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Abstract

For evaluating the deepest evolutionary relationships among proteins, sequence similarity is too low for application of
sequence-based homology search or phylogenetic methods. In such cases, comparison of protein structures, which are
often better conserved than sequences, may provide an alternative means of uncovering deep evolutionary signal.
Although major protein structure databases such as SCOP and CATH hierarchically group protein structures, they do
not describe the specific evolutionary relationships within a hierarchical level. Structural phylogenies have the potential
to fill this gap. However, it is difficult to assess evolutionary relationships derived from structural phylogenies without
some means of assessing confidence in such trees. We therefore address two shortcomings in the application of structural
data to deep phylogeny. First, we examine whether phylogenies derived from pairwise structural comparisons are
sensitive to differences in protein length and shape. We find that structural phylogenetics is best employed where
structures have very similar lengths, and that shape fluctuations generated during molecular dynamics simulations
impact pairwise comparisons, but not so drastically as to eliminate evolutionary signal. Second, we address the absence of
statistical support for structural phylogeny. We present a method for assessing confidence in a structural phylogeny using
shape fluctuations generated via molecular dynamics or Monte Carlo simulations of proteins. Our approach will aid the
evolutionary reconstruction of relationships across structurally defined protein superfamilies. With the Protein Data
Bank now containing in excess of 158,000 entries (December 2019), we predict that structural phylogenetics will become
a useful tool for ordering the protein universe.
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Introduction
Structure appears in general to be better conserved than
sequence (Illergård et al. 2009). It also forms the basis for
grouping the universe of proteins into superfamilies, many
of which traverse the “twilight zone,” across which sequences
are too dissimilar for reliable homolog identification (Rost
1999). Two widely used databases, SCOP (Andreeva et al.
2019) and CATH (Sillitoe et al. 2019), have ordered the pro-
tein universe in a hierarchical manner based on secondary
structure organization and evolutionary origin (fig. 1). These
hierarchies thus include both higher-level groupings (e.g.,
Class) based on similar but nonevolutionary structural char-
acteristics (such as being composed of a-helices) and lower-
level groupings such as “Homology” (CATH) or “Superfamily”
(SCOP) (fig. 1), where constituent proteins share structural
similarities suggestive of descent from a common ancestor.
However, being hierarchical, neither database provides spe-
cific information on the evolutionary relationships between

members at a structurally defined level; relationships between
entities within a hierarchical level are left as unresolved
polytomies.

Phylogenetic analysis of superfamilies can provide this
missing detail. Some groups have successfully employed hy-
brid sequence-structure approaches to construct structure-
informed pairwise sequence alignments (Challis and
Schmidler 2012), or Bayesian phylogenetics with a joint model
of sequence and structure (Herman et al. 2014). However, in
many cases, superfamilies are united by structural similarity
but lack sufficient sequence-level similarity for conventional
phylogenetic analysis based on multiple sequence alignments.
In cases where there is evidence for common descent, but
insufficient sequence similarity for sequence-based phylog-
eny, phylogenies can be generated from structural data alone
(Bujnicki 2000; Breitling et al. 2001; Garau et al. 2005; Lundin
et al. 2012, 2015). In such cases, the atom-positional root
mean-squared deviation (RMSD) (or measures derived from
the RMSD) between protein structures may be used together
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with distance-based methods to reconstruct structural phy-
logenies, thereby tracing the deep evolutionary relationships
of protein structures sharing a common origin.

For protein structural phylogenetics, the structural com-
parison metric, the inference method, and the assessment of
the statistical significance of the inferred relationships all pre-
sent challenges. Numerous protein structure comparison
metrics exist, such as those implemented in DALI (Holm
and Sander 1995), CE (Shindyalov and Bourne 1998), TM-
Align (Zhang and Skolnick 2005), and SSM (Krissinel and
Henrick 2004), each of which uses a different algorithm for
calculating structural similarity. Distance-based phylogenies
have been successfully employed in structural phylogenetics
in lieu of theoretical or empirically derived models of struc-
tural mutation, and the use of tools such as splitstree (Huson
and Bryant 2006) has allowed assessment of the tree-likeness
of structural phylogenies (Lundin et al. 2012, 2015). However,
there is currently no means of assessing the statistical signif-
icance of the resulting trees or networks. The sequence-based
bootstrap method cannot be adapted for use with protein
structures, not least because the underlying assumption
made for the sequence data, namely that characters are in-
dependent and identically distributed, does not apply to pro-
tein structure. Phylogenies inferred from structure data can
be assessed by examining congruence with trees derived from
sequence data, however, this is limited to assessing evolution-
ary signal in shallower nodes where sequence-based phylog-
enies can be generated (Lundin et al. 2012), and is
noninformative for the deeper nodes, which can only be re-
covered using structural data. Finally, it is in principle possible
to overlay characters as a means of providing some qualitative
assessment of the inferred tree. However, it can be difficult to
assess the stability of characters such as dimer interfaces,

which can alter during evolution (Devenish and Gerrard
2009; Griffin et al. 2010; Allison et al. 2016), so their evolution
is most helpfully assessed in light of a tree (Lundin et al. 2012),
rather than being used to establish relationships per se. For
structural phylogenetics to fill the gap between hierarchical
structural classification schemes and sequence-based phylog-
eny, it is thus critical that statistical methods equivalent to the
bootstrap be developed.

