefficient between
the trails from different subjects/sessions

(2) There are two main limitations of subject-dependent
and subject-independent training strategies: small-
scale dataset and large difference of signal across sub-
jects. Therefore, we apply instance transfer learning
to optimize the traditional training strategies. Simi-
larity measurement in feature space is executed to
calculate the transfer weight coefficient across sub-
jects/sessions, which is aimed at exploring the corre-
lation between different trials. And then we expand
the training set for target subject based on instance
transfer by weighted

(3) To improve the classification performance in MI-BCI
task, we combine CNN with transfer learning strategy
using SD training strategy (ITSD-CNN) to classify MI
signal. Experiments evaluate that the ITSD-CNN can
achieve outperformed results than state-of-art methods

The step of ITSD-CNN can divide into these steps: firstly,
we preprocess the raw MI-EEG signals and adopt short-time
Fourier transform (STFT) to transform the raw MI signal
into a 2-D spectrogram signal. Then, an ITL based on the
perceptive Hash algorithm is proposed to measure the simi-
larity of MI signals between Ds and DT . Next, we build a con-
volutional neural network to classify the MI data after
transfer learning. The BCI competition IV-2b dataset is used
to verify the effectiveness of this framework. Our results show
that the proposed approach can significantly improve the
classification performance. Meanwhile, the ITSD provides a
new training strategy to optimize the performance of SD
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Figure 2: A diagram representing the instance transfer subject-dependent (ITSD) training strategy.
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training. The rest of the sections is organized as follows. Sec-
tion 2 explains the materials and methods for ITSD and
CNN. Section 3 introduces the experimental results and dis-
cussion. Discussion is described in Section 4, and Section 5 is
the conclusion of the paper.

2. Materials and Methods

2.1. Description of Datasets. In this paper, we utilize BCI
competition IV dataset 2b [20]. This dataset was provided
by the BCI Research Institute in Berlin and contained two
parts: the standard set and the evaluation set. Nine subjects
participated this experiment, and three channels (C3, C4,
and CZ) were used to record EEG with a 250Hz sampling
rate. Each subject is required to imagine the movement of left
and right hands according to the cue. And all of them under-
went 5-session experiments. The experimental process is
shown in Figure 3.

2.2. Preprocessing of EEG.MI signals are extremely weak and
accompanied with irrelevant component. And the feature of
MI tends to appear in specific frequency band: mu band (8-
14Hz) and beta band (14-30Hz). To reduce the effect of
the artifact of signals, we uniformly filter the signal to 8-
30Hz through the Butterworth filter with 6 orders.

The potential activity of MI always causes the variation of
energy in the contralateral cortex and ipsilateral cortex dur-
ing MI, which is recorded by C3, Cz, C4, and surrounding
channels [3]. However, this phenomenon cannot reflect in
time domain clearly. To describe features in a better form,
we transform time-series signals to spectrogram signals after
filtering. As shown in Figure 4, the three channels are con-
verted into a two-dimensional form and are mosaicked into
an image using vertical stacking. The variations along X-axis
and Y-axis represent the trend of time series and frequency,
respectively. And the depth of color indicates the energy
feature. For one trial, we chose the data from 3 to 7 s
(period of imagery) and set the window size of the STFT
as 256. After transformation, all spectrogram images were
resized to 64 × 64 for convenience and consistency in the
subsequent calculation.

2.3. Instance Transfer Learning Based on the Perceptive Hash
Algorithm. The spectrogram signal of MI can vividly reflect
the feature variations especially for the energy of frequency
band. The perceptive hash (p-Hash) algorithm can obtain

the most sensitive information by discrete cosine transform
(DCT) in the human and machine vision system [16]. This
transformation concentrates the energy on the main diagonal
of the image matrix and has effectively removed redundant
and irrelevant components. Under specific EEG task, the fea-
ture distribution of signals across subjects may exist differ-
ence but the form of feature is consistent. Therefore, we
assume that change between different modes for MI can be
effectively perceived and recognized by p-Hash.

This paper uses p-Hash to measure the similarity of spec-
trogram data across subject. Then, the obtained similarity is
transformed into the ITL coefficient that inputs into a classi-
fier combined with corresponding data. The implementation
of ITL based on p-Hash are as follows.

