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Abstract
Cholestatic liver diseases (CLD) begin to develop after an impairment of bile flow 
start to affect the biliary tree. Cholangiocytes actively participate in the liver 
response to injury and repair and the intensity of this reaction is a determinant 
factor for the development of CLD. Progressive cholangiopathies may ultimately 
lead to end-stage liver disease requiring at the end orthotopic liver 
transplantation. This narrative review will discuss cholangiocyte biology and 
pathogenesis mechanisms involved in four intrahepatic CLD: Primary biliary 
cholangitis, primary sclerosing cholangitis, cystic fibrosis involving the liver, and 
polycystic liver disease.
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Core tip: Several factors can condition bile flow derangements including environmental 
triggering factors, bile transport obstruction and conditions that alter bile concentration. 
Sustained pro inflammatory signaling associated with genetic and/or epigenetic 
dysregulation can condition a chronic dysfunctional state that can lead to a fibrogenic state 
with loss of homeostasis and sometimes malignant transformation.
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INTRODUCTION
Cholestatic liver diseases (CLD) encompasses progressive cholangiopathies, which 
may evolve to end-stage liver disease. In the United States from 1988 to 2018, this 
group of illness corresponded to 14.2% of all liver transplants[1]. Thus far, their high 
morbidity and mortality are an economic burden that evolved from the lack of 
effective treatments. Moreover, 10% to 40% of these patients will have a recurrence of 
the primary disease after liver transplantation (LT)[2].

New prospective therapeutic targets are an unmet necessity, a number of which are 
under preclinical development. To evaluate these potential therapies, it is essential to 
understand the primary target of these pathologies, the cholangiocytes. This review 
will reinforce the current understanding of the core concepts of CLD pathogenesis in 
the light of the last translational advancements that may impact clinical management.

CLD: COMMON PATHOGENIC MECHANISMS
Several factors can condition bile flow derangements (Figure 1). Although 
environmental triggering factors are mostly unknown, antigenic stimuli, exotoxins, 
endotoxins, xenobiotics, and microorganisms can promote cholangiocyte reaction that 
will evolve into a cholestatic state[3]. Bile transport obstruction is another predisposing 
factor. Intrahepatic and extrahepatic obstruction can take place due to extrinsic benign 
compression (cystic diseases), malignant mass effect (cholangiocarcinomas), and also 
as a consequence of cholelithiasis formation or migration throughout the biliary tree. 
Moreover, conditions that slow biliary flow promote a cholestatic state with increased 
bile acid (BA) concentration. Sepsis, hyperestrogenic states (pregnancy), congestive 
heart failure, and dysfunction of BA transporter genes may alter the main 
characteristics of BA, conditioning a more cytotoxic BA component.

Early cholangiocyte response may allow resolution of injury, however, sustained 
pro-inflammatory signaling associated with disragulation of genetic and/or epigenetic 
regulatory mechanisms could condition late dysfunctional permanent state. 
Eventually fibrogenic state with biliary and periportal fibrosis, loss of tissue 
homeostasis and autocrine and paracrine remodeling would be achieved. Ultimately, 
proliferation may lead to cell-cycle alteration, senescence, apoptosis, ductopenia, 
mesenchymal infiltration and sometimes malignant transformation. To date, new 
therapeutic targets are being developed for each CLD considering the core of this 
pathogenic process. The main framework will be analyzed along with the foundation 
for potential clinical development.

Ductular reaction: First core concept
Intra and extra-hepatic bile ductules of different sizes are lined by cholangiocytes, 
which are epithelial cells that regulate and modify bile volume and composition[3]. 
These vary in size, metabolic rate as well as proliferative and plasticity capabilities. 
Biliary differentiation pathways are being more thoroughly understood and so it is 
now known that hepatocytes and cholangiocytes have a common stem cell precursor, 
and trans differentiation may occur in massive parenchymal loss from one to another, 
although the exact mechanisms are not well understood[4].

