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Abstract

We implement two measures for quantifying genealogical concordance in phylogenomic data sets: the gene concordance
factor (gCF) and the novel site concordance factor (sCF). For every branch of a reference tree, gCF is defined as the
percentage of “decisive” gene trees containing that branch. This measure is already in wide usage, but here we introduce
a package that calculates it while accounting for variable taxon coverage among gene trees. sCF is a new measure defined
as the percentage of decisive sites supporting a branch in the reference tree. gCF and sCF complement classical measures
of branch support in phylogenetics by providing a full description of underlying disagreement among loci and sites. An
easy to use implementation and tutorial is freely available in the IQ-TREE software package (http://www.iqtree.org/doc/
Concordance-Factor, last accessed May 13, 2020).
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Measures of branch support such as the bootstrap
(Felsenstein 1985; Minh et al. 2013) and Bayesian posterior
probability (Ronquist and Huelsenbeck 2003) are important
for making robust inferences from phylogenetic trees.
However, although these measures provide useful informa-
tion about the statistical support for a given branch, neither
captures the topological variation present in the underlying
data (Kumar et al. 2012).

A complementary approach involves calculating the frac-
tion of loci consistent with a particular branch, thus captur-
ing underlying agreement and disagreement in the data.
Various approaches have been suggested, including the
gene concordance factor (gCF) (Baum 2007)—sometimes
also referred to as the “gene support frequency” (Gadagkar
et al. 2005; Salichos and Rokas 2013)—and internode cer-
tainty (Salichos and Rokas 2013), with the former being the
most widely used. The gCF describes for each branch in a
reference tree the proportion of inferred single-locus trees
that contain that branch. Although intuitive, the gCF suffers
from three limitations: first, there are few software imple-
mentations (An�e et al. 2007); second, although issues with
incomplete taxon sampling of gene trees have been
addressed by some authors (Smith et al. 2015; Kobert et al.
2016), these fixes are not available in implementations that
allow for the calculation of gCF values; and third, low gCF
values are hard to interpret because they may result from
strongly supported discordance among individual gene trees
or weak phylogenetic signal in individual loci.

Here, we resolve these issues by implementing the calcu-
lation of gCF while accounting for unequal taxon sampling

in the popular IQ-TREE package (Nguyen et al. 2015; Minh
et al. 2020), and by introducing the site concordance factor
(sCF), a measure that estimates concordance at the level of
individual sites. We argue and show by detailed analyses of
ten empirical datasets that concordance factors comple-
ment commonly used metrics like the bootstrap by provid-
ing additional information and insights about topological
variation.

Gene Concordance Factor
For a given unrooted bifurcating reference tree, T (e.g., an
estimate of the species tree), and a set of unrooted bifurcating
input trees, S¼ T1; . . . ; Tnf g (e.g., individual gene trees), we
can calculate the gCF for every internal branch x in T. Each
gene tree, Ti, must contain a subset of the taxa in T but need
not include all of the same taxa.

Each internal branch x of T is associated with four clades of
T representing four taxon subsets, A; B; C; and D, such
that the bipartition A [ BjC [ D corresponds to the branch x
(fig. 1). The reference tree T contains branch x by definition,
but branch x may or may not be present in a gene tree of the
same taxa (or a subset of them). Let Ai; Bi; Ci; and Di be
the set of taxa in A; B; C; and D that are also present in Ti.
We say Ti is decisive for x if Ai; Bi; Ci; and Di are non-
empty (we use “decisive” in the sense of Sanderson et al.
[2011], but note for clarity that Dell’Ampio et al. [2014] use
this term in a different way): that is, a gene tree is decisive as
long as it contains at least one of the taxa in each of the taxon
subsets A; B; C; and D. A decisive gene tree can
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potentially contain the branch x. We say Ti is concordant with
x if Ti is decisive for x and the bipartition Ai [ BijCi [ Di

corresponds to a branch in Ti. In other words, a gene tree
is concordant with the reference tree if it could have con-
tained branch x (i.e., it is decisive) and it does contain branch
x. The gCF for branch x is now defined as

gCF xð Þ ¼ jfi : Ti is concordant with xg
jfi : Ti is decisive for xg :

In other words, the gCF is the proportion of input trees
decisive for x that are concordant with x; that is, the propor-
tion of all input trees that could have contained x that do
contain x. We note that gCF is also used to calculate inter-
node certainty and related measures (Salichos et al. 2014;
Kobert et al. 2016).