Firstly, some denotation of symbols should be explained.
We define DT representing the target subject’s data and DS is
other subjects’ data. Let us define Gi

n = fgitgnt=1 ∈Ds
l×l which

is a set of single-trial EEGs represented by spectrogram from
DS,Q

i
n = fqitgnt=1 ∈Dt

l×l for target subject, where t is the num-
ber of EEG trials, l is the dimensions of a square matrix, i rep-
resents the i-th subject. ~qinð1/nÞ∑n

t=1q
i
t~qt represent the average

spectrogram for the current target subject.
Before calculation, spectrogram images from DS and DT

are separately resized to 64 × 64 and converted to grayscale
level. Then, discrete cosine transform (DCT) is utilized to
compress an image:

Gu,u =
1
4 α uð Þ2 〠

n−1

x=0
〠
n−1

x=0
gx,x cos

2x + 1ð Þuπ
2N

� �2
,

Qv,v =
1
4 α vð Þ2 〠

n−1

y=0
〠
n−1

y=0
~qsiy,y cos

2y + 1ð Þvπ
2N

� �2
,

α uð Þ = α vð Þ =
ffiffiffiffi
1
N

r
, u, v = 0,

α uð Þ = α vð Þ =
ffiffiffiffi
2
N

r
, u, v ≠ 0,

ð1Þ

αðuÞ and αðvÞ are coefficient matrixes after transforma-
tion. Gu,u andQv,v are results after transformation. The
energy variations of the image after DCT are mainly concen-
trated in the low-frequency part [21]. Therefore, the 8 × 8
matrix d located in left diagonal is extracted for subsequent
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Figure 3: Diagram of a trial and timings.
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calculations. Next, the mean value of DCT coefficients is cal-
culated, respectively:

ms =
1

n × n
〠
n

u=1
〠
n

u=1
du,u,

mt =
1

n × n
〠
n

v=1
〠
Nn

v=1
dv,v:

ð2Þ

In addition, the mean value of DCT coefficients is set as
threshold standard to compare with each coefficient. By the
rule of threshold, the two-dimensional matrix of n × n can
be compressed into one dimension of 1 × n matrix Hi.

hi = 0, bi <m,
hi = 1, bi >m,

ð3Þ

where hi is the bit of the perceptual hash at position i,m is the
mean value of the DCT coefficients, and biði = 0, 1,⋯,N − 1Þ
is DCT coefficient of the array. The obtained 1 × n matrix is
Hi which represents perceptual hash code [22].

Finally, respectively, calculate the Hamming distance dH
of perceptual hash code from DT andDS and set the distance
dHðHT ,HSÞ as the ITL weight coefficient from source
domain to target domain. For each trial from source subject,
weight wSi/Tt

can be calculated:

wSi/Tt
= dH HT ,HSð Þ = 〠

L

i=1
HT ið Þ −HS tð Þ½ �2: ð4Þ

The calculation processing of transfer weight is shown in
Figure 5.

2.4. Convolutional Neural Network. Researches show that the
CNN has obvious advantages in processing MI signals [23].
CNN is a multilayer neural network composed of a sequence

of convolution, pooling, and fully connected layers. The con-
volution layer extracts different levels of feature of input
image by kennel size, while the pooling layer reduces the
complexity of the model by subsampling. With the increase
of layers, the more advanced features can be extracted. The
fully connected layer will transform the output matrix from
the last layer to a n-dimensional vector (n is the number of
classes). Backpropagation is utilized to decrease the classifi-
cation error.

In the convolution layer, the input image can be con-
volved with a spatial filter to form the feature map and output
function, which is expressed as

Xl
j = f 〠

i∈Mj

Xl−1
i ×wl

ij + blj

 !
: ð5Þ

This formula describes the jth feature map in layer l. Xl
j is

calculated by the previous feature map Xl−1
i multiplied by the

convolution kernel Wl
ij and bias parameter blj. Finally, the

mapping is completed by RELU function f ðÞ.

f að Þ = RELU að Þ = ln 1 + eað Þ: ð6Þ

The pooling layer is sandwiched in the continuous con-
volution layer to compress the amount of data and parame-
ters and reduce overfitting. The max pooling method in this
work is chosen as follows:

Xl
j,k =max0≤m,n≤s Xl−1

j·s+m,k·s+n

� �
, ð7Þ

where j and k are the locations of the current feature mapXl
j

and s stands for pooling size. The double fully connected
layer structure can effectively translate the multiscale features
of the image. Considering the multiple influencing factors of
time, frequency, and channel, this paper uses double full-
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Figure 4: Spectrogram images with 3 electrodes after STFT.
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connection layers to improve the performance gain of the
softmax layer. Two-way softmax in the last layer in the deep
networks is used to predict the distribution of two motor
imagery tasks.

yi =
exp ∑xi ·wi,j + bj

� �
∑exp ∑xi ·wi,j + bj

� � : ð8Þ

xi is the ith feature map and yi represents an output prob-
ability distribution. The gradient of back-propagation was
calculated according to the cross-entropy loss function.

Loss = − y log ~y + 1 − yð Þ log 1 − ~yð Þ½ �: ð9Þ

And we used the stochastic gradient descent (SGD) opti-
mizer with a learning rate of 1e − 4 to improve the speed of
network training.

