Skip to main content
. 2020 Aug 28;2020:6805710. doi: 10.1155/2020/6805710

Table 3.

Detection of breast lesions in breast MRI using DL.

DL technique Evaluation results Dataset References
Model agnostic saliency TPR = 80
FPs/image = 8
117 subjects
DCE-MRI and T1W images
[86]
U-net Acc = 94.2 67 MR images T1W, T2W, DWI, and DCE-MRI [87]
Patch-based analysis with ResNet50 backbone AUC = 0.817 335 MR images of 17 different histological subtypes [65]
Deep Q-network Sn = 80
FPs/image = 3.2
117 DCE-MR and T1-weighted images [63]
Unsupervised saliency analysis and CNN Acc = 86 ± 2
AUC = 0.94 ± 0.01
193 DCE-MR images [88]
Two-level U-net and dual-stream CNN CPM = 64.29 Training: 201 DCE-MR images
Testing: 160 DCE-MR images
[64]