To that end, we present a structural analog to the boot-
strap that statistically gauges the robustness of structural
phylogenetic relationships. We first assessed the utility of
structural phylogenetic analysis using the Qscore comparison
metric. We assessed the impact of protein length on this
metric and find that the Qscore is best employed where struc-
tures have very similar (>90%) lengths. We next examined
the impact of shape fluctuations generated during molecular
dynamics (MD) simulations on pairwise structural compar-
isons. We find that simulations do impact shape, but not so
drastically as to eliminate evolutionary signal. Buoyed by the
latter result, we then show that the structural diversity gen-
erated during MD or Monte Carlo (MC) simulations can be
harnessed to generate a measure of confidence for inferred
structural phylogenies, similar to the sequence-based boot-
strap. As a demonstration of the method, we assess the pre-
viously published structural phylogeny of the ferritin-like
superfamily, a data set where sequence similarity is too low
to reliably assess evolutionary relationships (Lundin et al. 2012).

Results

Use of the Qscore for Structural Phylogeny
Structure-based phylogenetics currently involves generating a
set of pairwise structural comparisons from which distances

FIG. 1. Organization of SCOP and CATH databases: SCOP (Andreeva et al. 2019) arranges protein structures into classes, Folds, Superfamilies, and
Families. CATH (Sillitoe et al. 2019) uses Classes, Architectures, Topologies, and Homologies to organize protein structures. The horizontal split
marks a boundary which separates structure- and evolution-based groupings. Structures grouped together in Homology (CATH) and Family and
Superfamily (SCOP) likely share a common evolutionary origin.
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can be derived, generating a distance matrix. Previous studies
derived distances from the atom-positional RMSD or the
quality score (Qscore) calculated by the SSM tool (Krissinel
and Henrick 2004). After testing a variety of metrics
(Lundin et al. 2012; Malik 2018), we chose Qscore, which is
attractive as it allows for indels and includes both alignment
quality (RMSD) and alignment length.

The Qscore metric compares the atomic positions of all a-
carbon atoms from the Nalign residues considered comparable
by SSM. Reduction of secondary structure elements to vec-
tors and rigid geometrical similarity between vectors, across
structures, determines residues (Nalign) which are considered
comparable. Protein structure comparisons using Qscore are
not strictly commutative, but return highly similar results,
with variations that are two to three orders of magnitude
smaller than the total score when the order of the compar-
ison is reversed. It generates a normalized score in the range
½0; 1� through inclusion of both the number of aligned resi-
dues and the total number of residues in each protein. As
large Qscore values correspond to more similar structures, 1
�Qscore is used as a measure of distance.

Despite these positive aspects, it is unclear how features of
the data, such as length differences between proteins, might
impact Qscore. We therefore sought to assess the performance
of Qscore for structural phylogeny.

A key feature of the Qscore metric is that the contributions
made by protein size, including the length of each protein and
the number of aligned residues (Qlength, eq. 2), and by struc-
tural variations (Qshape, eq. 3), can be deconvoluted:

Qscore ¼
N2

align

½1þ RMSD
R0

� �2

�N1N2

; (1)

Qlength ¼
N2

align

N1N2
; (2)

Qshape ¼
1

½1þ RMSD
R0

� �2

�
: (3)

We investigated the effect of Qlength and Qshape on the
structural phylogenies produced, and examined the thresh-
olds in the protein length differences and structural dissimi-
larity beyond which the Qscore is unlikely to be informative.

Effect of Differing Protein Length on Qscore

To investigate the effect of protein length difference (Qlength)
on Qscore values generated from pairwise comparisons, we
investigated three SCOP superfamilies with different length
distributions (the globin, trypsin-like serine proteases, and
aldo-keto reductase [NADP] superfamilies), whose lengths
fall in the typical ranges for single protein domains in the
Protein Data Bank (PDB) (supplementary table S1 and fig.
S1, Supplementary Material online).

Each protein from these three data sets was decomposed
into length fractions, with each fraction starting from the N-
terminal region of the protein and increasing by 10% of the

total number of residues in the protein relative to the previ-
ous fraction (supplementary fig. S2, Supplementary Material
online). The structure of each fraction is identical to the re-
spective structural fragment in the complete structure. In this
way, the effect of structural variation is eliminated so that
only contributions due to differences in the total number of
residues, N1, N2, and in the number of aligned residues, Nalign,
are considered.

Distance trees were generated from the Qlength values for
each fractional data set plus the set of full-length structures.
The “true” tree, T100%, is considered recovered if each frac-
tional structure has the same relationships as its complete
structural counterpart. As is clear from figures 2–4, heavily
truncated structures group separately to the complete struc-
tures for all three families. Although fractional structures
comprising 40–70% of the complete structure sometimes
occupy the same clade as the complete structure, there are
nevertheless residual differences even when the fractional
structures comprise 90% of the complete structure.
Although it is not surprising that the most truncated struc-
tures do not group with the complete structures on the trees,
as Qscore relies on the alignment of secondary-structure ele-
ments, it is telling that in some cases, only very small length
differences can impact placement on the tree.

As the above assessment examines node placement qual-
itatively, we decided to examine differences between the trees
quantitatively by measuring the Euclidean (equivalent to
Felsenstein’s [2004] branch length distance) and Robinson–
Foulds (Robinson and Foulds 1981) distances between each
fractional tree (T10% through T90%) and the “true” tree,
(T100%) (fig. 5). In general, both distance measures decrease
in concert with the length difference between the two struc-
tural data sets, that is, between the fractional and complete
structures, and remain similarly high until the size of the
fractional proteins reaches 60%, at which point both distance
measures decrease toward zero. Not until fractional protein
sizes of 90% do the distance measures become sufficiently low
to indicate similar trees.