Wk =Wk − μ
tialE
tialWk

,

bk = bk − μ
tialE
tialbk

,
ð10Þ

where μ is the learning rate, while Wk represents the weight
matrix for kernel k and bk represents the bias value. E repre-
sents the difference between desired output and real output.
There are eight layers in the proposed network (Figure 6).

The first layer is the input layer, and the second layer is a
convolutional layer with kernel size 3 × 3; the next layer is
the max pooling layer with kernel size 2 × 2. The next two
layers have the same kernel size and function. Two fully con-
nected layers, respectively, consist of 10 and 2 neuros to
compute the predicted labels. The gradient of backpropaga-
tion is calculated according to the cross-entropy loss func-
tion. The stochastic gradient descent with momentum
(SGDM) optimizer is used for optimization with learn
rate = 1e − 4, momentum = 0:9, and decay = 1e − 6. We set
the minibatch size to 50 and the max epoch to 6. To
reduce computation time and prevent overfitting, we adopt
to the dropout operation. The proposed CNN model is
summarized in Table 1.
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Figure 6: The structure of convolutional neural network for classification.
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Figure 5: Transfer weight calculation using perceptive hash algorithm.

Table 1: Detailed architecture for the CNN.

Layers Type Size Stride
Output

dimension
Activation Mode

Input 1 64,64,3ð Þ

Valid

Convolution 2 3 × 3

1, 1ð Þ

64,64,8ð Þ

RELU

Max pooling 3 2 × 2 32,32,8ð Þ
Convolution 4 3 × 3 32,32,8ð Þ
Max pooling 5 2 × 2 16,16,8ð Þ
Dense 6 10, 1ð Þ
Dense 7 2, 1ð Þ Softmax
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2.5. Evaluation for Classification Performance. In our study,
the average classification accuracy and mean kappa value are
utilized to test the performance of the proposed framework.
The kappa value is a typical method to evaluate the EEG clas-
sification performance which can remove the effect of result of
random classification. It can be calculated as follows:

kappa = acc − rand
1 − rand ð11Þ

To evaluate the effectiveness of instance transfer learning,
three training strategies are compared. As for the subject

dependent method (Figure 7), a total of 720 trials for one sub-
ject are divided into the training data and test data using10-
fold cross-validation.

A generalized model is trained using data from other sub-
jects (Ds) in the subject-independent training stage (Figure 8).

In the ITSDmethod, weighted data fromDs together with
target data are input into the training set. And data from DT
are used to test model performance; the method of data par-
tition is shown in Figure 9.

To show the size of training and test data more clearly, we
briefly summarize the number of data for three training strat-
egy in Table 2.

…
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Figure 7: Subject-dependent training strategy.
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Figure 9: Instance transfer subject-dependent training strategy.
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3. Experimental Results and Analysis

3.1. Performance of the Proposed Framework. In this paper,
we use BCI competition IV dataset 2b to verify the proposed
methods. During the training stage for each subject in ITSD,
we supply dataset from other subjects by instance transfer
(Figure 9). After the mixture of source data and target data,
we adjust the number of instances to keep the class balance
in the training stage. To evaluate the performance of different
training strategies, we compared the classification accuracy
of different methods.

As depicted in Table 3, the SD training strategy is better
than SI based on the CNN classifier even though SI obtains
more training data. This indicates that MI-EEG from differ-
ent subjects causes an obvious difference of feature under
the same label. The average classification accuracy of ITSD-
CNN is superior to that of SD-CNN, which obtains a 14.1%
improvement. It is worth noting that subjects 2 and 3 can
better adapt to model preference by efficiently data transfer
to greatly improve the classification accuracy.

To verify the significance of results, analysis of variance
was performed. As shown in Figure 10, there is no significant
difference between SD-CNN and SI-CNN, while the strategy
of ITSD-CNN performs satisfied convergence and high accu-
racy than the other two methods (p < 0:01).

By observing the training process, the weakness of small
sample can directly influence the results of network training.
Effective data transfer can increase the number of samples to
improve the generalization of network and prevent underfit-
ting. Moreover, this method can validly reduce the influence
of classifier result from individual differences.

3.2. Comparisons with Previous Research. Numbers methods
have been proposed for MI classification using BCI compe-
tition IV dataset 2b. In this section, we further compared
our method with that of a commonly used strategy by the
metric of mean kappa value. Based on the analysis of
Table 4 and Figure 11, we can observe that ITSD-CNN out-
performs the baseline and the state-of-the-art methods. It is
worth noting that the hybrid framework based on CNN
obtains an ideal result among these methods. This indicates
that CNN has strong robustness and high accuracy in MI
classification. In addition, instance transfer effectively
improves the classification performance of CNN using the
same model and parameters.

