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Abstract
Cancer cells hijack autophagy pathway to evade anti-cancer therapeutics. Many molecular signaling pathways
associated with drug-resistance converge on autophagy induction. Honokiol (HNK), a natural phenolic compound
purified from Magnolia grandiflora, has recently been shown to impede breast tumorigenesis and, in the present study,
we investigated whether breast cancer cells evoke autophagy to modulate therapeutic efficacy and functional
networks of HNK. Indeed, breast cancer cells exhibit increased autophagosomes-accumulation, MAP1LC3B-II/LC3B-II-
conversion, expression of ATG proteins as well as elevated fusion of autophagosomes and lysosomes upon HNK
treatment. Breast cancer cells treated with HNK demonstrate significant growth inhibition and apoptotic induction,
and these biological processes are blunted by macroautophagy/autophagy. Consequently, inhibiting autophagosome
formation, abrogating autophagosome-lysosome fusion or genetic-knockout of BECN1 and ATG7 effectively increase
HNK-mediated apoptotic induction and growth inhibition. Next, we explored the functional impact of tumor
suppressor STK11 in autophagy induction in HNK-treated cells. STK11-silencing abrogates LC3B-II-conversion, and
blocks autophagosome/lysosome fusion and lysosomal activity as illustrated by LC3B-Rab7 co-staining and DQ-BSA
assay. Our results exemplify the cytoprotective nature of autophagy invoked in HNK-treated breast cancer cells and put
forth the notion that a combined strategy of autophagy inhibition with HNK would be more effective. Indeed, HNK
and chloroquine (CQ) show synergistic inhibition of breast cancer cells and HNK-CQ combination treatment effectively
inhibits breast tumorigenesis and metastatic progression. Tumor-dissociated cells from HNK-CQ treated tumors exhibit
abrogated invasion and migration potential. Together, these results implicate that breast cancer cells undergo
cytoprotective autophagy to circumvent HNK and a combined treatment with HNK and CQ can be a promising
therapeutic strategy for breast cancer.

Introduction
Despite tremendous progress in encouraging regular

screenings, identifying breast lesions at earlier stages and

availability of multiple combination therapeutic strategies,
breast cancer remains the second leading cause of cancer-
related mortality in women1,2. Major hurdles include poor
de novo response to therapies; development of acquired
resistance leading to recurrent disease and metastasis; and
non-compliance in patients owing to poor tolerance of
drug-related side effects. Also, cancer cells prove to be
evolving targets as they develop reliance on additional
signaling networks when one signaling node is targeted.
While we have multiple successful single-target drugs, we
need to develop multi-target strategies as targeting
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multiple oncogenic signaling pathways simultaneously
may prove more useful than targeting single nodes.
Hence, important requirements for an ideal breast cancer
therapy or prevention strategy are the ability to inhibit
multiple subtypes of breast cancer, simultaneously impede
multiple key kinases, few/no side effects and oral
availability.
An interesting approach adopted by cancer cells to

evade any therapy is the onset of cytoprotective autop-
hagic process. Macroautophagy (referred as autophagy
hereafter) is generally utilized by normal cells to avoid
accumulation of damaged proteins or organelles, reduce
ER stress and lower reactive oxygen species (ROS) pro-
duction but cancer cells hijack this process to survive
cancer therapy3. Lysosomal machinery degrades damaged
cytoplasmic components of the cells and yield macro-
molecular constituents that can be recycled to maintain
cellular metabolism4,5. Multiple steps of autophagy such
as formation of induction-complex, vesicle nucleation,
autophagosome formation, autolysosome formation and
finally, the disintegration of the cargo6,7, are regulated by
various autophagy-related (ATG) proteins6,8. Multiple
pathways including PIK3CA/AKT and AMPK/TSC1/
2 signaling networks regulate autophagy9. Autophagic
induction in response to hypoxia, DNA-damage or che-
motherapy leads to the development of chemoresis-
tance10–12. In light of the importance of autophagic
induction in evading/reducing drug efficacy, it is
imperative to investigate whether breast cancer cells
induce autophagy in response to a proposed/established
cancer therapy.
Bioactive compounds or nutraceuticals, natural con-

stituents of plants and certain foods, have shown efficacy
as anti-inflammatory, anti-depressants, anti-microbial
agents as well as anti-cancer agents13. Bioactive com-
pound purified from the seed cones and bark extracts of
Magnolia grandiflora, Honokiol (HNK), is a small phe-
nolic compound that has been used in traditional medi-
cine and has successfully crossed the bridge to modern
medical research14. HNK effectively inhibits growth and
induce cell cycle arrest and apoptosis in multiple subtypes
of breast cancer15,16. Cell cycle arrest mediated by HNK is
a coordinated action achieved by inhibition of cyclin D1,
cyclin E1, cyclin dependent kinase 2, cyclin dependent
kinase 4, cMYC and RB along with abrogation of CSK/
EGFR signaling17. Acquiring increased invasion and
migration potential are key aspects of tumor progression
and HNK inhibits migration of breast cancer cells via
inhibiting nitric oxide and prostaglandin-endoperoxidase
synthase 2/cyclooxygenase-218. Our group investigated
the signaling networks underlying anti-breast cancer
potential of HNK and showed the involvement of AMPK
and LKB119. Epithelial-to-mesenchymal transition (EMT)
is another critical step in metastatic progression, and