Our results indicate that the best resolution was achieved
for fractions comprising between 90% and 100% of the com-
plete structure(s). Although truncation of identical structures
is not exactly equivalent to the comparison of evolutionarily
related nonidentical structures of different length, it never-
theless permits us to examine how Qscore is impacted by
length differences. In our test, we removed evolutionary signal
through truncation, so are cautiously optimistic that, for real
data, these cut-offs are more stringent than they may need to
be. That said, it is clear that structures whose length varies by
� 10% can be confidently used for Qscore-based analysis of
evolutionary relationships. The length effect we observe sug-
gests that, for data sets containing proteins with very different
lengths, caution is warranted, and may impact the results,
even where the length variation is modest. We recommend,
therefore, that a similar truncation analysis is undertaken
prior to using a Qscore-based approach to structure compar-
ison in order to assess the extent to which size variation
affects the results.
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Effect of Protein Shape on Qscore

The complexity of protein structure makes exploring the
contribution of morphometric changes toward the Qscore

(i.e., Qshape) a nontrivial problem. It is not possible to vary
protein structure in such a controlled manner as length.
Nevertheless, we sought to examine how variations in “shape”
might impact structure-based phylogenies.

To examine the degree of shape perturbations that a pro-
tein can undergo without losing its structure, we performed
MD simulations to sample alternative conformations of 53
proteins from the ferritin-like superfamily (supplementary ta-
ble S2, Supplementary Material online). MD simulations allow
a molecular structure to explore its structural neighborhood

by allowing the atoms to move according to potential func-
tions that account for their bonded and nonbonded inter-
actions. This produces a set of conformations of each protein
where the shape may change, but the length does not, hence
any effect from protein length differences is excluded.

For each protein, the conformation from which the simu-
lation was initiated was compared with the conformations
sampled during the MD simulation by computing the Ca
atom-positional RMSD (supplementary fig. S33A,
Supplementary Material online). This was then used to com-
pute the Qshape score between each sampled conformation
and the initial conformation (supplementary fig. S33B,
Supplementary Material online). A Qshape value of “1”
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FIG. 2. Phylogenetic trees for proteins from the globin family built using structural data sets that comprise the indicated fraction of each structure
(red) together with the complete structures (black). Only trees built from five of the fractional structural data sets are shown here; enlarged
versions of all ten are provided in supplementary figures S3–S12, Supplementary Material online. (a and b) For fractional structures comprising up
to 70% of the complete structure, fraction size dominates the tree structure. Clade groupings are sometimes reproduced for fractional structures
comprising 70% to (c) 80% of each protein, but residual differences to (e) the true tree remain even for (d) 90% fractional structures.
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indicates identical conformations, and the value will decrease
as the compared structures diverge in conformation. RMSD
shows the opposite behavior, increasing with the distance
between structures, and is not bounded. The initial steep
increase in the RMSD value occurs as the protein accumulates
kinetic energy and adjusts to the simulation conditions, after
which it samples conformations that are typically 1:6� 6 Å
from the initial conformation. The Qshape values show an
inverted trend, with plateau values of 0:2� 0:8. A few pro-
teins show particularly large RMSD values that fluctuate dra-
matically. Visual examination of their simulation trajectories
revealed this to be due to large-scale motion of unstructured
termini, and our later analyses (including a structural

phylogeny of the ferritin-like superfamily) show that this
does not appear to perturb our ability to correctly place these
proteins on the phylogenetic network.

The deviation of the Qshape values from 1.0 shows that this
aspect of Qscore is sensitive to the relatively subtle changes in
protein conformation sampled during a MD simulation. This
is encouraging, as it suggests that MD simulations can be used
confidently to introduce fluctuations in the structural data,
which can be used to evaluate the robustness of the inferred
evolutionary relationships between structures. However, it
also serves as a warning. Protein molecules are highly dy-
namic, and thus subtle differences in the structures used to
infer evolutionary relationships may result in vastly different
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FIG. 3. Phylogenetic trees for proteins from the trypsin-like serine protease family built using structural data sets that comprise the indicated
fraction of each structure (red) together with the complete structures (black). Only trees built from five of the fractional structural data sets are
shown here; enlarged versions of all ten are provided in supplementary figures S13–S22, Supplementary Material online. (a) For fractional
structures comprising up to 50% of the complete structure, fraction size dominates the tree structure. Clade groupings are sometimes reproduced
for fractional structures comprising (b) 50% to (c) 80% of each protein, but residual differences to (e) the true tree remain even for (d) 90%
fractional structures.
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tree topologies and hence lead to an alternative evolutionary
interpretation. The question, therefore, is whether the degree
of structural fluctuation that occurs during a MD simulation
is sufficiently drastic as to eliminate evolutionary signal.

To answer this question, we sought to carry out an anal-
ogous procedure to that used to test length effects. We de-
termined the central structure of the simulated ensemble of
each protein using RMSD-based conformational clustering,
and plotted the range of Ca atom-positional RMSD values
from the central structure (supplementary fig. S34,
Supplementary Material online). These ranges have a variety
of medians and widths, indicating that each protein under-
goes a different degree of structural fluctuation during MD

simulation. We used the central structures to build a refer-
ence tree. We then tried two different approaches to building
trees from structures that differ by varying, but controlled,
degrees from their corresponding central structure.

First, we took a parametric approach to sampling struc-
tures from the RMSD distributions, which aimed to overcome
the different ranges of RMSD values in a similar manner to
our sampling of fractions of the protein lengths (which vary
between proteins) when testing the length contribution to
Qscore. For each protein, we ranked the RMSD values and
divided them into ten bins, each of which contains 10% of
the RMSD data. It is clear from the RMSD ranges (supple-
mentary fig. S34, Supplementary Material online) that, for
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FIG. 4. Phylogenetic trees for proteins from the aldo-keto reductase (NADP) family built using structural data sets that comprise the indicated
fraction of each structure (red) together with the complete structures (black). Only trees built from five of the fractional structural data sets are
shown here; enlarged versions of all ten are provided in supplementary figures S23–S32, Supplementary Material online. (a) For fractional
structures comprising up to 50% of the complete structure, fraction size dominates the tree structure. Clade groupings are sometimes reproduced
for fractional structures comprising (b) 50% to (c) 80% of each protein, but residual differences to (e) the true tree remain even for (d) 90%
fractional structures.
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instance, the fifth-ranked bin for one protein might contain
only small RMSD values, whereas for another, it might con-
tain much larger RMSD values, depending on their flexibility.
Regardless, for each bin, we randomly sampled a structure
from each trajectory and used these to build a sample tree.
We repeated this 1,000 times for each bin, and computed the
Euclidean and Robinson–Foulds distance between each of
the 1,000 sample tree and the reference tree (supplementary
fig. S35A, Supplementary Material online). We see an increase
in the distance between the sample tree and reference tree as
the ranked RMSD bin number increases, although there is a
lot of noise due to the variability in the magnitude of the
RMSD values between different proteins.