Ductular reaction (DR) is part of the injury response. It is triggered by cholestasis 
which activates the hepatic progenitor cells in CLD[5]. The sonic-hedgehog pathway 
promotes both cholangiocyte maturation and deposition of fibronectin in ductular-
reactive cells[6]. DR may induce injury resolution, or, biliary fibrosis in the presence of 
perpetuating transcriptional inflammatory addiction. The cytokine panel for this 
transcriptional impairment depends on the disease phenotype and ultimately will 
condition different histological classifications beyond the scope of this review[7]. 
Figure 2 lists the dominant spectrum of CLD.

Bile acid toxicity and mitochondrial dysfunction
The second core fundamental framework of CLD pathogenesis is BA cytotoxicity and 
mitochondrial dysfunction. Besides its functional role of converting lipid bilayers into 
mixed micelles, BA are endogenous ligands that activate a network of receptors 
including nuclear receptor farnesoid X (FXR), vitamin D3 receptor (VDR), pregnane X 
receptor (PXR), constitutive androstane receptor (CAR), membrane G protein-coupled 
bile acid receptor-1, and Takeda-G-protein receptor5 (TGR5). Indeed, FXR and TGR5 
provide an anti-inflammatory liver response in mouse models[8]. In fact, FXR mutations 
have been considered a cause of progressive familial intrahepatic cholestasis. Intestinal 
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Figure 1  Core pathogenic mechanism of cholestatic liver diseases.

activation of FXR increases FGF15, a bile synthesis repressor through CYP7A1, a main 
regulatory enzyme, which reduces the pool size of BA and protects against escalating 
pro-inflammatory signaling in mouse models[9].

Likewise, BA hepatobiliary transport dysfunction may lead to several phenotypes of 
cholestatic diseases. Although transcellular BA transport details are mostly unknown, 
a number of apical and basolateral transporters have been identified. After synthesis of 
BA in the liver by CYP7A1 and hydroxylation by CYP8B1, bile acids and 
phospholipids are excreted and secreted across the canalicular membrane of 
hepatocytes into the biliary tree by BSEP (bile salt export pump/ABCB11) and ABCB4 
(ATP binding cassette subfamily B member 4), respectively. BA are then re-uptaken in 
the terminal ileum by ASBT (apical sodium-dependent bile acid transporter/ 
SCL10A2), and released into the portal system by a basolateral transporter (OSTα/β) 
and may later be re-uptaken by the liver via NTCP (Na+/taurocholate cotransporting 
polypeptide) or OATP (organic anion transporting polypeptides) transporters. 
Intrahepatic BA can further be processed by hydroxylation, glucuronidation or 
sulfation, and excreted back into sinusoidal and systemic circulation by OSTα/β and 
MRP3/4 bile acid transporters. Critical steps in the enterohepatic circulation are 
regulated by the BA receptor FXR, which limits BA uptake and synthesis by enhancing 
biliary and basolateral BA export. FGF19, a gut-derived FXR-dependent enterocrine 
hormone, suppresses hepatic bile acid synthesis and induces gallbladder filling when 
it is activated by high intestinal BA concentrations[10].

Recently, AMP-activated protein kinase (AMPK) signaling pathways have been 
implicated in the pathogenesis of drug-induced cholestasis[11]. An example of this 
pathway is metformin. An older study reported that after 2-3 wk of metformin usage, 
several patients developed portal inflammation and ductular proliferation[12].

Moreover, it is well-known that the hydrophilic profiles in BA spectrum protects 
against apoptosis (TCA and UDCA), while those in the hydrophobic range induce 
hepatic apoptosis and liver injury (TLCA and GCDCA). Additionally, accumulation of 
cytotoxic BA activates NF-κB-mediated inflammatory cytokines. This pathway is 
significant in intrahepatic cholestasis of pregnancy as it may arrest placental 
inflammation[13].