HNK treatment effectively inhibits EMT in breast cancer
cells by abrogating activation of STAT3 which leads to
inhibition of ZEB1 and upregulation of cadherin 120.
Delving further into the mechanistic aspects of HNK
function, our group showed that HNK effectively inhibits
oncogenic signaling of adipocytokine leptin by activating
LKB1-miR34a axis and inhibiting WNT1-MTA1-βcatenin
axis21,22. Intriguingly, HNK successfully inhibits plur-
ipotency factors POU5F1, Nanog and SOX2 and abro-
gates breast cancer stem-like phenotype23. These
important studies not only established the effectiveness of
HNK in inhibiting breast cancer growth, stemness and
metastatic progression but also put forth HNK as a
multikinase inhibitor with oral bioavailability21–23.
In this study, we investigated whether breast cancer

cells initiate an autophagic response to HNK treatment.
We report a stimulation of autophagic flux in breast
cancer cells upon HNK treatment and suppressing
autophagy with inhibition of autophagosome formation
using 3-methyladenine, blockade of autophagosome-
lysosome fusion with bafilomycin A1 (Baf), or CRISPR/
Cas9-mediated knockout of beclin 1 (BECN1) and
autophagy related 7 (ATG7) effectively potentiates HNK
induced growth inhibition and apoptotic induction. We
also show that tumor suppressor STK11 is important for
initiating autophagy in HNK-treated breast cancer cells as
STK11 silencing abrogates LC3B-II puncta, autophago-
some/lysosome fusion and lysosomal activity. We further
investigated the effect of combining an autophagy inhi-
bitor with HNK on breast tumorigenesis and show that a
combination regimen of HNK and chloroquine is more
effective in reducing breast tumor growth as well as lung
metastasis.

Results
Breast cancer cells exhibit increased accumulation of
intracellular autophagosomes and autophagy markers
upon HNK treatment
We examined whether breast cancer cells invoke

autophagic response upon treatment with HNK. Ultra-
structural changes in breast cancer cells were observed
using transmission electron microscopy (TEM). The TEM
studies uncovered that breast cancer cells treated with
5 μM HNK for 24 h attained significantly higher number
(5–6 fold increase) of autophagic vacuoles as compared to
control cells (Fig. 1a, b). All the steps of autophagy pro-
gression are under tight regulation of ATG proteins, such
as ATG1, ATG5, ATG7, and BECN17. Multiple breast
cancer cells, MDA-MB-231, SUM149, MDA-MB-468,
and SUM159 showed increased expression of pATG1,
ATG5, ATG7 and BECN1 proteins in a temporal manner
in response to HNK treatment (Fig. 1c, Supplementary
Fig. 1). An important node in autophagy, MAP1LC3B/
LC3B (microtubule associated protein 1 light chain 3 alpha)
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is cleaved by ATG4 to generate the cytoplasmic-form
LC3B-1 (18 kDa) that gets converted to phagophore-
associated LC3B-II (16 kDa) form upon conjugation with
the lipid phosphatidylethanolamine24. We examined con-
version of LC3B-I to LC3B-II in HNK-treated breast cancer
cells, and found a time-dependent increase in LC3B-II
(LC3B) in MCF7, MDA-MB-231, MDA-MB-468, SUM159,
and SUM149 cells (Fig. 1d). Spatial redistribution of LC3B
from cytosol to autophagosomes accompanies the forma-
tion of autophagosomes and can be detected as LC3B
puncta with confocal microscopy. HNK-treated breast
cancer cells exhibited a marked increase in LC3B puncta
formation in comparison to control cells which exhibited a
diffuse green fluorescence. Breast cancer cells treated with
rapamycin and EBSS, known stimulators of autophagy,

also showed increased presence of LC3B puncta (Fig. 1e).
These results suggest that breast cancer cells accumulate
increased number of autophagosomes and redistribute
LC3B in response to HNK.

Increased fusion of autophagosomes and lysosomes in
HNK-treated breast cancer cells
Increased levels of LC3B expression and puncta can be

indicative of either an increased synthesis or a decreased
turnover of autophagosomes owing to a delay in traf-
ficking to the lysosomes and fusion with lysosomes25. To
query these important notions, a plasmid encoding
membrane-localized red fluorescent protein (mRFP)-
EGFP-LC3B (tandem fluorescent-tagged LC3B [tfLC3B])
resulting in both green and red fluorescence26 was

Fig. 1 HNK induces autophagosome accumulation, LC3B conversion, and other autophagy related proteins. a MCF7 and MDA-MB-231 cells
were treated with 5 µM HNK for 24 h and visualized under an electron microscope. Representative pictures are shown with approximately ×7400
magnification (×50000 in the highlighted area). b Double-membrane autophagosomes were counted in randomly selected ~100 cells in random
fields. Number of autophagosomes per cell is shown in bar graphs. *P < 0.05, compared with vehicle-treated controls (c) in MCF7 and MDA-MB-231
cells. c Immunoblot analysis of pATG1, ATG5, ATG7, and BECN1 in breast cancer cells treated with 5 µM HNK for indicated time intervals. ACTB was
used as a loading control. d Breast cancer cells were treated with 5 µM HNK for indicated time intervals and total cell lysates were immunoblotted for
LC3B expression. ACTB was used as a loading control. e Breast cancer cells were treated with 5 µM HNK or 200 nM rapamycin or Earle’s balanced salt
solution (EBSS) for 24 h and subjected to immunocytochemistry using LC3B antibody. Scale bars: 20 µm. Representative immunofluorescence images
are shown.
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transfected in breast cancer cells. Autophagosomes
(GFP-positive and RFP-positive, merged as yellow
puncta) and autolysosomes (GFP-negative and RFP-
positive, merged as red puncta) can be observed in cells
transfected with tfLC3B as EGFP fluorescence gets quen-
ched in acidic compartments whereas mRFP remains
stable in low-pH environment. Autophagy induction
increases both yellow and red puncta formation. Breast
cancer cells exhibited an increase in both yellow (autop-
hagosomes) and red (lysosomes) puncta upon HNK
treatment indicating an increase in autophagic flux. EBSS
and rapamycin treatment also increased yellow and red
puncta in breast cancer cells (Fig. 2a, c, d). A characteristic
feature of autolysosomes is acidic pH which can be eval-
uated with acridine orange staining. Acridine orange is a
nucleic acid dye that becomes protonated and sequestered
in acidic compartments like lysosomes and emits red
fluorescence when excited by blue light. Nucleus and
cytoplasm of breast cancer cells stained with acridine