To further understand concordant and discordant gene
trees, we categorize the discordant input trees (i.e., those
that do not contain branch x) into three groups and calculate
three discordance factors: gDF1, gDF2, and gDFP. The first two
groups are obtained by applying a nearest neighbor inter-
change around branch x to result in two alternative topolo-
gies (fig. 1) with two branches not appearing in T:
y ¼ A [ CjB [ D and z ¼ A [ DjB [ C. Accordingly, we
then calculate discordance factors as gCF yð Þ ¼ gDF1 xð Þ
and gCF zð Þ ¼ gDF2 xð Þ. Some input trees may not contain
any of the branches x, y, or z. This will occur for input trees in
which one or more of clades A, B, C, or D are not monophy-
letic. We define the proportion of decisive input trees that fall
into this category as gDFP xð Þ, where the “P” stands for
“paraphyly.” The four proportions gCF xð Þ, gDF1 xð Þ,
gDF2 xð Þ, and gDFP xð Þ will sum to 1, as every decisive input
tree must be included in one of the four categories.

Site Concordance Factor
To calculate the sCF for branch x, we randomly sample m
quartets of taxa q ¼ fa; b; c; dg, where a; b; c; and d
are in A; B; C; and D, respectively. For each quartet q, we
examine the subalignment of taxa a; b; c; and d. For every
site j in this alignment, we call j decisive for x if the characters
aj; bj; cj; and dj are all present and j is parsimony infor-
mative when restricted to this quartet of taxa. Decisive sites
can be concordant or discordant with x. We say that site j is
concordant with x if aj ¼ bj 6¼ cj ¼ dj (i.e., j supports the
bipartition fa; bgjfc; dg). The concordance factor for q
is defined as

CFq xð Þ ¼ jfj : j is concordant with xg
jfj : j is decisive for xg :

Since many such quartets exist around branch x (when
sampling individual tips from within A, B, C, and D), we define
sCF(x) as the mean CFq xð Þ over m random quartets:

sCF xð Þ ¼ 1

m

X
q
CFq xð Þ

h i
:

Thus, the sCF is the average proportion of sites decisive for
x that are concordant with x. In effect, the sCF is a measure of
concordance for sites that is directly comparable to the mea-
sure of concordance for single-locus trees provided by the
gCF. Unlike related quartet approaches that are based on
maximum likelihood (ML) tree inference and that calculate
discordance at the level of the whole alignment (Strimmer
and von Haeseler 1997; Pease et al. 2018), the sCF uses par-
simony criteria to calculate discordance at the level of indi-
vidual sites. We note that the sCF is closely related to the
values derived from spectral analysis (Hendy and Penny 1993;
Charleston 1998). Spectral analysis is a tree-independent

FIG. 1. Schematic view of a bifurcating tree at an internal branch x with four surrounding subtrees containing the taxon sets A, B, C, and D. Branch x
corresponds to the bipartition A [ BjC [ D. In our definition, branch x is always present in the reference tree, but it may or may not be present in
each of the input trees. By applying the two nearest neighbor interchanges (denoted as arrows), one can produce the two other trees that contain
taxon sets A, B, C, and D, but with internal branches y and z.
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method of investigating phylogenetic signal. In the simple
case of binary data, such that each site corresponds to a
bipartition of taxa, the spectral support for a single branch
counts the number of sites that correspond to the bipartition
defined by that branch. In the case of binary data, this is the
same as the value CFq xð Þ that we define above. The sCF in
this case differs from the spectral support insofar as it is cal-
culated by averaging over a large set of CFq xð Þ values calcu-
lated by repeatedly subsampling quartets of taxa from an
alignment.

Similarly to gene discordance factors, we also define
the site discordance factors sCF yð Þ ¼ sDF1 xð Þ and
sCF zð Þ ¼ sDF2 xð Þ. There is no sDFP category, because unlike
the gDF values, every decisive site must contribute to one of
the three proportions sCF xð Þ, sDF1 xð Þ, or sDF2 xð Þ; any quar-
tet of taxa resolves into exactly three tree topologies shown in
figure 1. In other words, the sum of sCF xð Þ, sDF1 xð Þ, and sD
F2 xð Þ will always be 1.