Several studies have described BA toxicities and established commonalities between 
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Figure 2  Cholestatic liver disease clinical spectrum.

this toxicity and mitochondrial dysfunction in extra-hepatic cholestasis[14]. In vitro 
studies demonstrated BA effect in normal liver cell line LO2. Glycochenodeoxycholic 
acid (GCDCA) stimulated cytotoxicity, disrupted the mitochondrial membrane 
potential, increasing production of reactive oxygen species (ROS), and leading to 
decreased mitochondrial mass and mitochondrial DNA content[14]. This feature can be 
fundamentally related to the development of anti-mitochondrial antibodies (AMA) in 
primary biliary cholangitis (PBC), consequence of infiltration by both CD4+ and CD8+ 
T cells reactive to conserved mitochondrial and nuclear antigens, particularly the E2 
component of the pyruvate dehydrogenase complex — the principal target of 
circulating AMA[15]. Moreover, one study pointed deacetylation of the gene PGC-1α, 
peroxisome proliferator-activated receptor gamma, coactivator one alpha. PGC-1 α 
acts as an enzyme in mitochondria biogenesis[14]. In chronic intrahepatic cholestasis, 
the lipid peroxidation activates extracellular matrix cells, ROS, and aldehydes; which 
may exert direct fibrogenic effects on activated hepatic stellate cells[16].

Immunogenetic and epigenetic setpoints
The third fundamental aspect of the core framework is the influence of 
immunogenetics and epigenetics on immunoinflammatory response. Patients with 
CLD exhibit a variety of genetic alterations that account for the different elements of 
each CLD. However, some of those genes may be directly implicated in the 
progression rate of the cholestatic phenotype. Recently one study screened some of the 
progression-related candidate genes for primary biliary cholangitis[17]. They evaluated 
315 DNA samples from patients for single nucleotide polymorphisms (SNPs) of 11 
candidate genes involved in regulation of bile acid synthesis. Interestingly, genetic 
variants of CYP7A1, as well as its transcriptional activators (HNF4A and PPARGC1A), 
may activate bile acid synthesis in an escalating fashion leading to the progressing 
cholestasis in PBC[17]. It is significant that this gene could become a potential target for 
new therapeutics, or indirectly their transcriptional activators could serve as 
modulatory targets. This modulation is a type of epigenetic control of gene expression 
as a pathogenic mechanism.

Another study highlighted the central role of the IL-12-STAT4-Th1 pathway, a pro-
inflammatory pathway in the progression of PBC, as well as the HLA associations and 
epigenetic effects[18,19]. Figure 3 shows a panel of immunogenetic genes, where those 
directly related to the T-cell function or the B-cells or the IL12-STAT4-Th1 are 
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Figure 3  Immunogenetics related to the core of cholestatic liver diseases. PSC: Primary sclerosing cholangitis.

highlighted with a red dot. Additionally, genes associated with loss of immune-
tolerance and epithelial permeability are marked with a yellow dot[20,21].

Dysfunctional matrix re-arrangements and fibrogenesis
To complete the core framework of CLD, dysfunctional matrix rearrangements and 
fibrogenesis are the fourth concept. Fibrogenesis is a dynamic process that appears 
intricate to immunoinflammatory mechanisms, secretion of tissue metalloproteinases, 
cytokine networks and derangements of mesenchymal cells infiltration with ultimate 
loss of tissue maintenance homeostasis[16]. The pattern of extra cellular matrix (ECM) 
accumulation in some CLD such as PBC is characterized by increased expression of 
mRNA encoding collagen type I, III, and IV, which in mesenchymal cells promotes the 
expansion of portal tracts, leading to deposition of excessive fibrillar ECM. In this way 
the fibrogenic processes involve damaged and non-damaged bile ducts as well as the 
periportal sinusoidal system, resulting in progressive cholestasis[16]. In contrast in 
patients with primary sclerosing cholangitis (PSC), the fibrogenic process has been 
compared to atherosclerosis onion-like concentric recruitment of pro-fibrogenic cells. 
Also animal models have reported vascular injury with ischemia of the bile duct 
epithelial cells during development of PSC lesion[22].