Second, to avoid the problems with variation across differ-
ent proteins in the magnitude of RMSD values for a given bin,
we assigned the raw RMSD values to bins. We determined the
total range of RMSD values across the simulated ensembles of
all 53 proteins. We eliminated the upper part of this range as

few proteins sampled the highest RMSD values, leaving a raw
RMSD range of 0:5� 5:5 Å, which we divided into ten raw
RMSD bins of 0.5 Å width. The number of proteins with
RMSD values in a bin decreases as the bin number (RMSD
value) increases (supplementary table S3, Supplementary
Material online). This presented us with two options regard-
ing the reference tree to use. We could build a new reference
tree for each bin, using only the central structures of the
trajectories for which there is RMSD data in that bin. This
means that the sample trees built for each bin will have the
same number of taxa as their corresponding reference tree.
Alternatively, we continue to use the global reference tree
built from all 53 proteins. This means that for some bins, the
sample trees will have fewer taxa than the reference tree. In
the calculation of the Euclidean and Robinson–Foulds distan-
ces, the branch length for a tree that is missing that branch is
set to zero, and hence the difference in the length of that
branch will be maximal.

For each of these two options, for each bin, we randomly
sampled a structure of each protein for which there was
RMSD data in that bin from its simulated ensemble and built
a sample tree, which we compared with the reference tree.
This was again repeated 1,000 times for each bin, and the
Euclidean and Robinson–Foulds distance between each sam-
ple tree and the corresponding reference tree was computed
(supplementary fig. S35B and C, Supplementary Material
online).

When a different reference tree is used for each bin, the
distance between the sample and reference trees initially
increases as the RMSD increases. From bin 5 (RMSD values
of 2:5� 3:0 Å) onward, however, the distances appear to
mirror the number of trajectories for which there are RMSD
data in that bin (and for which the reference and sample trees
were built). This likely reflects the inherent reduction in the
distances between trees with fewer taxa and is therefore not a
true reflection of the similarity of the reference and sample
trees.

When the tree built from all 53 proteins is used as the
reference tree for all bins, we see that as the RMSD increases
and the number of contributing trajectories decreases, the
distance between the overall reference tree and the current
tree increases. Although this result is in line with the results of
the parametric approach, it is important to note that the
distance values include maximum contributions from the
taxa for which there are no RMSD data in that bin.

Although none of these approaches is ideal, with each
suffering from different problems, the same trend emerges
throughout, namely that an increase in RMSD from the struc-
tures used to build the reference tree correlates with an in-
crease in the distance between the reference and sample tree.
Given the difficulty we encountered in designing this analysis,
as well as the different degrees of flexibility of different pro-
teins, it is not appropriate to provide a RMSD cut-off beyond
which structural phylogenetics should not be attempted. We
suggest, however, that tests such as these are applied to as-
certain the sensitivity of the results to structural fluctuations
prior to drawing biological conclusions.

(a)

(b)

(c)

FIG. 5. The Euclidean and Robinson–Foulds (Robinson and Foulds
1981) distances between fractional trees, T10% through T90% , and the
true tree, T100% for the (a) globin, (b) trypsin-like serine protease, and
(c) aldo-keto reductase (NADP) superfamilies. As the length differ-
ence between the complete and fractional structures decreases, the
topologies of the fractional trees approach those of the true tree,
T100% .
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Assessing Statistical Significance of Phylogenetic
Relationships Using MD
Assessment of the statistical significance of structure-based
phylogenies requires an analog to the bootstrap method used
for protein sequences. The standard nonparametric
sequence-based bootstrap method cannot be generalized
to protein structures because it relies on the assumption
that characters are independent and identically distributed,
which does not apply to protein structure. We reasoned that
resampling structure might be achieved through creating al-
ternative conformations of the entire protein structure,
determined through MD simulations. Selection of conforma-
tions at random from a pool of possible conformations of
each protein allows a set of trial trees to be built, from which
the statistical support for each node in the tree built from the
original crystal structure data can be enumerated. The
method is outlined and illustrated in figure 6.

Conformations are selected only from the “production”
period of the simulation, that is, after the structure has equil-
ibrated, as indicated by the plateau in the RMSD (Grossfield
and Zuckerman 2009). Discarding this “burn-in” phase avoids
biasing support in favor of the crystal structure tree, as con-
formations in this initial phase of the simulation will always be
very similar to the initial structure. In keeping with the spirit
of the conventional sequence bootstrap method, we select

conformations from the remainder of the simulation at
random.