gCF and sCF for Rooted Trees
The above definitions of gCF and sCF apply only to unrooted
trees. However, in the case that users have a rooted reference
tree as well as rooted gene trees, we can extend the calcula-
tion of the gCF to allow us to calculate different gCF values on
either side of the root. To do this we first add a virtual root
node into the rooted reference tree T, resulting in an
unrooted tree T0. Similarly, we convert the rooted gene trees
Ti into unrooted trees T

0
i by adding the same virtual root. This

allows us to then follow the same procedure as above for
calculating gCF values on unrooted trees, with the sole dif-
ference that the output is a rooted instead of an unrooted
reference tree. In this case, it is possible to calculate gCF values
on a rooted reference tree where the gCF values on either side
of the root may differ. In all other cases (i.e., for sCF values, and
if either the reference tree or the gene trees are unrooted), it is
not possible to calculate different concordance factors on
either side of the root.

Implementation in IQ-TREE 2
We provide two new options, –gcf and –scf, in IQ-TREE
version 2 (Minh et al. 2020) to compute gCF and sCF, re-
spectively. A tutorial for how to use these options is provided
at http://www.iqtree.org/doc/Concordance-Factor (last
accessed May 13, 2020). Both options can be combined in
a single run, which will calculate the gCF and sCF for every
branch in the input reference tree. Although sCFs can be
calculated on any alignment, the calculation of gCFs requires
individual gene trees. We have therefore implemented a con-
venient option, -S, to specify a partition file or a directory of
single-locus alignments in which IQ-TREE will infer separate
trees for each partition or alignment (Minh et al. 2020).

IQ-TREE provides a suite of output files to assist users in
understanding and investigating gCF and sCF values. It pro-
vides tree files that can be viewed in most tree viewers, which
contain information on both the proportional data (gCF,
gDF1, gDF2, and gDFP; sCF, sDF1, and sDF2) and their corre-
sponding absolute count data (gCF_N, gDF1_N, gDF2_N, and

gDFP_N; sCF_N, sDF1_N, and sDF2_N), as well as the number
of decisive genes and sites for each branch (gN and sN, re-
spectively). It also provides a tree file that combines informa-
tion on the gCF, sCF, and any bootstrap values that have been
calculated (e.g., fig. 2). In addition to this, IQ-TREE provides a
“.cf.stat” file that contains all 16 concordance and discordance
values listed above for every branch in the reference tree in a
machine-readable tabulated format, and through the –cf-ver-
bose option, it provides tabulated files that detail for every
branch in the reference tree whether each gene tree was
concordant with that branch (the “.cf.stat_tree” file produced
from a –gcf analysis), and the average number of sites in each
locus that was concordant with that branch (the
“.cf.stat_loci” file produced from a –scf analysis). Together
these output files provide both a convenient overview of
the data, and the opportunity to understand in much
more detail the extent to which each locus is concordant
or discordant with the reference tree.

Application to Empirical Data Sets
To demonstrate the use of gCF and sCF values, we first ana-
lyzed a dataset containing 3,220 ultra-conserved elements
(UCEs) from lizards, totaling 1,301,107 bp for 43 species
(Rodriguez et al. 2018). To do this, we estimated a
concatenated ML tree, 3,220 UCE trees, and the gCF, sCF,
and bootstrap values with IQ-TREE (fig. 2).

To investigate the relationships between dataset size, con-
cordance factors, and bootstrap values, we also analyzed a
collection of nine additional empirical phylogenomic datasets
that represent a range of clades and data types (table 1). For
each dataset, we performed 20 analyses across a 20-fold range
of dataset sizes: the first analysis included ten randomly se-
lected loci from the complete dataset, and each subsequent
analysis added ten more randomly selected loci up to a max-
imum of 200 loci. For each such analysis, we calculated the
gCF, sCF, and bootstrap values for every branch of the
concatenated ML tree estimated from the 200-locus dataset,
with the same approach as above. For the lizard dataset, we
calculated both standard bootstrap (StdBoot) values
(Felsenstein 1985) and ultrafast bootstrap (UFBoot) values
(Hoang et al. 2018). As expected (Minh et al. 2013), we ob-
served that StdBoot and UFBoot values were very similar
(fig. 3B and supplementary fig. 8D, Supplementary Material
online); therefore, because of the high computational cost of
calculating StdBoot values, we calculated only UFBoot values
for the remaining nine datasets. Since the results of all ten
analyses are very similar, we focus here on the lizard dataset
and present the results for the other nine datasets in the
supplementary figures 1–10, Supplementary Material online.

