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A CT-derived deep neural network predicts for programmed death 
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Background: Programmed death ligand-1 (PD-L1) expression remains a crucial predictor in selecting 
patients for immunotherapy. The current study aimed to non-invasively predict PD-L1 expression based 
on chest computed tomography (CT) images in advanced lung adenocarcinomas (LUAD), thus help select 
optimal patients who can potentially benefit from immunotherapy.
Methods: A total of 127 patients with stage III and IV LUAD were enrolled into this study. Pretreatment 
enhanced thin-section CT images were available for all patients and were analyzed in terms of both 
morphologic characteristics by radiologists and deep learning (DL), so to further determine the association 
between CT features and PD-L1 expression status. Univariate analysis and multivariate logical regression 
analysis were applied to evaluate significant variables. For DL, the 3D DenseNet model was built and 
validated. The study cohort were grouped by PD-L1 Tumor Proportion Scores (TPS) cutoff value of 1% 
(positive/negative expression) and 50% respectively.
Results: Among 127 LUAD patients, 46 (36.2%) patients were PD-L1-positive and 38 (29.9%) patients 
expressed PD-L1-TPS ≥50%. For morphologic characteristics, univariate and multivariate analysis revealed 
that only lung metastasis was significantly associated with PD-L1 expression status despite of different PD-
L1 TPS cutoff values, and its Area under the receiver operating characteristic curve (AUC) for predicting 
PD-L1 expression were less than 0.700. On the other hand, the predictive value of DL-3D DenseNet model 
was higher than that of the morphologic characteristics, with AUC more than 0.750. 
Conclusions: The traditional morphologic CT characteristics analyzed by radiologists show limited 
prediction efficacy for PD-L1 expression. By contrast, CT-derived deep neural network improves the 
prediction efficacy, it may serve as an important alternative marker for clinical PD-L1 detection.
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Introduction

Programmed cell death 1 receptor (PD-1) and its ligand 
programmed death ligand-1 (PD-L1) expression on 
activated B and T cells of tumor allows them to escape host 
immune system (1,2). PD-L1 expression is associated with 
poor prognosis (3-5), and is related to good therapeutic 
response to PD-L1 inhibitor therapy for patients with 
advanced non-small cell lung cancer (NSCLC). Anti-PD-L1 
antibodies, targeting PD-L1 pathway, have yielded improved 
therapeutic efficacy and superior toxicity profiles compared 
with chemotherapy and brought favorable patient outcome  
(6-8). PD-L1 expression remains a crucial predictor in 
selecting patients for immunotherapy (9). However, 
reasonable use of these agents has been restricted by the 
lack of decisive predictive biomarkers (10). Identification 
of effective predictive biomarkers can enable safe and valid 
use of these agents. Nowadays, the detection of PD-L1 
expression mainly depends on immunohistochemistry method 
of tissue sample. However, in clinical practice, the amount 
of tumor tissues obtained by fine needle aspiration (FNA) is 
rather limited. In some cases, they can only meet pathology 
diagnosis and gene test. However, further PD-L1 detection is 
also essential for some patients to guide therapy. At this time, 
in order to get PD-L1 expression status, FNA may be needed 
to be operated again, causing risk of human-made tumor 
metastasis and more economic burden to patients. Therefore, 
it is necessary to explore other substitutable and noninvasive 
tools to predict molecular expression status for advanced lung 
cancer patients confirmed by histological pathology. The 
search of more efficient and convenient biomarkers to predict 
PD-L1 expression before immune checkpoint inhibitor 
therapy is essential and can help physicians judge who would 
benefit from such treatments.

Despite a few clinical predictors have been discovered 
to predict PD-L1 expression, such as inflammatory  
markers (11) [C-reactive protein (CRP), neutrophil-
lymphocyte ratio (NLR), lymphocyte-monocyte ratio 
(LMR) and platelet-lymphocyte ratio (PLR), etc.] and 
demographic characteristics[age, gender, smoking status, 
driver mutation(s), etc.] (12,13), the results are still 
controversial (14). Refinement of established biomarkers 
and discovery of novel ones are necessary. To the best of 
our knowledge, the role of imaging, as an important means 
of lung cancer diagnosis and therapeutic efficacy evaluation 
tool, is largely unknown in this aspect.

It is reported that computed tomography (CT) imaging 
features were correlated with driver gene mutation status 

of lung cancer (15-18). For molecular aspect, till now, there 
are only limited numbers of reports regarding correlations 
between CT imaging features and PD-L1 expression 
(19,20) in lung cancer patients. And they mainly focused 
on early stage lung adenocarcinomas (LUAD) which is 
usually treated by surgical resection while immunotherapy 
is applied more widely in patients with advanced stage. 
Therefore, it is necessary to study the correlation between 
imaging features and PD-L1 expression in advanced 
lung cancer patients. DL, emerging as a promising and 
prospective imaging tool, its predictive efficacy in PD-L1 
expression has not been reported yet.