orange showed green fluorescence while a red and orange
fluorescence marked acidic compartments. HNK treat-
ment induced the acidic compartments visualized as red/
orange puncta (Fig. 2b). Cells can be costained for GFP-
LC3B (green puncta, localized on autophagosomes) and
LysoTracker Red (red puncta, an acidic pH marker for
lysosomes) to investigate the fusion of autophagosomes
and lysosomes. Breast cancer cells transfected with GFP-
LC3B were stained with LysoTracker Red; confocal
microscopy revealed increased overlap between GFP-
LC3B and LysoTracker Red puncta (observed as yellow
puncta) in HNK-treated cells as compared to control cells
demonstrating an increased autophagosomes-lysosomes
fusion. MCF7 and MDA-MB-231 cells treated with EBSS
and rapamycin also exhibited increased autophagosomes-
lysosomes fusion (yellow puncta) in breast cancer cells
(Fig. 3a–d). Collectively, these data provide strong evi-
dence that breast cancer cells exhibit an increase in
autophagy upon HNK treatment.

Fig. 2 HNK augments autophagy in breast cancer cells. a Schematic diagram of the tfLC3 plasmid (upper panel). MDA-MB-231 and MCF7 cells
were transfected with tfLC3 followed by treatment with 5 µM HNK or 200 nM rapamycin or Earle’s balanced salt solution (EBSS) for 24 h. Rapamycin
and EBSS were used as positive controls for autophagic induction. Representative fluorescent images are shown. Scale bar: 10 µm. b MDA-MB-231
and MCF7 cells were treated with 5 µM HNK for 24 h followed by acridine orange staining. Representative images of MDA-MB-231 and MCF7 cells are
shown. Scale bar: 15 µm. c, d Bar graphs show number of red and yellow puncta per cell in MDA-MB-231 and MCF7 cells transfected with tfLC3 and
treated with 5 µM HNK or 200 nM rapamycin or EBSS for 24 h. ***P < 0.0005, compared with control.
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Breast cancer cells initiate cytoprotective autophagy upon
HNK treatment to reduce HNK-mediated growth inhibition
and apoptotic induction
Induction of autophagy can have different functional

impacts on the cells. “Cytostatic autophagy” leads to
growth inhibition and senescence whereas a “non-
protective autophagy” does not impact therapeutic sen-
sitivity of the cells. Autophagy is considered
“cytoprotective” when it bestows therapeutic resistance
and its blockade aids in cell death, contrastingly, a
“cytotoxic autophagy” promotes apoptosis and increases
drug efficacy27–29. To examine the functional impact of
autophagy triggered in response to HNK, we blocked
autophagy in HNK-treated breast cancer cells by inhi-
biting autophagosome formation using 3-methyladenine
(3MA), a phosphatidylinositol 3-kinase (PtdIns3K/Vps34)
inhibitor30, or impeding autophagosome-lysosome fusion
using Baf, a specific vacuolar type H+-ATPase inhibitor31

or increasing lysosomal pH using chloroquine, a weak
base. Interestingly, we found that autophagy inhibition
with 3MA, Baf or CQ in HNK-treated breast cancer cells
further decreased cell survival (10–25%) in comparison to

HNK treatment alone (40–60%) (Fig. 4a–c, Supplemen-
tary Fig. 2A, B). Evaluation of clonogenic potential
showed reduced clonogenicity in breast cancer cells
treated with a combination of 3MA, Baf or CQ with HNK
compared to HNK treatment alone (Fig. 4d). HNK
treatment induced significant apoptotic cell death as
observed in DNA-fragmentation assay, interestingly;
autophagy inhibition with 3MA, Baf or CQ in combina-
tion with HNK further enhanced its impact (6–7-fold vs.
13–15-fold) (Fig. 4e). BECN1 and ATG7 are important
proteins mediating the multistep autophagic process32.
We knocked out BECN1 and ATG7 using CRISPR/Cas9
technology in MCF7 cells as a genetic intervention. MCF7
cells knocked out for ATG7 showed intact BECN1 and
cells knocked out for BECN1 showed intact ATG7 in both
clones exhibiting the specificity (Fig. 4f). HNK-mediated
reduction in cell survival was further enhanced in BECN1-
KO and ATG7-KO MCF7 cells compared to control cells
(Fig. 4g). Also, BECN1-KO and ATG7-KO MCF7 cells
exhibited significantly higher apoptotic cell death upon
HNK treatment in comparison to HNK-treated control
cells (Fig. 4h). Taken together, these results show that

Fig. 3 Increased fusion of autophagosomes and lysosomes in breast cancer cells treated with HNK. a, b MCF7 and MDA-MB-231 cells were
transfected with GFP-LC3B followed by treatment with 5 µM HNK or 200 nM rapamycin or EBSS for 24 h and staining with LysoTracker-Red. Cells were
fixed and subjected to confocal microscopy. Representative fluorescent images are shown. Scale bar: 10 µm. c, d Bar graphs show green, red and
yellow puncta per cell in MDA-MB-231 and MCF7 cells. **P < 0.005, compared with control.
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sensitivity to HNK-mediated growth inhibition and
apoptotic induction is significantly improved by impairing
autophagy indicating that breast cancer cells initiate a
cytoprotective autophagy to evade HNK.

