Skip to main content
editorial
. 2020 Aug;12(8):4531–4535. doi: 10.21037/jtd-2019-itm-013

Table 2. Accuracy and AUC value of journal publications based on different datasets and models.

Author Data type Models Accuracy (%) AUC
Wang et al. (13) Mutation features Extreme learning machines 79.17 NA
Mutation features; pathological features; demographic features 95.83
Emaminejad et al. (14) Genomic features Multilayer perceptron; Naïve Bayes NA 0.68
Radiomic features 0.78
Integrated dataset 0.84
Yu et al. (15) Genomic features; transcriptomics/proteomics features; histopathology features Random forest NA 0.81
Matsubara et al. (17) PPI network; gene expression Convolutional networks 83.16 NA
Radom forest 82.63
Support vector machines 81.58
Malik et al. (18) Copy number variations; mutation; protein; RNA; mi-RNA Support vector machines 72.7 NA
Neural network 92.9
RUS ensemble boost 66.7
Giang et al. (20) Gene expression Support vector machines 62.50 0.6964
DNA methylation 71.88 0.6235
mi-RNA expression 65.63 0.722
Integrated dataset 78.13 0.7227

AUC, area under the curve; RUS, random undersampling; NA, not available; PPI, protein-protein interaction.