Trialing MD for Assigning Confidence to a Structural
Phylogeny
We next tested our MD-based approach for assigning confi-
dence to a structural phylogeny, providing an opportunity to
determine whether the conformational sampling that occurs
during a MD simulation destroys evolutionary signal. We
chose two protein families, globins and the “ribonucleotide
reductase (RNR)-like” subset of the Ferritin superfamily,
which comprises proteins most closely related to the small
subunit of class I RNRs (supplementary table S4,
Supplementary Material online), because hemoglobins have
diverged relatively recently, whereas the RNR-like proteins are
more diverged and may thus be better suited for structural
phylogenetics. The globins include a- and b-hemoglobins,
which are known from sequence-based analysis to be the
result of a relatively recent gene duplication and divergence
event (Storz et al. 2013) and have highly similar structures
(supplementary fig. S36, Supplementary Material online). The
RNR-like proteins are a subset of the ferritin-like protein
superfamily that are more diverged than the globins
(Lundin et al. 2009, 2012), and hence have less similar
structures (supplementary fig. S37, Supplementary Material

Simulation steps 

Tree of PDB structures 
Tree with structural 
bootstrap support 

PDB structures Conformation 1 Conformation 3 Conformation 2 Conformation I 

Trial n 
1 

M 

2 2 

1 1 

2 

M M 

60% 

FIG. 6. Overview of a bootstrap method for structure comparisons. An ensemble of possible conformations is generated for each of m 2 M
proteins using MD simulation. For each of n 2 N trials, a conformation cm is randomly selected from each of the M ensembles to populate a new
trial data set Cn. Pairwise comparison of the conformations in each trial data set Cn generates new distances from which a NJ tree Tn is created. Each
trial tree, Tn, is compared with the reference tree T0. If a relationship between structures in the reference tree T0 is recreated in the trial tree Tn, it is
counted. The nodes of T0 are labeled with the fraction of trial trees in which the relationship was recovered, providing a measure of the statistical
support for that node.
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online). Eight protein structures were selected from each fam-
ily, including four a- and four b-hemoglobins, and MD sim-
ulations were undertaken.

As expected, only weak statistical support emerges when
the structures are very similar, as is the case with globins
(fig. 7). This is likely because the ensemble of alternative con-
formations of each protein structure sampled during the

simulation overlaps with those of closely related structures;
that is, the structural fluctuations that occur during the MD
simulation obfuscate evolutionary signal in the structural
data. That said, the divergence of the a and b globins was
resolved with high confidence, despite this being a relatively
recent evolutionary event. In contrast, the conformational
ensembles sampled of the more diverged RNR-like protein

FIG. 7. Illustration of MD-based bootstrap trials on structures from the globin family. The recent divergence of the a and b globin chains is
reproduced with 100% confidence, but the relationships between the a chains have low support. The annotated tree (f) uses T0, the reference tree,
and shows the relationships recovered as a percentage of the trials conducted (in this case, five, (a) T0 – (e) T4).
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family seldom overlap (fig. 8). Taken together, these results
indicate that our MD-based statistical support method is well
suited for deeply diverged proteins, and that application to
more closely related proteins may produce less robust results,
as expected.

Assessing Statistical Support for the Structural
Phylogeny of the Ferritin-Like Superfamily

We next applied our MD-based statistical support metric to
the much larger ferritin-like superfamily, the structural phy-
logeny of which was reported previously (Lundin et al. 2012).
In addition to the iron-storing ferritins, this superfamily also

FIG. 8. Illustration of MD-based bootstrap trials on structures from the ribonucleotide reductase-like family. All relationships have 100% support
from this limited set of bootstrap trials. The annotated tree (f) uses T0, the reference tree, and shows the relationships recovered as a percentage of
the trials conducted (in this case, five, (a) T0 – (e) T4).
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spans methane mono-oxygenases, the small subunit of RNR
R2, rubrerythrins, bacterioferritins, Dps (DNA binding protein
from starved cells that protect against oxidative DNA dam-
age), and Dps-like proteins. Across the superfamily, there is
very low sequence similarity and substantial differences in
quaternary structure and function, but despite this, the ferri-
tins possess a conserved structural core (fig. 9) (Lundin et al.
2012).

To assess our method, we derived a core set of protein
structures from the ferritin-like superfamily, ran MD simula-
tions for each structure in our data set, and then calculated
support for each node in a BioNJ tree derived from the struc-
tures deposited in the PDB (fig. 10).

A key conclusion drawn from the previous structural phy-
logeny of the ferritin-like superfamily (Lundin et al. 2012) was
that ferritins, bacterioferritins, and Dps can be grouped to-
gether, and that these were distinct from the Fads, RNR R2s,
and BMMs, in keeping with their split into two different
SCOP families (ferritin [a.25.1.1] and RNR-like [a.25.1.2]) and

two different CATH homology groupings (ferritin
[1.20.1260.10] and RNR, subunit A [1.10.620.20]). We find
100% support for this split.

The proteins in the SCOP Ferritin family (CATH Ferritin
homology) are also grouped together by Pfam (00210
Ferritin). Within the SCOP Ferritin family, our tree shows
strong support for the “Ferritins” (89%) and “DPS and related”
(100%, if 2vzbA is treated as an outlier) groupings identified
previously (Lundin et al. 2012). However, we see minimal
support (6%) for the “Bacterioferritins” forming a group,
and for these and the “DPS and related” grouping separately
from the “Ferritins” (0%). These weak support values are con-
sistent with the high degree of reticulation in this region of
the phylogenetic network (fig. 10a), and the grouping of all
three protein subfamilies within a single “Ferritin” Pfam
(002120) (fig. 10b).

The SCOP RNR-like family (CATH RNR, subunit A
homology) is spread across three different Pfam families
(02332 Phenol_hydrox, 00268 Ribonuc_red_sm, and 03405

(a) (b)

(c) (d)

FIG. 9. The conserved structural core of proteins in the ferritin-like superfamily comprises a four-helix bundle that coordinates a pair of metal ions.
The helices are arranged in a characteristic up-down–down-up topology. Shown here are representative structures from the ferritin (2za7A),
bacterioferritin (1nfvA), and Dps (1o9rA) groups colored from (red) N-terminus to (blue) C-terminus (a) ferritin, (b) bacterioferritin, (c) Dps, (d)
overlaid (ferritin, red; bacterioferritin, green; Dps, blue).
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FA_desaturase_2) (fig. 10b). We observe strong support for
the monophyly of the fatty acid desaturases (100%) and the
RNR R2s (100%), but only moderate support for the mono-
phyly of the BMMs (42%). However, within the BMMs, our

tree shows strong support (100%) for their separation into
the BMM-a and BMM-b subgroups. This is in keeping with
the known duplication of BMMs into BMM-a and BMM-b
forms, which was also observed by Lundin et al. (2012).