STK11 silencing attenuates cytoprotective autophagy in
HNK-treated breast cancer cells
STK11, tumor suppressor and an upstream kinase, has

been shown to be involved in promoting autophagy in
response to nutrient-deprivation, therapeutics and other
environmental cues33–36. HNK induced expression of
STK11 and pAMPK, its downstream kinase target

(Supplementary Fig. 3A). Cells treated with HNK also
exhibited inhibition of p70 kDa ribosomal protein S6
kinase 1 (p70S6K1 or pS6K) and the eukaryotic transla-
tion initiation factor 4E (elF4E)-binding protein (4EBP1),
two downstream effectors of mTOR indicative of mTOR
activity (Supplementary Fig. 3B). We raised the question
whether STK11 plays any role in autophagy induction in
breast cancer cells treated with HNK. We selected stable
pools of MCF7 and MDA-MB-231 cells with STK11
depletion utilizing STK11shRNA lentiviruses and pur-
omycin selection and confirmed the knockdown of
STK11 protein in immunoblot analyses (Fig. 5a). We

Fig. 4 Inhibition of autophagy increases HNK-mediated reduction in cell-survival and apoptosis-induction in breast cancer cells. a–c MCF7,
MDA-MB-468 and MDA-MB-231 cells were treated with 5 µM HNK alone or in combination with 4mM 3-methyladenine (3MA) or 200 nM bafilomycin
A1 (Baf) or 25 μM chloroquine (CQ) for 24 h as indicated and subjected to MTT assay. *P < 0.05, compared with control; #P < 0.05, compared with HNK.
d MCF7, MDA-MB-468, and MDA-MB-231 cells were treated with 5 µM HNK, 4 mM 3MA or 25 μM CQ alone or in combination as indicated for 24 h
and subjected to clonogenicity assay. Representative pictures are shown for each treatment. e Breast cancer cells were treated with 5 µM HNK, 4 mM
3MA, 200 nM Baf, 25 μM CQ alone or in combination as indicated for 24 h and subjected to DNA-fragmentation assay. *P < 0.05, compared with
control; #P < 0.05, compared with HNK. f CRISPR/Cas9 was used to knockout BECN1 and ATG7 in MCF7 cells and total cell lysates were immunoblotted
for BECN1 and ATG7. ACTB was used as loading control. g Cell viability of control, BECN1-KO and ATG7-KO MCF7 cells was examined using MTT assay
after treatment with 5 µM HNK for 24 h. *P < 0.05, compared with vehicle control; #P < 0.05, compared with HNK-treated cells. h Vector-control,
BECN1-KO and ATG7-KOMCF7 cells were treated with 5 µM HNK for 24 h and subjected to DNA-fragmentation assay. *P < 0.05, compared with vehicle
control; #P < 0.05, compared with HNK-treated cells.
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observed that MCF7 cells infected with STK11 shRNA
showed abrogation of LC3B conversion while MCF7 cells
infected with vector exhibited increased levels of LC3B
conversion upon HNK treatment (Fig. 5a). Confocal
microscopy detected increased LC3B puncta formation in
MCF7-vector and MDA-MB-231-vector-control cells
treated with HNK while MCF7-STK11shRNA and MDA-
MB-231-STK11shRNA exhibited a diffuse cytoplasmic
green fluorescence upon HNK treatment (Fig. 5b, c).
Rab7 is a small GTPase that gets activated and recruited
to early endosomes to mediate vesicle tethering and
fusion of autophagosomes and lysosomes via interactions
with other effector proteins37,38. MCF7-vector and
MCF7-STK11shRNA cells were co-transfected with GFP-
LC3B and RFP-Rab7 plasmids to examine the formation
of autophagosomes (GFP-positive/RFP-negative, green

puncta), lysosomes (GFP-negative/RFP-positive, red
puncta) or autophagosome-lysosome fusion (GFP-posi-
tive/RFP-positive, yellow puncta) upon HNK treatment.
MCF7-STK11shRNA cells showed a diffuse staining for
green and red fluorescence while MCF7-vector cells
exhibited increased fusion of autophagosomes-lysosomes.
MCF7-STK11shRNA cells showed higher RFP-Rab7 signal
in untreated cells which was not observed upon HNK
treatment (Fig. 5d, g). Furthermore, we examined the
involvement of STK11 in the lysosomal proteolytic
activity necessary to degrade cargo in the autolysosomes.
This key step in autophagic process can be assayed by
using DQ-BSA (a derivative of BSA whose green fluor-
escence is quenched except when it is cleaved by pro-
teolytic enzymes) assay. MCF7-vector cells presented a
stimulated lysosomal activity as evident by dequenching

Fig. 5 STK11 silencing attenuates HNK-mediated cytoprotective autophagy in breast cancer cells. a Total protein lysates of MCF7 and MDA-
MB-231 cells transfected with STK11shRNA and control vector-pLKO.1 (vector) were immunoblotted for the expression of STK11. MCF7-pLKO.1 (vector)
and STK11shRNA cells were treated with 5 µM HNK for indicated times and immunoblotted for the expression of LC3B. b, c MCF7-pLKO.1 (vector), MCF7-
STK11shRNA, MDA-MB-231-pLKO.1 (vector) and MDA-MB-231-STK11shRNA were treated with 5 µM HNK for 24 h and subjected to immunocytochemistry
using LC3B antibody. Scale bars: 20 µm. Representative immunofluorescence images are shown. Bar graphs show number of LC3B puncta per cell.
*P < 0.05. d, f MCF7-pLKO.1 control (vector) and STK11shRNA cells were co-transfected with GFP-LC3B and RFP-RAB7 followed by treatment with 5 µM
HNK for 24 h. Fixed cells were subjected to immunofluoroscent microscopy. Representative fluorescent images are shown. Scale bars: 10 µM. Bar graph
shows number of red, green and yellow puncta per cell. *P < 0.05. e, g MCF7-pLKO.1 (vector) and STK11shRNA cells were incubated with 10 µg/ml DQ-
BSA for 2 h followed by treatment with 5 µM HNK for 24 h. Cells were fixed and stained with LysoTracker-Red followed by immunofluoroscent imaging.
Representative images are shown. Scale bars: 10 µM. Bar graph shows number of yellow puncta per cell. *P < 0.05.
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of DQ-BSA in lysosomes (elevated green signal) and an
overlap with LysoTracker red signal (merged as yellow) in
response to HNK treatment. In contrast, HNK-treated
MCF7-STK11shRNA cells demonstrated a reduction in lyso-
somal activity as evident by quenching of DQ-BSA signal
and a diffuse staining with LysoTracker red (Fig. 5e, f).
Together, these results confirm that breast cancer cells
undergo autophagy in a STK11-dependent manner.