In the present study, we aimed to explore the relationship 
between PD-L1 expression status and CT features 
including morphologic characteristics and DL, in order 
to noninvasively predict PD-L1 expression in patients 
with advanced LUAD. We present the following article in 
accordance with the STARD reporting checklist (available 
at http://dx.doi.org/10.21037/atm-19-4690).

Methods

Patients and clinical characteristics

Patients diagnosed with unresectable and advanced 
LUAD (AJCC stage III and IV) by FNA biopsy and 
immunohistochemistry of the original tumor tissue, from 
lung cancer database of the First Affiliated Hospital of Sun 
Yat-sen University from June 1, 2018 to March 1, 2019 
were included. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
was approved by institutional ethics board of The First 
Affiliated Hospital of Sun Yat-Sen University {No. [2018] 
010} and informed consents were waived.

Al l  the  cases  were  f i r s t-v i s i t  pat ients  without 
any treatment and underwent enhanced chest CT 
examination after admission. Metastasis were evaluated 
by contemporaneous CT/MRI/PET-CT scans or biopsy. 
Patient characteristics for analysis included age, gender, 
smoking status, AJCC stage, pathologic tumor-node-
metastasis (TNM) stage, driver gene mutation status, 
and PD-L1 expression. Definition: smoking status (non-
smokers were defined as having smoked <100 cigarettes/
life, former and current smokers were regarded as smokers), 
AJCC stage (AJCC Cancer Staging Handbook, 7th ed. New 
York, NY: Springer, 2009), TNM stage (7th Edition TNM 
classification of lung cancer staging system). In the current 
study, driver gene mutation status indicated wild-type and 
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mutation type, the latter containing EGFR, ALK, KRAS, 
TP53, BRAF, HER2, MET, RET and ROS1.

Immunohistochemical detection of PD-L1 protein 
expression

Tumor tissue were deparaffinized and hydrated for 
immunohistochemical analysis by using primary rabbit 
monoclonal antibody against human PD-L1 (SP263; 
1:2,000; Roche Ventana,  Tucson, AZ, USA).  The 
immunohistochemistry results for PD-L1 expression 
depended on the intensity of cell membrane staining, the 
proportion of PD-L1-positive cells showing membranous 
s ta in ing  were  independent ly  eva luated  by  three 
investigators, and the consensus was reached when existing 
controversy and was regarded as the final results. Membrane 
PD-L1 expression on tumor cells was defined by tumor 
proportion scores (TPS), PD-L1 TPS ≥1% was defined as 
positive expression and PD-L1 TPS <1% was defined as 
negative expression. In our study cohort, PD-L1 TPS <1% 
were observed in 81cases, 1–5% in 1 case, 5–10% in 1 case, 
10–25% in 1 case, 25–50% in 5 cases, ≥50% in 38 cases 
respectively. TPS cutoff of 5% and 10% were not applied in 
the subgroup analysis due to the almost unchanged patient 
numbers compared to TPS cutoff of 1% subgroups.

Morphologic CT characteristics and scanning protocol

Enhanced chest CT images of the included patients 
were acquired within one week prior to biopsy. Imaging 
characteristics were assessed by two experienced chest 
radiologists  (XY Yang and X Wu) through PACS 
reading workstation, with experience of 21 and 25 years, 
respectively. The consensus was reached when divergence 
of views existed. Both of them were blinded to PD-L1 
expression status and the cases were mixed with other 
types of lung cancer cases such as squamous cell carcinoma 
and small cell lung cancer as well as stage I and II 
adenocarcinoma to avoid bias. Definition of Morphologic 
CT imaging characteristics: tumor size indicated maximum 
axial diameter. Lesion type was classified as nodule 
(maximum diameter <3 cm), mass (maximum diameter 
≥3 cm), inflammatory type (patchy lesion with unclear 
boundary). Necrosis meant low density in CT plain scan 
and without enhancement in enhanced scan. The volume 
percentage of necrosis components was divided into 0–25%, 
25–50%, 50–75%, 75–100%.

CT scan was performed with a 64-row multidetector 

CT scanner (Aquilion 64, Canon, Japan) and a 320-row 
multidetector CT scanner (Aquilion ONE ViSION, Canon, 
Japan), in the craniocaudal direction during inspiration. 
For 64-row multidetector CT scanner, the scan parameters 
were as follows: tube voltage 120 kV and tube current  
200 mAs; beam pitch, 0.828; rotation time, 0.5 second; beam 
collimation, 64 mm × 0.5 mm. For 320-row multidetector 
CT scanner, the scan parameters were as follows: tube 
voltage 120 kV and automatic tube current; beam pitch, 
0.813; rotation time, 0.5 second; beam collimation,  
80 mm × 0.5 mm. Axial thin-section multidetector CT 
images of the whole lung were reconstructed with slice 
thickness and spacing of 1 and 0.8 mm by using a high-
spatial frequency algorithm. Iopromide (300 mgI/mL, 
Schering Pharmaceutical Ltd.) was used as contrast agent 
for enhanced scanning, and 80–100 mL was injected at  
3–4 mL/s flow rate.