FIG. 10. Structure-based phylogenetics of the ferritin-like superfamily. The color-coded ellipses are consistent with the previous study (Lundin et al.
2012) and labeled with annotations provided by the PDB (wwPDB Consortium 2008). The scale bars represent distance as quantified by the inverse
Qscore. (a) NeighborNet network of the ferritin-like superfamily built from the structures as obtained from the PDB (wwPDB Consortium 2008). The
red dot-dashed arcs separate the structures with three different dimerization types whose separate classification was used to assess the quality of
the phylogenetic tree by Lundin et al. (2012). The vertical pink line marks the broad split between the two SCOP families, ferritins (a.25.1.1, left) and
ribonucleotide reductase-like (a.25.1.2, right). (b) Structural phylogeny of the ferritin-like superfamily with statistical support from the structural
bootstrap method. The bifurcating tree was built using the structures from which the simulations were initiated, with statistical support generated
using MD simulations. Support values obtained from 100 samples of alternative conformations for each protein structure from the repertoire of
10,000 conformations generated during the production phase of the MD simulation are shown for key splits. SCOP and CATH classifications are
shown by the color of the node labels and of the associated triangle, respectively, as per the embedded key. Pfam classifications are indicated by arcs.
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In general, our high support values within the SCOP RNR-like
family are in keeping with the relatively low level of reticula-
tion in this region of the phylogenetic network.

Statistical Support is Robust to Conformational
Sampling Method
To test whether our results are influenced by the type of
conformational sampling that occurs during MD simulations,
we also carried out MC sampling of the conformations ac-
cessible to each protein, and built a tree in the same way as for
the MD results (supplementary fig. S38, Supplementary
Material online).

The statistics that we obtain using MC conformational
sampling are somewhat similar to those obtained using MD
conformational sampling. We again see strong support (96%)
for the split between the SCOP ferritin (a.25.1.1) and RNR-like
(a.25.1.2) families (CATH ferritin [1.20.1260.10] and RNR, sub-
unit A [1.10.620.20] homology groupings). The main group-
ings within the SCOP RNR-like family have equivalent levels of
support (100%) under both MD and MC sampling. Likewise,
the main groupings within the SCOP ferritin family are con-
sistent across both MD and MC. However, with MC, support
for the Ferritins is reduced (50% cf. 89%), as is support for the
“Dps and related” group (52% without 2vzbA). The support
for the “Bacterioferritins” (14%), and for these and “DPS and
related” grouping to the exclusion of the “Ferritins” (2%) is
low, consistent with the low support values obtained with
MD sampling. The support values for the location of 2vzbA
relative to the “Dps and related” group vary greatly between
the MD and MC sampling. The position of 2vzbA (which is
not classified by SCOP) thus remains uncertain.

Overall, we found that MC yields similar support values to
MD sampling. We found, however, that MC required more
computational resources to reach an equivalent level of con-
formational sampling to the MD simulations.

Resolution of SCOP and CATH Polytomies
Our reduced ferritin-like protein structure data set spans one
SCOP superfamily, ferritin-like (a.25.1), comprising two man-
ually curated protein families, ferritin (a.25.1.1) and RNR-like
(a.25.1.2) (supplementary table S5, Supplementary Material
online). Similarly, it spans one CATH topology group that is
split into two homology groups, Ferritin (1.20.1260.10) and
RNR, subunit A (1.10.620.20). In Pfam, it spans six families,
ferritins (PF00210), Ribonuc_red_sm (PF00268), Rubrerythrin
(PF02915), Phenol_Hydrox (PF02332), Fatty acid desaturase
(PF03405), and PaaA_PaaC (PF05138), which all belong to a
single Pfam clan, ferritin (CL0044).

All three classification systems have just one Ferritin family,
which we reproduce at a high level. Our results suggest that
this group could be further split into three subgroups, sepa-
rating out “Dps and related” and “Bacterioferritins” from the
remainder of the Ferritins.

In contrast, although SCOP and CATH have a single-
overarching RNR-like family, these proteins are classified
into three distinct families by Pfam, Phenol_Hydrox
(PF02332), Ribonuc_red_sm (PF00268), and Fatty acid desa-
turase (PF03405). We find consistently high support for this

more detailed sequence-based classification, as well as the
further separation of the BMMs into BMMa and BMMb.

There are several proteins that lie outside of the major
groupings in our networks, all of which are classified by
CATH as Ferritins, and most of which are also classified by
SCOP as ferritins. We find strong support for one of these,
1otkA, grouping with the RNRs rather than the ferritins.
1otkA was also found to lie close to BMMa (Lundin et al.
2012), a result which we also recover (fig. 10b). Pfam classifies
these proteins into two groups, rubrerythrin, and PaaA_PaaC,
with 1otkA the only member of PaaA_PaaC. As well as se-
quence differences, the Pfam groupings correspond to quite
different dimer topologies to the three major types indicated
in figure 10, and particularly different to the simple type 3
topology of the ferritins. We therefore suggest that these
outliers might be better categorized separately to the major
ferritin groupings in SCOP and CATH.

Conclusions
We have developed a novel method for generating statistical
support to distance-based, protein structural phylogenies.
This procedure requires a metric for quantifying protein
structural similarity that fulfills three key criteria, and a means
of generating alternative conformations for each protein so
that multiple trial trees can be constructed, analogous to the
bootstrap method used for sequence data.