Concomitant treatment with autophagy inhibitor and HNK
synergistically inhibits breast cancer
Our data showed that breast cancer cells undergo

cytoprotective autophagy in response to HNK treatment
suggesting that combining HNK with an autophagy
inhibitor can potentially yield increased inhibition of
breast tumor growth. Autophagy inhibitor, chloroquine
has been shown to increase drug efficacy in preclinical
studies39,40. We first determined whether the interaction
between HNK and CQ is additive, synergistic or antag-
onistic in nature using Compusyn software (Compusyn
Inc., Paramus, NJ, USA). Dose effect analyses of HNK in
combination with CQ showed significant synergistic
interactions in MCF7, MDA-MB-231, HCC 1569, and
BT549 breast cancer cells for higher concentrations of
HNK. Lower concentrations of HNK show synergistic
effects in HCC 1569 and BT549 cells (Fig. 6a, b). Subse-
quently, the in vivo physiological relevance of our in vitro
results was investigated by evaluating whether oral
administration of HNK and CQ combination yields
improved breast tumor inhibition in comparison to HNK
alone. Xenografts of MDA-MB-231-luc cells were devel-
oped in NOD-SCID mice followed by treatment with
vehicle, HNK, CQ or HNK+CQ combination for
~4 weeks. Breast tumor growth was inhibited with HNK
alone treatment but the combined HNK and CQ treat-
ment indeed achieved greater tumor inhibition (Fig. 7a).
Tumor burden was significantly reduced in mice treated
with HNK+CQ combination in comparison to single
HNK treatment (Fig. 7b). Importantly, HNK+CQ treat-
ment significantly reduced metastatic lesions in lungs
as observed in ex vivo bioluminescent imaging of lungs
(Fig. 7c). Metastatic cells from lungs of mice treated with
vehicle or HNK+CQ combination were evaluated in a
clonogenicity assay and decreased clonogenic potential
was observed in HNK+CQ group (Fig. 7d). Histo-
pathological analyses of lungs from mice treated with
vehicle, CQ, HNK, or HNK+CQ showed significantly
decreased levels of metastatic lesions in mice treated with
combination treatment in comparison to HNK treatment
(Fig. 7e, f). Reduced level of collagen fibers were observed
in breast tumors from mice treated with HNK+CQ
combination in comparison to HNK-treated group as
evident in trichrome staining (Fig. 7g). Further analysis of
breast tumors showed reduced levels of MKI67 and

elevated levels of Bax and cleaved caspase 3 in HNK group
in comparison to vehicle-treated group while HNK+CQ
group exhibited lowest expression of MKI67 and highest
expression of Bax and cleaved caspase 3 (Fig. 7h, i).
Tumor-dissociated cells from breast tumors from all
treatment groups were examined for migration and
invasion potential. Interestingly, tumor-dissociated cells
from HNK+CQ group demonstrated lowest invasion
and migration potential (Fig. 8a–e). Collectively, the
in vitro and in vivo findings presented here reveal that
breast cancer cells initiate a cytoprotective autophagic
response in a STK11-dependent manner to evade HNK
efficacy which can be potentiated by combining an
autophagy inhibitor with HNK treatment. Combination
treatment not only inhibits breast tumor growth but also
abrogates lung metastases.

Fig. 6 Combined treatment with HNK and CQ synergistically
inhibits breast cancer cells. a MCF7, MDA-MB-231, HCC1569, and
BT549 breast cancer cells were treated with various concentration of
HNK (5.0, 10.0, 15.0, 20.0, 25.0, and 30.0µM) in combination with 25µM
of CQ for 24h. Cells were subjected to MTT assay and combination
index values were calculated using CompuSyn software. CI < 1 shows
synergism, CI= 1 shows additivity and CI > 1 shows antagonism.
b Table shows combination index for different concentrations of HNK
and CQ.
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Discussion
Induction of autophagy, a cellular degradation process,

helps normal cells to swiftly adapt to challenging condi-
tions such as nutrient and growth factor deprivation,
hypoxia, endoplasmic reticulum stress, and infection.
Functional impact of autophagy is very complex as it

differentially affects cells based on different extracellular
and intracellular signals and can be cytoprotective, cyto-
toxic, cytostatic, or nonprotective27–29. Cytotoxic or
cytostatic autophagy leads to growth inhibition and
apoptotic induction to promote cell death. Previous stu-
dies investigating the effect of combination regimens
including vitamin D and radiation, eribulin and AURKA
(aurora kinase A) inhibitor, and the bioactive compound

C from Celastrus paniculatus showed the involvement of
cytotoxic autophagy aiding apoptotic induction41–44.
Adiponectin, an adipocytokine with anti-cancer potential,
also induces cytotoxic autophagy to inhibit breast tumor
progression45. Autophagic cell death has been reported in
breast cancer cells where cells undergo autophagy as a
prerequisite to apoptosis either via canonical pathway
involving BECN1 or noncanonical pathway independent
of BECN128. Interestingly, cancer cells also utilize this
physiologically important process to survive the changing
microenvironment during tumor growth and metastatic
progression or to survive cytotoxic chemotherapy46. By
recycling damaged cytoplasmic constituents, autophagy
can help cancer cells meet their high bio-energetic