DL-3D DenseNet model

Segmentation and data preprocessing
The image data extracted by manual segmentation labels 
using the annotation tool “ITK-SNAP” (www.itksnap.
org) (21) contains the region of interest (ROI) of lung 
cancer tissue only which were placed by three experienced 
chest radiologists (XY Yang, X Wu and DD Chang) layer 
by layer in enhanced axial thin-section CT images. The 
dataset generated using labels of tumor contour in each 
slice of CT image were combined to from a 3D image for 
further DL analysis. 3D images for each lung cancer lesion 
were converted to a fixed cube with shape 128×128×64 to 
fit the input of the proposed 3D neural network. Cubic 
interpolation method and zero-padding of the resized image 
along the axis was performed to finally generate a uniform 
three-dimensional image.

3D DenseNet model building
A 3D DenseNet (three-dimensional densely connected 
convolutional networks) model was selected as the base 
model in our experiment due to its obvious advantages 
of excellent over-fitting resistance when training data is 
relatively scarce and its high computational efficiency 
serving the purpose of the subsequent five-fold cross 
validation compared to the others such as ResNet (Deep 
Residual Learning for Image Recognition). The 3D model 
was formed by modifying the kernel of each convolutional 
and pooling layer of the typical DenseNet 2D images to 3D 
forms. Binary cross-entropy loss of our model was optimized 
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by stochastic gradient descent (SGD) with mini-batch size 
of 16. We used cosine annealing to schedule our learning 
rate for total 900 steps by setting initial learning rate to 
1e-6 and minimum learning to 1e-7. The architecture of 
our 3D DenseNet model as given in Figure 1. In our study, 
for the relatively small sample size, data augmentation 
was also applied to further alleviate overfitting. The data 
augmentation includes random image crop and flip, and 
randomly editing window width and center. During model 
training, transfer learning was adopted to speed up learning 
process as well as taking advantage of the pretrained model 
which already contained weights that could be used to 
extract general features. We transform the 2D pretrained 
model using ImageNet dataset to 3D by modifying the 2D 
kernels to 3D kernels.

Cross-validation and evaluation metrics

A stratified five-fold cross-validation procedure was adopted 
to evaluate the prediction performance of DL model in 
which the data were divided up randomly into five groups 
without overlapping according to PD-L1 expression 
where each group has the same proportion of data. During 
training, each group in turn was chosen as validation set and 
the others were used as training set. The final evaluation 
result was based on the performance of the five models.

The prediction metrics of the DL model [including 
area under the receiver operating characteristic curves 
(AUC), accuracy (ACC), specificity (SP), sensitivity (SN)] 
was evaluated according to the performance of the five 

models which were trained and validated. The model was 
implemented under the MXNet (version 1.2.0, Apache 
Software Foundation, Forest Hill, MD USA) framework 
by using Python programming language (version 2.7.12) 
and was trained on NVIDIA GeForce GTX 1080 GPUs 
(NVIDIA, Beijing, China).

Statistical analysis

Clinical and image variables were grouped according to PD-
L1 expression status. Statistical analyses were performed by 
using SPSS 22.0 (IBM, USA). Categorical variables were 
compared by χ2 test, Fisher’s exact test. Continuous variables 
were compared using Mann-Whitney U test. P<0.05 was 
considered as statistically significant. Note: variables of 
presence of pleural tag, air bronchogram, calcification, 
cavitation, margin, lobulation, spiculation, vessel convergence, 
vascular involvement showed were treated as binary variable 
(“yes” or “no”) for statistical analysis. Additionally, according 
to the reported (22,23), smoking status may corelate with 
PD-L1 expression in lung cancer patients, herein, variable 
of smoking status was treated as both continuous variable 
(pack year) and binary variables. In addition, for morphologic 
CT imaging characteristics, Multivariate logistic regression 
analysis was applied to explore independent predictors of PD-
L1 expression, variables included in this analysis were age, 
gender, smoking status, driver-gene mutation status, vascular 
involvement, lung metastasis and lung metastasis type. The 
distinguishing efficacy of the statistically significant variable 
was presented by AUC.