4. Discussion

Compared with traditional methods, the application of deep
learning for EEG classification has successfully improved the
performance [28]. However, there are still some limitation
hinder its application in practice. The feature distribution

of EEGs always shows a difference in the same mental task
across subject/session, which may cause the overfitting dur-
ing the network training. Transfer learning turns out to be
instrumental in subject/session classification performance.
It can be used to initialize a BCI using knowledge transfer
from other subjects for a naive subject. At the same time, this
strategy may help a classifier to learn global features from all
subjects without falling into the local optimal. Therefore,
transfer learning combines the advantages of SI and SD strat-
egy and outperforms them. In future studies, it is valuable to

Table 2: Size of dataset for three training strategy.

SI-CNN SD-CNN ITSD-CNN

Training data 5760 648 648+transfer instance

Test data 720 72 72

Table 3: Classification accuracy of different training strategies.

Subjects
Accuracy % mean ± std:dev:ð Þ

SI-CNN SD-CNN ITSD-CNN

1 82:3 ± 2:3 80:0 ± 2:9 93:2 ± 2:1
2 79:5 ± 5:1 76:7 ± 3:1 96:7 ± 3:2
3 63:8 ± 5:8 66:7 ± 3:2 94:1 ± 6:1
4 76:5 ± 3:2 83:3 ± 3:2 97:2 ± 1:0
5 79:8 ± 3:2 86:7 ± 2:9 92:7 ± 2:7
6 76:2 ± 4:7 79:0 ± 3:8 95:6 ± 2:5
7 77:6 ± 3:5 83:3 ± 2:1 94:9 ± 3:1
8 78:9 ± 2:8 83:3 ± 4:5 96:1 ± 0.8
9 81:3 ± 3:7 86:7 ± 3:5 92:2 ± 2:0
Ave 77:3 ± 3:8 80:6 ± 3:2 94:7 ± 2:6

95

90

85

80

75

70

65

SI-CNN SD-CNN

+
+

ITSD-CNN

Figure 10: The ANOVA stats of classification accuracy for the
compared model.

Table 4: The review of classifiers performance for BCI competition
IV dataset 2b.

Method Researcher Mean kappa value

FBCSP Ang et al. [24] 0.502

Twin SVM Soman and Jayadeva [25] 0.526

CNN-SAE Tabar and Halici [23] 0.547

CSCNN Rong et al. [26] 0.663

NCA+DTCWT Malan and Sharma [27] 0.615

CNN-VAE Dai et al. [17] 0.564

ITSD-CNN Our method 0.664
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design a decoding model for EEGs based on transfer learning
combined with the deep neural network.

Another limitation is small-scale sample for classifier
training. Strict requirements of quality and collection of
EEG data make it difficult to obtain large datasets in practice.
The performance of EEG decoding based on DNN is directly
related to the amount of training data. Data augmentation is
a promising way to address this issue. As discussed in Refer-
ences [29, 30], artificially generated data can be used to train-
ing classification model and the augmentation method has
been proved efficient in EEG decoding. The addition of gen-
erated dataset improves the complexity and robustness of
models. Traditional augmentation methods contain geomet-
ric transformation and model generation, which requires a
long time to prepare and select suitable generated data. It
takes up a lot of computing resources in the BCI system.
Therefore, data augmentation from an available database
may provide a probable method. As proposed in this study,
instance transfer learning can easily obtain data from other
subjects and adaptively assign weights to the transfer data,
which achieve the utilization maximization of data across
subjects. Although the training process of this method is sim-
ilar with subject-dependent strategy, i.e., it requires recom-
puting for a new participant; low-cost calculation would
not burden the operation of the BCI system. In later research,
we will explore the detail of variability across subjects and
achieve more effective transfer learning.

5. Conclusion

In this paper, we propose a novel instance transfer learning
method with a deep neural network applying for the
subject-dependent classification of motor imagery in the

BCI system. In this work, we firstly transform the raw data
to spectrogram image by STFT. Then, instance transfer
learning based on the perceptive Hash algorithm is utilized
to measure the similarity between the data of source domain
and target domain. Next, we convert the similarity into a
transfer weight coefficient to realize the data transfer of a sin-
gle trial between different subjects. Finally, a convolutional
neural network is built to verify the performance of proposed
methods and some other methods are adopted to evaluate the
results. Experiment verifies that instance transfer learning by
the perceptive Hash algorithm can effectively provide data
augmentation based on subject-dependent training strategy
and improve the performance of the classifier, which demon-
strates the superior performance and promising potential of
proposed novel training strategy. Meanwhile, the proposed
method provides a solution for the weakness of small samples
in the deep neural network.
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