Fig. 7 Combined HNK+CQ treatment inhibits breast tumor growth more effectively compared to HNK alone. a Tumors derived from MDA-
MB-231-Luc cells were developed in NOD-SCID mice and treated with control (vehicle), HNK, HNK with CQ and CQ alone. Tumor growth was
monitored by measuring the tumor volume for 24 days (n= 5). (P < 0.05, HNK+ CQ compared with HNK; P < 0.005, HNK+ CQ compared with
vehicle control). b Representative tumor images and tumor weight are shown in the table. c Metastatic lesions in lungs of MDA-MB-231-Luc tumor-
bearing NOD-SCID mice were observed. Representative ex vivo images of lungs are shown (n= 3). In vivo bioluminescent signal was quantified at
the end of the experiment. Quantification of radiance is shown in the graph. *P < 0.05. d Metastatic cells in lungs were evaluated in a growth assay
and compared between control and HNK+ CQ group. e, f Histologic analysis and quantification of the area covered by metastatic lesions in lungs of
control, HNK, HNK+ CQ and CQ treated mice, staining: hematoxylin and eosin. g–i MDA-MB-231-luc tumors from control, HNK, HNK+ CQ and CQ
treated mice were subjected to trichrome staining and immunohistochemical analysis using MKI67, BAX and cleaved caspase 3 antibodies. Bar
graphs show quantitation of IHC. *P < 0.05, compared with vehicle control; #P < 0.005, compared with HNK treated.
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demands in low-nutrient and low-oxygen states47.
Cancer cells induce cytoprotective autophagy upon
treatment with topotecan, cyclophosphamide, temozo-
lomide, and gemcitabine to block the apoptotic pathway
induced by these drugs48–50. In fact, drug-resistance
remains the main hindrance to effective cancer therapy
and many signaling pathways related to intrinsic and
acquired resistance converge on the induction of cyto-
protective autophagy. It is important to decipher whe-
ther cancer cells initiate autophagy in response to any
cancer therapy as it can potentially impact drug efficacy
either positively in case of cytotoxic autophagy or
negatively in case of cytoprotective autophagy. In this
study, we provide clear evidence that breast cancer cells
exhibit an accumulation of autophagosomes and
increased autophagosome-lysosome fusion upon HNK
treatment initiating cytoprotective autophagy as inhi-
biting autophagy with 3-MA or Baf or knockout of

BECN1 and ATG7 potentiates HNK-mediated growth
inhibition and apoptotic induction.
Recent preclinical studies from our group and others have

shown the efficacy of HNK as a potential therapy for mul-
tiple cancer types including prostate cancer, lung cancer,
colon, and breast cancer19–23,51–53. In addition, several
research groups have developed nano-HNK strategies.
Hyaluronic acid-modified liposomal honokiol nanocarrier
inhibit breast tumor growth and metastasis54. Delivery of
HNK using mPEG-PLA/vitamin E-TPGS micelles via
intravenous route shows lower toxicity and high efficacy55.
Nanoencapsulation of HNK improves cisplatin-induced
pathological changes via reducing cellular oxidative
damage and maintaining cellular localization of mitochon-
drial enzyme cytochrome C56. Another interesting approach
was to develop self-assembled microbubbles and these
honokiol-loaded poly(ε-caprolactone)-poly(ethylene glycol)-
poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) microbubbles

Fig. 8 Tumor cells dissociated from primary tumors from HNK+CQ treated mice exhibit reduced migration and invasion potential. a–e
Dissociated tumor cells from primary MDA-MB-231 tumors from mice treated with vehicle (control), HNK, HNK+CQ and CQ were subjected to
matrigel-invasion (a, d), transwell-migration (b, d) and scratch-migration assay (c, e) in the absence of any additional treatment. Representative
images of cells invaded or migrated are shown. Bar graphs show the average number of cells invaded/migrated and percentage migration of cells.
*P < 0.05, **P < 0.005.
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(HK-PCEC-MB) efficiently inhibit cisplatin-resistant
ovarian cancer in vivo57. While preclinical studies have
uncovered the underlying signaling mechanisms of HNK,
developed various nano-HNK strategies, and showed anti-
cancer efficacy of HNK in multiple cancer models, clinical
studies are still lacking. In addition to advancement of
pharmacological and toxicity studies, there is a need to
develop tangible biomarkers for clinical studies to further
develop this bioactive agent.
Tumor suppressor and upstream kinase, STK11,

responds to various extracellular and intracellular cues
and modulates cell cycle, cell polarity, cell proliferation,
apoptosis, cell migration and cell metabolism by activat-
ing AMPK, AMPK-related kinases and downstream
tumor suppressor proteins such as TSC1/TSC2 (TSC
complex subunit 1/2)58. STK11 has also been reported to
engage with ATG proteins and promote autophagy in
cancer cells modulating the effects of anti-cancer
agents45,59,60. Formation of a ternary complex with
STRADα and MO25 promotes nuclear export and kinase
activity of STK1161. In addition to its well-known cyto-
plasmic functions, STK11 also functions as a coregulator
in nucleus in a p53-dependent manner62. STK11 can be
modulated by several other kinases such as ribosomal
protein S6 kinase A1 (RPS6KA1), mitogen-activated
protein kinase 1 (MAPK), AKT1, and aurora kinase A
(AURKA); posttranslational modifications including far-
nesylation, acetylation, ubiquitination, SUMOylation; and
bioactive compound HNK23,58. Recent study from our
group reported that STK11 plays an important role in
mediating anti-cancer effects of HNK leading to inhibition
of cancer stem-like phenotype in breast cancer by direct
inhibition of oncogenic Stat3 signaling23. HNK upregu-
lates expression of STK11 and higher expression of
STK11 positively correlates with breast cancer prog-
nosis23. The present study shows the complexity of this
pathway as HNK-mediated upregulation of STK11 also
supports a negative feedback loop triggering a cytopro-
tective autophagy in addition to stimulating breast cancer
cell death. These findings suggest that inhibition of
STK11 will likely compromise the overall efficacy of HNK
as it will also abrogate HNK-STK11-growth inhibition
axis whereas sole inhibition of cytoprotective autophagy
can potentiate the anti-cancer efficacy of HNK. Indeed, a
combined strategy of treating breast tumors with HNK
and CQ leads to greater inhibition of tumor growth and
metastasis.
Chemical or molecular inhibition of autophagy in breast