Input
128×128×64

Conv + pool
32×32×16

Dense block
32×32×16

Transition layer
16×16×8

Dense block
16×16×8

Transition layer
8×8×4

Dense block
8×8×4

PoolConvReluBN

Transition layer
4×4×2

Dense block
4×4×2

Pool + linear
1×1×1

Figure 1 An illustration of the architecture of our 3D DenseNet. The input of the network are images with dimension 128×128×64. The 
architecture is mainly formed by four Dense Blocks connected by Transition Layers. In dense block, features with different levels are 
concatenated using skip connections. After each transition layer, the shape of image is halved. BN, batch normalization; ReLU, rectified 
linear unit; Conv, convolution; Pool, pooling.
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Table 1 Correlations between clinicopathological characteristics and PD-L1 expression status in patients with advanced LUAD

Patient characteristics

PD-L1 expression PD-L1 expression

PD-L1 TPS <1% 
(n=81)

PD-L1 TPS ≥1% 
(n=46)

P value
PD-L1 TPS <50% 

(n=89)
PD-L1 TPS ≥50% 

(n=38)
P value

Age(year), n (%) 0.777 0.792 

<60 32 (39.5) 17 (37.0) 35 (39.3) 14 (36.8)

≥60 49 (60.5) 29 (63.0) 54 (60.7) 24 (63.2)

Gender, n (%) 0.231 0.129 

Female 37 (45.7) 16 (34.8) 41 (46.1) 12 (31.6)

Male 44 (54.3) 30 (65.2) 48 (53.9) 26 (68.4)

Smoking pack year,  
mean ± SD

21.37±32.33 20.55±28.27 0.556 18.44±30.45 22.36±30.71 0.881 

Smoking status, n (%) 0.663 0.656 

Non-smokers 42 (51.9) 22 (47.8) 46 (51.7) 18 (47.4)

Current/former smokers 39 (48.1) 24 (52.2) 43 (48.3) 20 (52.6)

AJCC stage, n (%) 0.511 0.882 

III 17 (21.0) 12 (26.1) 20 (22.5) 9 (23.7)

VI 64 (79.0) 34 (73.9) 69 (77.5) 29 (76.3)

T stage, n (%) 0.763 0.757 

T1 13 (16.0) 9 (19.6) 14 (15.7) 8 (21.1)

T2 23 (28.4) 10 (21.7) 23 (25.8) 10 (26.3)

T3 16 (19.8) 7 (15.2) 18 (20.2) 5 (13.2)

T4 30 (37.0) 19 (41.3) 34 (38.2) 15 (39.5)

N stage, n (%) 0.679 0.379 

N0 11 (13.6) 8 (17.4) 11 (12.4) 8 (21.1)

N1 7 (8.6) 6 (13.0) 8 (9.0) 5 (13.2)

N2 29 (35.8) 17 (37.0) 32 (36.0) 14 (36.8)

N3 34 (42.0) 15 (32.6) 38 (42.7) 11 (28.9)

Driver gene mutation, n (%) 0.744 0.559 

Wild-type 16 (19.8) 8 (17.4) 18 (20.2) 6 (15.8)

Mutation type 65 (80.2) 38 (82.6) 71 (79.8) 32 (84.2)

LUAD, lung adenocarcinomas; AJCC, American Joint Committee on Cancer; PD-L1 TPS, tumor proportion scores of PD-L1. 

Results

Correlations between clinicopathological characteristics and 
PD-L1 expression

The clinicopathological characteristics of the 127 LUAD 
patients included in the present study were showed in  
Table 1. Fifty-three (41.7%) patients were female, the 

median age of all patients was 63 years, 64 (50.4%) had 
never smoked, 29 (22.8%) were AJCC stage III and 98 
(77.2%) were stage IV, 72 (56.7%%) were T3–T4 and 49 
(38.6%) were N3, sensitive gene mutations were observed 
in 103 (81.1%) cases. PD-L1 was positive in 46 patients 
(36.2%) and negative in the remaining 81 (63.8%) cases, 
PD-L1-TPS <50% were observed in 89 (70.1%) patients 
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and ≥50% were seen in the remaining 38 (29.9%) cases 
respectively. Statistical analysis showed no significant 
difference of all included clinical indicators both between 
PD-L1-TPS 1% subgroups and between PD-L1-TPS 50% 
subgroups. In contrast, EGFR mutation was associated with 
female gender (P=0.001) and non-smokers (P=0.000) as 
shown in Table S1. 

Associations between morphologic CT characteristics and 
PD-L1 expression

Among 127 patients and as given in Table 2, univariate 
analysis revealed that, among the morphologic CT 
characteristics, only vascular involvement (P=0.022) 
and lung metastasis (P=0.002) were associated with PD-

L1-negative/positive expression status, they were more 
commonly (58% vs. 37%, 56.8% vs. 28.3%) presented in 
PD-L1-negative subgroup. Whilst, for PD-L1-TPS of 50% 
expression status, only lung metastasis (P=0.010) showed 
statistical significance, and was more commonly (53.9% 
vs. 28.9%) presented in PD-L1-TPS <50% expression 
group. Whilst, multivariate logistic regression analysis 
showed that only lung metastasis (P=0.003 for TPS 1%, 
P=0.024 for TPS 50%) was significantly associated with 
PD-L1 expression despite of different PD-L1 TPS cutoff 
values, given in Table 3. ROC curves of the independent 
morphologic CT characteristic for predicting PD-L1-
TPS status of 1% (AUC 0.673) and 50% (AUC 0.626) 
was shown in Figure 2. In contrast, with regard to EGFR 
mutations, a univariate analysis revealed that EGFR-