Reproducible analyses are provided in the Supplementary
Material online available at https://doi.org/10.5281/zenodo.
1949287.

Interpretation of gCF and sCF Values
Our analyses highlight a number of important differences
between concordance factors and bootstrap values. First,
concordance factors of any type tend to be much lower
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than bootstrap values or other measures of statistical support
for branches in the species tree (e.g., fig. 3 and supplementary
figs. 1–10, Supplementary Material online). This is because
bootstrap values measure the sampling variance in support
of a focal branch, whereas gCF and sCF values measure the
underlying variance in support of that branch at the gene-
and site-level, respectively. In other words, resampled datasets
may always return the same tree (i.e., 100% bootstrap sup-
port), even though incomplete lineage sorting or other

processes that lead to genealogical discordance are at work
(e.g., gCF and sCF values�100%). Of particular note is that a
very high bootstrap value (e.g., of 100%) does not predict or
require a similarly high concordance factor. For example, al-
though all but one bootstrap value on the tree in figure 1 is
100%, the smallest gCF and sCF values are 4.5% and 33.2%,
respectively. This pattern is repeated across all 200 analyses
we performed on all ten empirical datasets (fig. 3 and sup-
plementary figs. 1–10, Supplementary Material online).
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FIG. 2. An example of concordance factors on a dataset of lizards (Rodriguez et al. 2018). A cladogram is shown to facilitate the plotting of
concordance factors on branches. Numbers on each branch show the sCF above the branch (e.g., s73) and the gCF below the branch (e.g., g37).
Bootstrap values are 100% on every branch, except for the branch leading to Lipinia rouxi and L. pulchella, which has a bootstrap value of 62%. The
inset shows a scatter plot of gCF values against sCF values for all branches, revealing the large range of gCF and sCF values as well as the fact that for
this data set sCF values are always at least as large as gCF values. This is likely because of the short length of the UCE loci used to infer gene trees
which leads to low gCF values (Rodriguez et al. 2018).
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Because they measure different things, concordance fac-
tors and bootstrap values are affected very differently by the
addition of loci to a dataset (fig. 3 and supplementary figs. 1–
10). In all of the ten empirical datasets that we analyzed,
adding loci to the dataset tended to increase the bootstrap
values of individual branches (e.g., fig. 3A, see also supplemen-
tary figures, Supplementary Material online) and concomi-
tantly the proportion of branches with a bootstrap value of
100% (fig. 3B, see also Supplementary Material online). This is
expected: the bootstrap is effectively measuring the standard
error of the mean in a dataset (where the mean represents
the tree inferred from the full dataset), and this standard error
will go down with more samples. The same is not true of
concordance factors, which display some estimation error
when datasets are small (e.g., 30 or fewer loci in fig. 3), but
subsequently remain almost completely insensitive to the
addition of loci to the dataset (fig. 3 and supplementary
figs. 1–10, Supplementary Material online). This is also

expected: any measure of the underlying variance (or stan-
dard deviation) in a distribution will have some estimation
error when the sample size is small but should not change
monotonically as the sample size increases. These differences
highlight the complementary information that can be gained
from calculating both bootstrap values and concordance fac-
tors for individual branches. One measure is not better or
worse than the other, rather, concordance factors provide
useful information that bootstraps do not, and vice versa.
Note that bootstrap values or posterior probabilities calcu-
lated by resampling gene trees (e.g., Sayyari and Mirarab 2016)
have the same behavior as the site-wise bootstrap carried out
here and are also not equivalent to concordance factors.

In principle, both gCF and sCF values can range from 0%
(no genes/sites are concordant with the focal branch) to
100% (all genes/sites are concordant with the focal branch).
In practice however, as exemplified in figure 3 and supple-
mentary figures 1–10, Supplementary Material online,
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FIG. 3. Concordance factors remain relatively stable as loci are added to an analysis, whereas bootstrap values continue to increase toward 100%.
(A) The results of 20 reanalyses of the lizard dataset, each of which adds a further ten loci to the analysis, up to a maximum of 200 loci (x axis). Each
colored line represents a different branch in the tree. The dashed line on the sCF panel shows a value of 33%. (B) For each of the four metrics
considered here (represented by different colored lines), the number of loci included in the analysis affects the proportion of the branches that
have a value of 100%.

Table 1. The Five DNA and Five Amino Acid (AA) datasets Analyzed in This Study.