cancer stem cells reverses chemoresistance in triple
negative breast cancer63. Combining chloroquine with
isorhamnetin, a flavonoid64, curcumin65, chemotherapy
(adriamycin + cyclophosphamide)66, and docetaxel-loaded
dendritic copolymer nanoparticles67 improves the ther-
apeutic potential of these agents. Efficacy of autophagy

inhibition using FDA-approved chloroquine or hydroxy-
chloroquine in combination with chemotherapy is being
investigated in many clinical trials68–72. While few FDA-
approved autophagy inducers such as chloroquine,
hydroxychloroquine, rapamycin and its analogs are being
investigated in clinical studies, several new autophagy
inhibitors are also being developed and tested namely,
2-amino-nicotinonitrile compound (w09)73, 5-amino-2-
ether-benzamide derivatives74, STF-62247, and pimo-
zide75. Future studies may show efficacy of these novel
autophagy inhibitors in combination with standard anti-
cancer therapeutic regimens. In conclusion, we present
that breast cancer cells invoke cytoprotective autophagy in
response to HNK treatment via STK11 whose expression
is a key node for autophagic induction. Overcoming
cytoprotective autophagy by combining HNK and CQ
potentiates the efficacy of HNK resulting in greater inhi-
bition of breast tumor growth and metastatic progression.

Materials and methods
Cell culture and reagents
Human breast cancer cell lines MCF7, MDA-MB-231,

HCC1569, BT549, and MDA-MB-468 were purchased
from American Type Culture Collection (ATCC), and
SUM149 and SUM159 were procured from Asterand
Bioscience (Detroit, MI). Cells were thawed from early
passage liquid nitrogen vapor stocks as needed and cul-
tured according to the supplier’s instruction. Honokiol
(HNK) is a natural product extracted from the seed cone
of Magnolia grandiflora as previously described76. Pre-
vious studies from our lab showed that 5 µM HNK is the
effective dose for in vitro studies and 150 mg/kg, oral
gavage, thrice a week HNK is effective for in vivo studies
for breast cancer cells and tumor models, respec-
tively19,21–23. Antibodies for MAP1LC3B/LC3B (3868),
ATG5 (12994), ATG7 (8558), BECN1 (3495), STK11
(3050), pATG1, cleaved PARP1 (5625), PARP1 (9532),
pAMPK, AMPK, p4EBP1, and pS6K were obtained from
Cell Signaling Technology. ACTB/β-actin (A5441) anti-
body, 3-Methyladenine (M9281), Chloroquine (C6628)
and Rapamycin (R0395) were purchased from Sigma-
Aldrich. Bafilomycin A1 (BAI-1) was purchased from
Cayman Chemical. DQTM Green BSA assay (D12050),
Earle’s Balanced Salt Solution (EBSS; 14155-063), Alexa
Fluor 488 (A-11008) and Alexa Fluor 555 (A-21428) were
purchased from Thermo Fisher Scientific. LysoTracker
Red DND-99 (L7528) was purchased from Invitrogen.
Plasmids for EGFP-LC3B and mRFP-EGFP-tfLC3B were
purchased from Addgene (Cambridge, MA).

TEM, immunofluorescence, and confocal imaging
Breast cancer cells were treated with HNK for 24 h, and

fixed with electron microscopy fixing buffer, rinsed,
stained with 2% uranyl acetate (0.22 µm filtered, 1 h, dark)
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in 0.1M maleate buffer and dehydrated through a graded
series of ethanol (30–100%). Cells were embedded in
EPON, sectioned, stained and examined with an H7600
transmission electron microscope (Hitachi, Tokyo,
Japan)45. Breast cancer cells (5 ×105 cells/well) were pla-
ted in 4-well chamber slides (Nunc, Rochester, NY) fol-
lowed by HNK treatment as indicated and subjected to
immunofluorescence analysis77. Fixed and immuno-
fluorescently stained cells were imaged using a Zeiss
LSM510 Meta (Zeiss, Dublin, California, USA) laser
scanning confocal system configured to a Zeiss Axioplan
2 upright microscope (Zeiss, Dublin, California, USA).

Acridine orange staining, LysoTracker Red staining, mRFP-
EGFP-LC3B assay, and transfection
For acridine orange staining, breast cancer cells were

cultured on chamber slides, treated with HNK as indicated
followed by incubation with acridine orange (Sigma-
Aldrich, A9231) and imaged using confocal microscope.
LysoTracker Red staining was used to measure the intra-
lysosomal function. Briefly, breast cancer cells were trans-
fected with GFP-LC3B construct using FuGene HD
transfection reagent (Promega), treated with HNK as
indicated and incubated with 50 nM LysoTracker Red
DND-99, and the fluorescence intensity was observed
under the confocal microscope. For DQ-BSA assay, breast
cancer cells were incubated with 10 µg/ml DQ-BSA for 2 h
followed by treatment with 5 µM HNK. Cells were fixed
and stained with LysoTracker Red followed by immuno-
fluoroscent imaging. For co-staining with Rab7 and LC3B,
breast cancer cells were transfected with GFP-LC3B and
RFP-Rab7 using FuGene HD transfection reagent (Pro-
mega), treated with HNK as indicated and examined under
the confocal microscope. For the mRFP-EGFP-LC3B assay,
breast cancer cells were seeded 4-well chamber slides,
transfected with mRFP-EGFP-LC3B (Addgene, 21074;
deposited by Tamotsu Yoshimori) using FuGene HD
transfection reagent (Promega), treated with HNK as
indicated, and examined under the confocal microscope.
Multiple view-fields were examined and representative
cells from 3 view-fields were photographed. For puncta, at
least 50–100 cells/sample were counted in triplicates45,77,78.