Table 2 Association between morphologic CT Characteristics and PD-L1 expression status in patients with advanced LUAD

CT characteristics

PD-L1 expression PD-L1 expression

PD-L1 TPS <1% 
(n=81)

PD-L1 TPS ≥1% 
(n=46)

P value
PD-L1 TPS <50% 

(n=89)
PD-L1 TPS ≥50% 

(n=38)
P value

Size (cm), mean ± SD 43.35±28.17 41.88±21.54 0.407 38.03±17.36 44.24±21.51 0.405 

Lesion morphology, n (%) 0.376 0.408 

Nodule (<3 cm) 31 (38.3) 16 (34.8) 34 (38.2) 13 (34.2)

Mass (≥3 cm) 35 (43.2) 25 (54.3) 39 (43.8) 21 (55.3)

Inflammatory type 15 (18.5) 5 (10.9) 16 (18.0) 4 (10.5)

Location, n (%) 0.324 0.093 

RUL 20 (24.7) 19 (41.3) 22 (24.7) 17 (44.7)

RML 12 (14.8) 5 (10.9) 12 (13.5) 5 (13.2)

RLL 15 (18.5) 5 (10.9) 17 (19.1) 3 (7.9)

LUL 23 (28.4) 13 (28.3) 25 (28.1) 11 (28.9)

LLL 11 (13.6) 4 (8.7) 13 (14.6) 2 (5.3)

Axial location, n (%) 0.322 0.502 

Inner 16 (19.8) 13 (28.3) 18 (20.2) 11 (28.9)

Middle 17 (21.0) 12 (26.1) 22 (24.7) 7 (18.4)

Peripheral 48 (59.3) 21 (45.7) 49 (55.1) 20 (52.6)

Necrosis, n (%) 0.683 0.702 

0–25% 46 (56.8) 22 (47.8) 48 (53.9) 20 (52.6)

25–50% 10 (12.3) 9 (19.6) 13 (14.6) 6 (15.8)

50–75% 12 (14.8)  7 (15.2) 15 (16.9) 4 (10.5)

75–100% 13 (16.0) 8 (17.4) 13 (14.6) 8 (21.1)

Table 2 (continued)
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Table 2 (continued)

CT characteristics

PD-L1 expression PD-L1 expression

PD-L1 TPS <1% 
(n=81)

PD-L1 TPS ≥1% 
(n=46)

P value
PD-L1 TPS <50% 

(n=89)
PD-L1 TPS ≥50% 

(n=38)
P value

Pleural tag, n (%) 44 (54.3) 23 (50.0) 0.639 47 (52.8) 20 (52.6) 0.985

Air bronchogram, n (%) 32 (39.5) 13 (28.3) 0.203 33 (37.1) 12 (31.6) 0.553

Calcification, n (%) 19 (23.5) 8 (17.4) 0.422 19 (21.3) 8 (21.1) 0.970 

Cavitation, n (%) 17 (21.0) 11 (23.9) 0.702 18 (20.2) 10 (26.3) 0.448 

Well defined, n (%) 43 (53.1) 27 (58.7) 0.303 49 (55.1) 21 (55.3) 0.983 

Lobulation, n (%) 54 (66.7) 35 (76.1) 0.265 65 (73.0) 24 (63.2) 0.266 

Spiculation, n (%) 49 (60.5) 34 (73.9) 0.127 61 (68.5) 22 (57.9) 0.248 

Vessel convergence, n (%) 34 (42.0) 22 (47.8) 0.523 35 (39.3) 21 (55.3) 0.098 

Vascular involvement, n (%) 47 (58.0) 17 (37.0) 0.022* 49 (55.1) 15 (39.5) 0.108 

Metastasis, n (%)

Pleural 20 (24.7) 14 (30.4) 0.482 22 (24.7) 12 (31.6) 0.424 

Lung 46 (56.8) 13 (28.3) 0.002* 48 (53.9) 11 (28.9) 0.010* 

Bone 22 (27.2) 9 (19.6) 0.338 24 (27.0) 7 (18.4) 0.305 

Liver 8 (9.9) 2 (2.2) 0.442 9 (10.1) 1 (2.6) 0.283 

Adrenal 7 (8.6) 2 (2.2) 0.585 7 (7.9) 2 (5.3) 0.884 

Brain 5 (6.2) 4 (8.7) 0.863 5 (5.6) 4 (10.5) 0.542 

Pleural lesion, n (%) 0.435 0.155 

None 31 (38.3) 23 (50.0) 33 (37.1) 21 (55.3)