Protein structural similarity was determined using the
Qscore (Krissinel and Henrick 2004), which can be divided
into two parts, Qlength (eq. 2) and Qshape (eq. 3), which account
for the contributions from differences in the number of
amino acids and morphometric differences. The influence
of each part on the overall Qscore was evaluated in a controlled
manner. We find that if the size difference between the com-
pared protein structures varies by >10%, the size contribu-
tion to Qscore dominates. We note, however, that our test
involved unidirectional truncation of protein structures,
with comparison back to untruncated structures, which we
expect to be quite a stringent test. The Qscore value can also be
influenced by variation in the protein structure of the degree
expected to occur during an MD simulation, with the impor-
tant implication that Qscore-based structural phylogenetic
methods are unlikely to be suitable for investigation of re-
cently diverged proteins. In this case, sequence-based com-
parisons are both appropriate and more suitable.

We used MD simulations to generate alternative confor-
mations for each protein structure. We show that in the case
of the RNR-like family, which is sufficiently diverged to be
suitable for structural phylogenetic analysis, the extent of
conformational sampling during a short 100-ns simulation
is enough to generate conformations sufficiently different
for us to observe perturbations in the structural distance
data while retaining a folded state, which is required for
meaningful structural comparisons.

As expected, a test of the MD-based bootstrap method
resulted in weak support values for the phylogeny of the
recently diverged proteins from the globin family, with stron-
ger support values for the phylogeny of the more highly
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diverged RNR-like family. This provided further confirmation
that structure-based phylogenetic inference is most suitable
for highly diverged proteins for which sequence-based meth-
ods may struggle.

We used our MD-based bootstrap method to add statis-
tical support to the structural phylogeny of the ferritin-like
protein superfamily. The qualitative assessment of the phylo-
genetic relationships made by Lundin et al. (2012) based on
the topology of the proteins on the reticulated network was
supported by our results, with separations that have a tree-
like structure in the reticulated network having strong statis-
tical support, and those where the network departs from
tree-likeness having weaker support. We found similar sup-
port values when we used MC rather than MD to sample
alternative conformations for each protein.

Our MD-based bootstrap method may augment the deep
evolutionary classifications of protein structure in databases
like SCOP, CATH, and Pfam. As a proof-of-principle test of
our method, we successfully recovered support the major
relationships across the ferritin-like protein superfamily in
SCOP and the analogous Ferritin homology grouping in
CATH. We found similarly strong support for the RNR-like
superfamily in SCOP and analogous RNR subunit A homology
grouping in CATH, plus support for the finer classification of
the RNR-like superfamily by Pfam. In addition, we observed
strong support for the subdivision of the BMMs into BMMa
and BMMb, a level of detail lacking from all three databases.

Structural phylogenetics provides a means of probing deep
evolutionary relationships where sequence similarity is too
low to confidently apply sequence-based methods of phylo-
genetic analysis. Here, we have implemented and validated a
method for providing statistical support values for structural
phylogeny using MD and MC simulations to sample alterna-
tive conformations for each protein, allowing the robustness
of the inferred relationships to be assessed. Our method may
augment the hierarchical classification of structures within
structural databases, resolving phylogenetic relationships
where sequence data cannot.

Materials and Methods

Selection and Processing of Protein Structures
Structures of Representative Size to Test Qlength

The PDB format files of all 102,540 structures in the PDB (as of
July 18, 2019) were downloaded from the PDB (wwPDB
Consortium 2018). Non-protein elements were removed,
and the remaining proteins separated into chains, resulting
in 290,306 structures. The length of each of these structures in
terms of the number of amino acids was then determined.
Small proteins (<40 amino acids) were removed, as these did
not represent complete domains. Similarly, protein structures
with >350 amino acids were assumed to be multidomain
proteins and hence were excluded. This resulted in 150,000
single-chain, single-domain protein structures, which consti-
tute the central and most densely populated part of the
length distribution (supplementary fig. S1, Supplementary
Material online). Using the K-means clustering algorithm
(Forgy 1965; Lloyd 1982), three centroids of the length

distribution were determined using Scipy (0.13.3) (Virtanen
et al. 2020) with Python2.7. This produced centroids at
lengths of 125, 184, and 234 amino acids, respectively, which
served as estimates of common protein lengths.

The SCOP (Andreeva et al. 2019) annotations were auto-
matically searched for families having proteins with lengths
distributed around these common length values. This identi-
fied the globin, trypsin-like serine protease, and aldo-keto
reductase (NADP) families. From each family, 20 structures
(for convenience only) were selected, which are listed in sup-
plementary table S1, Supplementary Material online, along
with their respective lengths. Each structure was decomposed
into ten fractions, with a given fraction comprising the first
n% * N amino acids of the protein, starting from the most N-
terminal residue present in the structure, where
fn 2 10; 20; . . . ; 100%g and N is the number of residues
in the structure (supplementary fig. S2, Supplementary
Material online). Each set of fractional structures was com-
bined with the set of complete structures and used to gen-
erate a phylogenetic tree.

Structures to Test Qshape

The same 53 protein structures used to build a phylogeny of
the ferritin-like superfamily (see below) were used to explore
the effect of shape on Qscore.

Structures to Test MD-Based Bootstrap Method
The PDB IDs of the eight RNR-like and eight globin structures
used to test the MD-based bootstrap method are listed in
supplementary table S4, Supplementary Material online.