Immunoblot analysis
The whole cell lysate was prepared by scraping cells in

100 μl of ice-cold modified RIPA buffer79, total protein
quantified using Bradford protein assay kit (Bio-Rad,
Hercules, CA), equal amount of proteins was resolved on
sodium-dodecyl sulfate polyacrylamide gel (SDS-PAGE),
transferred to nitrocellulose membrane and western blot
analysis was performed. Immunodetection was performed
using enhanced chemiluminescence (ECL system, Amer-
sham Pharmacia Biotech Inc., Arlington Heights, IL)
according to manufacturer’s instructions.

STK11 stable knockdown using lentiviral short-hairpin RNA
Five pre-made lentiviral STK11 short-hairpin RNA

(shRNA) constructs and a negative control construct
created in the same vector system (pLKO.1) were pur-
chased from Open Biosystems (Huntsville, AL). Paired
STK11 stable knockdown cells was generated by following
our previously published protocol45,80.

ATG7 and BECN1 knockout with CRISPR/Cas9
For ATG7 and BECN1 knockout, we digested and pur-

ified LentiCRISPRv2 plasmid [lentiCRISPRv2, a gift from
Feng Zhang (Addgene, 52961)], incubated with phos-
phorylated, annealed oligos for ATG7 and BECN1 in a
ligation reaction, transformed into Stbl3 bacteria (Ther-
moFisher Scientific, C7373-03). lentiCRISPR with inserted
sequences were co-transfected into HEK293T cells with
packinging plasmids. MCF7 cells were transfected twice,
and selected for a week. MCF7 cells were examined for
the ATG7 and BECN1 knockout using immunoblot
analyses45,77.

Cell viability, clonogenicity assay, and apoptosis
The MTT assay was performed by estimating the

reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide). Cells were plated in 96
well plates at an initial density of 5 ×103 cells per well for
24 h. After 24 h, the culture medium was changed to
medium containing treatment as indicated. MTT reagent
was added to each culture well to attain a final con-
centration of 0.5 mg/ml and incubated for 4 h at 37 °C.
The quantity of formazan (presumably directly propor-
tional to the number of viable cells) was dissolved using
solubilization solution (10% SDS) and incubated for
8–12 h at 37 °C, measured by absorbance at 570 nm using
a 96 well plate reader. Cell viability was assessed by
trypan blue exclusion assay. Breast cancer cells were
harvested using trypsin (0.2%), stained with trypan blue
(Sigma) and counted using a hemocytometer under the
phase contrast microscopy. For clonogenicity assay, cells
were treated, counted and plated in 6-well plates at a
density of 1 ×103 cells per well and incubated for a week.
Post-incubation, colonies were washed with phosphate
buffered saline (PBS), fixed with formalin, stained with
0.1% crystal violet (Sigma) and air-dried. The pictures
were taken under the phase contrast microscopy. For
apoptosis assay, cells were cultured on chamber slides,
treated as described followed by Hoechst staining.
Hoechst-positive (apoptotic) cells were counted in
treatment and control (cells grown in complete medium
containing 10% fetal bovine serum). Data from 10 fields
were collected for each treatment condition. DNA-
Fragmentation Assay was conducted using DNA Frag-
mentation Imaging Kit (Sigma-Aldrich) following man-
ufacturer’s instructions.
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Breast tumorigenesis assay
MDA-MB-231-Luc cells were implanted in mammary

glands of 7–8 weeks old female NOD-SCID mice. MDA-
MB-231-luc cells metastasize to lungs. Tumor-bearing
mice were randomly grouped in four experimental groups
and oral-gavaged with vehicle (intralipid), HNK (3mg/
mice/thrice a week), chloroquine (1 μg/mice/day) and
HNK+ chloroquine for 4 weeks. Tumor progression was
measured regularly. At the end of the experiment, ex vivo
bioluminescent images of lungs were captured to investi-
gate metastatic progression. Briefly, animals were given an
intraperitoneal injection of D-luciferin and were eutha-
nized after 10min. Lungs were excised and images were
captured using IVIS system. Tumors were resected, mea-
sured, weighed, and processed for immunohistochemistry.
A portion of tumors was processed for attaining tumor-
dissociated cells. Tumor-dissociated cells were subjected
to matrigel-invasion, scratch-migration and transwell-
migration assays. For IHC, at least four random, non-
overlapping representative images from each tumor section
from all the tumors of each group were captured using
ImagePro software for quantification. For lung metastasis
assay, lungs excised from tumor-bearing mice were har-
vested in DMEM F12 medium. With curved scissors, lungs
were minced into pieces and transferred into 15ml tubes
containing 2.5ml of respective digestion cocktail (RPMI+
10mg/ml of Collagenase A+ 10mg/ml of Hylauronidase
for lungs. The organs were then placed in shaking water
bath at 37 °C for 30min to allow complete dissociation.
After enzymatic digestion, volumes of the samples were
made up to 10ml with PBS and each sample was filtered
through separate 70 μm nylon cell strainer to remove large
chunks of undigested tissue. Samples were collected in
50ml tubes, centrifuged for 5min at 1500 rpm, RT, in a
bench top centrifuge and supernatant was discarded.
Samples were washed twice by centrifugation in PBS. Pel-
lets were resuspended in culture media and plated onto 6-
well culture plates. Plates were incubated in 37 °C tissue
culture incubator, 5% CO2 to allow growth of colonies for
3–7 days. All animal studies were in accordance with the
guidelines of Johns Hopkins University IACUC.

Statistical analysis
All experiments were performed thrice in triplicates.

Statistical analysis was performed using Microsoft Excel
software. Significant differences were analyzed using the
Student’s t test and two-tailed distribution. Results were
considered to be statistically significant if P < 0.05. Results
were expressed as mean ± SE between triplicate experi-
ments performed thrice.
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