Effusion 17 (21.0) 5 (10.9) 19 (21.3) 3 (7.9)

Metastasis 12 (14.8) 7 (15.2) 13 (14.6) 6 (15.8)

Both effusion and metastasis 21 (25.9) 11 (23.9) 24 (27.0) 8 (21.1)

Lung metastasis type, n (%) 0.204 0.608 

Nodular lesion 23 (28.4) 10 (21.7) 25 (28.1) 7 (18.4)

Lymphangitic 9 (11.1) 1 (2.2) 10 (11.2) 1 (2.6)

Both nodular and lymphangitic 14 (17.3) 2 (4.3) 13 (14.6) 3 (7.9)

*, P<0.05 was considered as statistically significant. CT, computed tomography; LUAD, lung adenocarcinomas; PD-L1 TPS, tumor 
proportion scores of PD-L1; RUL, right upper lobe, RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe. 

Table 3 Independent factors for distinguishing PD-L1 expression resulting from multivariate logistic regression analysis and their prediction 
efficacy

Group Characteristic P& P# OR# (95% CI) AUC

PD-L1 TPS <1% or ≥1% Lung metastasis 0.002 0.003 0.14 (0.06–0.51) 0.673 

PD-L1 TPS <50% or ≥50% Lung metastasis 0.010 0.024 0.22 (0.03–0.92) 0.626 
&, unadjusted P value; #, the P value was calculated by multivariable logistic regression analysis which adjusted for age, gender, smoking 
history and driver gene mutation status. P<0.05 was considered as statistically significant. PD-L1 TPS, tumor proportion scores of PD-L1; 
OR, odd ratio; CI, confidence interval; AUC, area under the receiver operating characteristic curve. 
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mutated adenocarcinomas were only statistically associated 
with lung metastasis type (P=0.020), as shown in Table 4. 

PD-L1 prediction efficiency evaluation by DL 3D 
DenseNet model

Five-fold cross-validation of the proposed DL-3D DenseNet 
model was applied to yield the results of prediction efficacy. 
The final result was computed by averaging the results of 
the five folds in respect to each metric. The results of the 
five rounds experiments and the final results were shown in 
Figure 3. In the validation dataset, when PD-L1-TPS cutoff 
value of 1% was used to group the patients, average AUC, 
accuracy, sensitivity and specificity were 0.784, 0.769, 0.773, 
0.760. Whilst, when PD-L1-TPS cutoff value of 50% was 
used, average AUC, accuracy, sensitivity and specificity were 
0.765, 0.712, 0.753, 0.674.

Discussion

Our present study aimed to non-invasively predict PD-L1 
expression status through CT-derived morphologic features 
and DL in advanced LUAD. We found that, among the 
morphologic CT characteristics, only lung metastasis was 
significantly associated with PD-L1 expression status, and 
it was more commonly presented in PD-L1-negative and 
in PD-L1-TPS <50% LUAD compared to PD-L1-positive 
and PD-L1-TPS ≥50% LUAD. AUC of morphologic 

characteristics for predicting PD-L1 expression status 
were less than 0.700. For DL-3D DenseNet model, it 
improved the prediction efficacy with AUC more than 
0.750. Nevertheless, the prediction value with AUC 0.750 
is only moderate, and a further improvement is still needed 
to avoid PD-L1 analysis on the histological specimen. 
To our knowledge, this is the first study to demonstrate 
the association between PD-L1 expressing status and 
CT features in advanced LUAD, which may serve as an 
important alternative marker for clinical PD-L1 detection. 

For patient characteristics, it was reported that smoking 
history is associated with higher PD-L1 tumour proportion 
score (2,6,22,23), high PD-L1 expression (≥50%) was 
correlated with current/former smoking history. In our 
study, we did not find this correlation regardless of whether 
smoking status was treated as continuous variable (pack year) 
or binary variable. This controversial finding needs further 
study and confirmation.

Imaging as a non-invasive method has great potency in 
predicting gene expression and molecular level for many 
kinds of tumors (24,25), and is likely to become an important 
alternative marker for treatment decision making. For lung 
cancer and as to PD-L1 expression prediction, to the best 
our knowledge, there are only limited studies (19,20) focused 
on predicting of PD-L1 expression via morphologic CT 
characteristics. They found that presence of convergence, 
cavitation, absence of surrounding GGO, air bronchogram, 
shape, pleural indentation, tumor mean CT value, the ratio 

Figure 2 ROC curves of the independent morphologic CT characteristic for predicting PD-L1-TPS status of 1% (A: AUC 0.673) and 
50% (B: AUC 0.626). PD-L1-TPS, tumor proportion scores of PD-L1; ROC, receiver operating characteristic curve; AUC, area under the 
receiver operating characteristic curve.
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Table 4 Association between morphologic CT characteristics and EGFR mutation status in patients with advanced LUAD