Ferritin-Like Superfamily
The structures of 83 proteins from the ferritin-like SCOP su-
perfamily examined in the previous structural phylogenetic
study by Lundin et al. (2012) were obtained from the PDB
(wwPDB Consortium 2018). These are listed along with their
SCOP, CATH, and Pfam classifications in supplementary
tables S2 and S5, Supplementary Material online. Not all of
the 83 protein structures used in the previous study were
included in this analysis. Protein structures belonging to fam-
ilies uncharacterized by SCOP, or having fewer than three
members, were removed, with the latter criterion ensuring
that only families for which the internal hierarchy can be
meaningfully resolved were included. Furthermore, some
structures were not able to be simulated due to missing
residues (e.g., 1jk0B) or problems with the structural geome-
try (e.g., 1mhyB and 1mhyD). Despite extensive energy min-
imization, some of the geometry-related problems could not
be corrected. In total, 53 protein structures that have clean
structural geometries, are characterized by at least two of the
SCOP, CATH, and Pfam databases, and are part of groups for
which (Lundin et al. 2012) drew important inferences were
retained. The excluded structures are marked with “*” in sup-
plementary table S2, Supplementary Material online.
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Simulation Procedures
Simulations
MD simulations were carried out using the GROMACS
(Abraham et al. 2015) program along with the
CHARMM36 (Best et al. 2012) force field and the TIP3P water
model (Jorgensen et al. 1983). All simulations were conducted
in an NpT ensemble to mimic physiological conditions, at a
pressure of 1 atm. The Lennard–Jones potential was switched
to zero between 10 and 12 Å and a 12 Å cut-off distance was
used for calculating the electrostatic interactions. Electrostatic
interactions outside the cut-off were computed using particle
mesh Ewald (Darden et al. 1993) summation. Temperature
was maintained at 310 K using the velocity rescale modified
Berendsen thermostat with a coupling constant st of 0.1 ps
and pressure with a Berendsen barostat with a coupling con-
stant sp of 0.5 ps and an isothermal compressibility of 4:5
�10�5 (kJmol�1nm�3)�1. The lengths of covalent bonds in-
volving hydrogen atoms were constrained using LINCS (Hess
et al. 1997) to allow for an integration time step of 2 fs.

Each structure was energy minimized using the steepest-
descent algorithm for 5,000 steps or until the energy changed
by <2 kJmol�1. A minimum cubic box was created around
the protein, the boundaries extended by 15 Å in each direc-
tion, the box filled with solvent molecules, and energy min-
imized again for 5,000 steps. Excess charge was neutralized (if
present) through the addition of Naþ and/or Cl� counter
ions by randomly selecting a water molecule and substituting
it with an ion. The system was minimized again for 5,000 steps
to remove any clashes. The system was simulated for 10 ps at
50 K then annealed from 50 to 310 K over 200 ps and equil-
ibrated at 310 K for a further 40 ps. Finally, the system was
simulated for 100 ns, with conformations recorded every
10 ps to give 10,000 conformations in total.

MC simulations were conducted using Phaistos
(Boomsma et al. 2013) using the OPLS (Jorgensen 2002) force
field via the Phaistos opls-mc-dynamics mode. OPLS is an
established biomolecule force field similar to the
CHARMM36 force field used for the MD simulations, thus
the major difference between these two data sets is the sam-
pling method. Conformational sampling was carried out us-
ing pivot, semilocal, and local backbone moves in internal
coordinate space. Five independent replica simulations com-
prising 5,000,000 steps each were carried out for each protein
structure, initiated from the PDB coordinates. Sampled con-
formations were recorded every 10,000 steps, resulting in a
pool of 2,500 conformations for each protein.

Analysis
The coordinate trajectory for each system was analyzed with
GROMACS (Abraham et al. 2015) and VMD (Humphrey et al.
1996) using standard procedures and in-house Tcl scripts,
which are available at https://github.com/allison-group/struc-
tural-phylogenetics-bootstrap. RMSD calculations were for
the Ca atoms only, to match the RMSD calculations carried
out by Superpose (Krissinel and Henrick 2004).
Conformational clustering was carried out using the “gromos”
method (Daura et al. 1999), as implemented in GROMACS.

Phylogenetic Procedures
Generation of Phylogenetic Trees
Pairs of protein structures were compared using Superpose
(Krissinel and Henrick 2004). Due to the nature of the algo-
rithm, comparisons are order specific, that is, A ffi B 6¼ B ffi
A. Therefore, both pairwise comparisons were performed
and the Qscore values were averaged to attain a final Qscore

value q for the comparison between structure A and B. The
distance between the pair of structures was then calculated
as d ¼ 1� q. A matrix was populated with the pairwise
distances and a neighbor-joining (NJ) tree generated using
the NJ algorithm (Saitou and Nei 1987) as implemented by
the Phylo package (Talevich et al. 2012) in Biopython (Cock
et al. 2009). Trees were visualized using Figtree (Rambaut
2007) and Dendroscope (Huson et al. 2007; Huson and
Scornavacca 2012).

Quantitative Comparison of Phylogenetic Trees
In evaluating the effect of Qlength, the phylogenetic tree com-
parison program “treecompare” as made available by
DendroPy (Sukumaran and Holder 2010), a python library
for phylogenetic computing, was used to calculate the
Euclidean distance to quantify the difference between the
fractional trees and the true tree.

In all other cases, the relationships between protein struc-
tures in the replicate trees were compared with those in the
reference tree, T0, using the phylogenetic tree summarization
program SumTrees via DendroPy (Sukumaran and Holder
2010). The recovered relationships were expressed as a per-
centage of the total number of trials on the nodes in T0.

MD-Based Bootstrap Method
The code used to carry out our MD-based bootstrap
method for structural phylogenetics is available from
https://github.com/allison-group/structural-phylogenetics-
bootstrap. It requires Python v2.7, VMD (Humphrey et al.
1996) (v1.9.2 or later), the Phylo (Talevich et al. 2012) package
from Biopython (Cock et al. 2009), and the DendroPy
(Sukumaran and Holder 2010) package. Calls to VMD
(Humphrey et al. 1996) programs were made via the bash
shell.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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