No. Reference Type Clade Taxa Loci Sites

1 Ballesteros and Sharma (2019) AA Chelicerata 53 3,534 1,484,206
2 Branstetter et al. (2017) DNA Aculeata 187 807 183,747
3 Cannon et al. (2016) DNA Metazoa 78 424 89,792
4 Jarvis et al. (2015) AA Aves 52 8,295 4,519,041
5 Misof et al. (2014) AA Insecta 144 2,868 595,033
6 Ran et al. (2018) AA Spermatophyta 38 1,308 432,014
7 Ran et al. (2018) DNA Spermatophyta 38 3,924 1,296,042
8 Rodriguez et al. (2018) DNA Prasinohaema 43 3,220 1,301,107
9 Wu et al. (2018) AA Mammalia 90 5,162 3,050,199
10 Wu et al. (2018) DNA Mammalia 90 15,486 9,150,597
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empirical gCF values tend to range from 0% to 100%, whereas
empirical sCF values are rarely lower than 33% (represented
by the dashed line in the sCF panel of fig. 3A). This is due to an
important underlying difference in the way that the two
values are calculated. The sCF is calculated from quartets,
so a single site can only support one of three topologies
(fig. 1). Because of this, if there is no consistent information
in an alignment (e.g., if a long alignment were generated at
random) we expect a roughly equal proportion of sites sup-
porting each of the three trees, leading to an sCF value of
�33% (for the same reason, sCF values for very long branches
will approach 33% due to saturation). The same is not true for
gCF values, because a gene tree can support not only the
three possible relationships shown in figure 1 but also any
other relationship in which one or more of clades A, B, C, or D
are not monophyletic. The higher the number of gene trees in
this latter group, the closer the gCF value will be to 0%.
Because of this, we should expect gCF values to be particularly
low when gene trees are estimated from alignments with
limited information or where branch x is extremely short; in
such cases either technical or biological processes may in-
crease the proportion of gene trees that fail to recover the
monophyly of clades A, B, C, or D found in the reference tree.
Missing data may also impact gCF and sCF values, however,
the relationship here is less clear. The requirement that a gene
tree or a site is decisive (i.e., could in principle contain branch
x, see above) should limit the impact of missing data on gCF
and sCF estimates. Nevertheless, since phylogenetic estimates
are known to worsen as the proportion of missing data
increases (e.g., Roure et al. 2013; Xi et al. 2016), it is plausible
that concordance factors may systematically decrease as the
proportion of missing data increases.

Finally, cases where the sCF value is lower than 33% may be
of particular interest. These cases are, by definition, those in
which maximum parsimony (MP) would favor a different
resolution of a split found in the reference tree. If the refer-
ence tree was calculated from any method other than MP,
there are at least two explanations for an sCF value lower than
33%. First, the branch of interest may be in an area of param-
eter space in which high levels of incomplete lineage sorting
are known to mislead concatenated ML analyses (Kubatko
and Degnan 2007) but not MP analyses (Mendes and Hahn
2018). Misleading reference trees may therefore be produced
by either concatenated ML of the entire dataset or gene tree
methods that use shorter sets of concatenated loci as their
input (because most protein-coding genes are themselves
made up of multiple topologies). Second, and more generally,
there are multiple reasons why likelihood, Bayesian, or gene
tree methods for producing a species tree will differ from MP
resolutions. For instance, the branch of interest may be un-
duly affected by a small number of highly influential sites in a
concatenated ML analysis (Shen et al. 2017). In this case, the
influential sites can have an outsized influence on the ML
resolution of a split because they have extreme differences in
likelihood between different resolutions of that split. Because
MP does not account for likelihood differences—it instead
weights all sites equally—MP analyses remain unaffected by

such outliers. Thus, cases in which the sCF is much lower than
33% may merit further investigation.

We hope that the user-friendly implementation of gCF
and sCF in IQ-TREE will assist researchers in gaining additional
insights into their phylogenetic reconstructions. In particular,
we encourage phylogeneticists to calculate both bootstrap
values and concordance factors for the branches on their
trees, as the two measures provide complementary informa-
tion that may help to improve the accuracy of our interpre-
tations of phylogenetic reconstructions. Indeed, the use of
concordance factors may help to alleviate the commonly
cited problem in phylogenomics that bootstrap values pro-
vide relatively little information when they are all 100%
(Kumar et al. 2012).
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Data are available at https://doi.org/10.5281/zenodo.1949287.
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