CT characteristics Driver-gene negative (n=24) EGFR positive (n=69) P value

Size (cm), mean ± SD 42.92±20.67 37.72±17.18 0.268

Lesion morphology, n (%) 0.062

Nodule (<3 cm) 5 (20.8) 28 (40.6)

Mass (≥3 cm) 19 (79.2) 38 (55.1)

Inflammatory type 0 (0.0) 3 (4.3)

Location, n (%) 0.343

RUL 5 (20.8) 21 (30.4)

RML 1 (4.2) 9 (13.0)

RLL 3 (12.5) 12 (17.4)

LUL 10 (41.7) 18 (26.1)

LLL 5 (20.8) 9 (13.0)

Axial location, n (%) 0.242

Inner 1 (4.2) 10 (14.5)

Middle 5 (20.8) 18 (26.1)

Peripheral 18 (75.0) 41 (59.4)

Necrosis, n (%) 0.681

0–25% 17 (70.8) 55 (79.7)

25–50% 3 (12.5) 6 (8.7)

50–75% 2 (8.3) 6 (8.7)

75–100% 2 (8.3) 2 (2.9)

Pleural tag, n (%) 9 (37.5) 49 (71.0) 0.004*

Air bronchogram, n (%) 5 (20.8) 25 (36.2) 0.256

Calcification, n (%) 2 (8.3) 10 (14.5) 0.673

Cavitation, n (%) 1 (4.2) 6 (8.7) 0.783

Well defined, n (%) 19 (79.2) 56 (81.2) 1.000 

Lobulation, n (%) 21 (87.5) 54 (78.3) 0.492 

Spiculation, n (%) 19 (79.2) 54 (78.3) 0.926 

Vessel convergence, n (%) 5 (20.8) 28 (40.6) 0.037*

Vascular involvement, n (%) 7 (29.2) 28 (40.6) 0.320 

Metastasis, n (%)

Pleural 9 (37.5) 26 (37.7) 0.987 

Lung 9 (37.5) 37 (53.6) 0.174 

Bone 4 (16.7) 25 (36.2) 0.075 

Liver 0 (0.0) 6 (8.7) 0.312 

Adrenal 0 (0.0) 5 (7.2) 0.406 

Brain 1 (4.2) 6 (8.7) 0.783 

Table 4 (continued)
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Table 4 (continued)

CT characteristics Driver-gene negative (n=24) EGFR positive (n=69) P value

Pleural lesion, n (%) 0.540 

None 13 (54.2) 28 (40.6)

Effusion 2 (8.3) 13 (18.8)

Metastasis 3 (12.5) 9 (13.0)

Both effusion and metastasis 6 (25.0) 19 (27.5)

Lung metastasis type, n (%) 0.020*

Nodular lesion 4 (16.7) 33 (47.8)

Lymphangitic 2 (8.3) 2 (2.9)

Both nodular and lymphangitic 3 (12.5) 2 (2.9)

*, P<0.05 was considered as statistically significant. Patients negative for EGFR, KRAS, BRAF, HER2, MET, ALK, RET and ROS1 were 
identified as “driver-gene-negative”. CT, computed tomography; LUAD, lung adenocarcinomas; RUL, right upper lobe, RML, right middle 
lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.

Figure 3 ROC curves (A,B) for the five-fold cross-validation in advanced LUAD. The final results (C) were computed by averaging the 
results of the five folds in respect to each metric. AUC, area under the receiver-operating characteristic curve; ACC, accuracy; SP, specificity; 
SN, sensitivity.
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of consolidation mass to tumor mass were significantly 
associated with PD-L1 expression. However, no similar 
findings were found as in our study cohort of LUAD in which 
only lung metastasis was significantly associated with PD-L1 

expression status. The possible reason may be, in their study, 
a large number of the enrolled patients were stage I-II. GGO 
and air bronchogram which might represent lung cancer 
lesion with relatively early stage were common in their study, 
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however, these imaging signs were relatively less common in 
our study cohort. On the contrary, lung metastasis which was 
not mentioned in their studies was a significant characteristic 
correlated with PD-L1 expression status despite of different 
PD-L1 TPS cutoff values.

Interestingly, it was reported that pulmonary metastasis 
is associated with EGFR mutation in LUAD (26-28), 
patients with EGFR-positive LUAD were more prone 
to lung metastasis than those with wild-type EGFR, and 
they tended to be diffuse and random, including miliary 
metastases. However, in these studies, they did not mention 
the status of PD-L1 expression, so the relationship between 
PD-L1 expression status and lung metastasis was unknown. 
In our study, to further confirm the correlation between 
morphologic CT features and PD-L1 expression, we 
further analyzed the correlation between CT characteristics 
and EGFR mutation, finding that pleural tag, vessel 
convergence and lung metastasis type (random nodular like 
lesion) were significantly associated with EGFR mutation 
which was in accordance with the reported (26,27,29). 
As to lung metastasis, we did not find its association with 
EGFR mutation. According to the results of our study, we 
may assume that lung metastasis is associated with PD-
L1 expression status in advanced LUAD, and this finding 
deserves further study and validation. 

Despite these encouraging findings, the predictive 
efficiency of morphologic characteristics (no more than 
0.70) was still limited. To further explore the relationship 
between CT imaging and PD-L1 expression status, the 
emerging and prospective method of DL which is an 
approach called convolutional neural network (CNN) 
analysis was then applied. As a machine learning algorithm 
of artificial intelligence (AI), it enables automated imaging 
features extraction with high data throughput, rather than 
limited to a number of visually inspected image-based 
features observed by naked eyes (30-32). Hold a great 
promise of acquiring a more accurate imaging assessment 
and may be a potent tool to solve some tough problems. 
Furthermore, there has been articles reported that CT-based 
radiomics (another algorithm of machine learning) can be 
used to predict gene mutation status of LUAD (33-35),  
based on the theory that tumor phenotype measured 
quantitatively through radiomics should reflect tumor 
genotype. Additionally, AI can also predict cancer mutation 
status in other organ and for other kinds of mutation types 
(36-38). As for our present study and inspired by theirs, we 
believe that AI also have the potential to predict molecular 
expression status such as PD-L1. In fact, till now, some 

researches have tried to use machine learning algorithm to 
predict PD-L1 expression through pathological images (39), 
and we try to predict it through CT images. 

Compared to other CNN models, the densely connected 
convolutional networks (DenseNet) has better performance 
in classification tasks. Based on this, we further improved 
it by using 3D multimodal medical images, which was also 
applied in other organs (40). Moreover, as for relatively 
small sample size, a series of algorithms such as data 
augmentation were applied to avoid over fitting, and 
transfer learning was also adopted to speed up learning 
process as well as taking advantage of the pretrained model. 
In this study, we firstly assessed the distinguishing ability 
of DL-3D DenseNet for PD-L1 expression in LUAD 
patients. Promisingly, according to the results of our study, 
the 3D-DenseNet model achieved better performance 
in predicting PD-L1 expression in advanced LUAD 
compared with the morphologic characteristics, it may 
enhance our confidence in predicting PD-L1 expression 
status via CT image, thus it may be an alternative marker in 
immunotherapy decision making. 

Our study has several limitations. First, since all the 
cases were advanced lung cancer patients, it was impossible 
to obtain whole tumor specimens surgically, thus tumor 
heterogeneity could not be avoided by FNA biopsy. 
Moreover, our promising findings deserve further validation 
with expanded samples. Due to the limited patient numbers, 
this study lacks external validation. Third, our study focused 
on LUAD and did not address other histologic subtypes.

Conclusions

In conclusion, compared to morphologic CT characteristics, 
CT-derived Deep Neural Network improves the prediction 
efficacy, it has the potential to predict PD-L1 expression 
status in advanced LUAD and may serve as an important 
alternative marker for clinical PD-L1 detection, thus help 
to select the best responders to immunotherapy.
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Table S1 Association between clinicopathological characteristics and EGFR mutation status in patients with advanced LUAD

Patient characteristics Driver-gene negative (n=24) EGFR positive (n=69) P value

Age (year), n (%) 0.219 

<60 11 (45.8) 22 (31.9)

≥60 13 (54.2) 47 (68.1)

Gender, n (%) 0.001*

Female 4 (16.7) 38 (55.1)

Male 20 (83.3) 31 (44.9)

Smoking pack year, mean ± SD 30.64±33.71 13.43±26.93 0.090 

Smoking status, n (%) 0.000* 

Non-smokers 6 (25.0) 48 (69.6)

Current/former smokers 18 (75.0) 21 (30.4)

AJCC stage, n (%) 0.685 

III 5 (20.8) 10 (14.5)

VI 19 (79.2) 59 (85.5)

T stage, n (%) 0.839 

T1 5 (20.8) 10 (14.5)

T2 5 (20.8) 17 (24.6)

T3 4 (16.7) 9 (13.0)

T4 10 (41.7) 33 (47.8)

N stage, n (%) 0.441 

N0 1 (4.2) 9 (13.0)

N1 1 (4.2) 6 (8.7)

N2 9 (37.5) 25 (36.2)

N3 13 (54.2) 29 (42.0)

PD-L1 TPS, n (%)

≥1% 15 (62.5) 23 (33.3) 0.700 

≥50% 12 (50.0) 19 (29.7) 0.258 

*, P<0.05 was considered as statistically significant. LUAD, lung adenocarcinomas; AJCC, American Joint Committee on Cancer; PD-L1 
TPS, tumor proportion scores of PD-L1. 
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