Hepatic stellate cells (HSC) are the primary source of myofibroblast during liver 
injury, however mesenchymal cells also give rise to myofibroblasts (portal 
myofibroblasts (PMF) as these cells are located in the portal tract)[23]. Studies in animal 
models of biliary cirrhosis (rat) reported that PMF use vascular endothelial growth 
factor A-containing microparticles signaling for newly formed vessels, driving scar 
progression, while acting as mural cells[24]. This type of fibrosis progression originating 
from the portal tract is crucial in cystic fibrosis-related liver fibrosis[25]. In PBC 
epigenetic influence has been observed in the discordance of monozygotic twins. The 
role of the CD40-CD40L interaction in T-cell and B-cell mechanisms has been reported 
in the decreased methylation of CD40L promoter regions amongst PBC patients 
compared with controls[18]. Similarly, X chromosome monosomy has been found on 
peripheral cells of PBC patients[26]. Recently the Milan PBC epigenetic Study Group 
reported demethylation of the CXCR3 promoter, which is negatively correlated with 
peripheral blood receptor expression in CD4+ T-cells[27]. The epigenetic role of 
demethylation is considered as CXCL9-11 is up-regulated in damaged bile ducts and it 
is a co-ligand for CXCR3, which is highly expressed in Th1 and Th17[28]. Another group 
evaluated the role of microRNA (miR), that can also promote downregulation of 
protein-coding gene expression. Down-Regulation of miR-122a and miR-26a was 
reported, as well as an increased expression of miR-328 and miR-299-5p. These 
microRNAs are known to affect cell proliferation, inflammation, oxidative stress 
metabolism, and apoptosis[29].
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PRE-CLINICAL THERAPEUTIC DEVELOPMENTS
From a pathogenic standpoint, a number of therapeutic genetic and epigenetic targets 
can be considered. Some pathways already have one or more target drugs available. 
Table 1.

A number of preclinical studies may pave the way to new clinical advancements. A 
few of them are listed in Table 2, where we highlight the main pathogenic framework 
as described before.

CLINICAL TRIALS AND TRANSLATIONAL RESEARCH
The core fundamental concepts and pathogenic framework are platforms to build new 
models of clinical interventions for specific CLD. This section addresses the main 
cholestatic diseases individually.

Primary biliary cholangitis
PBC is characterized histologically by intralobular nonsuppurative bile duct 
destruction by lymphocytic cholangitis[30]. Patients with PBC often have a decreased 
quality of life as the disease progresses to hepatic fibrosis and end-stage liver disease. 
To date, one-third of the patients do not have a biochemical response to 
ursodeoxycholic acid (UDCA), which is primarily defined by bilirubin and alkaline 
phosphatase levels after one year of UDCA.

PBC inflammatory disarrays present with increased cholangiocyte chemokines 
released mainly CXCL10, CXCL9, CX3CL1, and CCL20, which involve the IL-12/IL23 
pathways[31]. A number of novel therapeutics in immunomodulation such as fibrates 
and budesonide had promising results as an alternative to UDCA nonresponders, and 
recently obeticholic acid was approved by the FDA for UDCA non responders[32-34]. 
Advancements for PBC patients also include agonists for peroxisome proliferator-
activated receptor alpha (PPARα), FXR, GR/PXR most often in combination with 
UDCA, fibrates, obeticholic acid (OCA) and budesonide, respectively[35]. Some of these 
translational therapeutics are mentioned in Table 3 and can also be used in PSC as 
discussed as follows.

Primary sclerosing cholangitis
There are currently no approved therapies for PSC. The disease causes a significant 
economic burden, and patients have high hospitalization and malignancy rates, often 
progressing to end-stage liver disease, requiring eventually liver transplantation. 
Table 3 summarizes the main translational research in the field. Novel approaches for 
PSC include transcriptional modifiers of bile formation, such as the agonists of FXR, 
PXR, GR and activation of PPARα. This activation can be promoted by fibrates as they 
decrease expression of inflammatory cytokines, also reducing hepatocyte BA 
synthesis. Another approach is the use of agonists of Takeda-G-protein 5 (TGR5), a BA 
membrane receptor expressed in various tissues as it can lower the levels of 
proinflammatory cytokines in bile ducts[36]. Other approaches include inhibitors of the 
ileal apical sodium BA transporter, derivatives of the FXR-induced fibroblast growth 
factor 19 (FXR-induced FGF19) from the ileum that suppress hepatic BA synthesis, and 
norursodesoxicholic acid (norUDCA), a side chain shortened UDCA derivative.

Cystic fibrosis involving the liver – hepatobiliary spectrum
The frequency of biliary manifestations in cystic fibrosis (CF) is still unclear. Clinical 
phenotypes range from gallbladder dyskinesia, symptomatic cholelithiasis to 
sclerosing obstructive cholangitis. Early diagnosis can be challanging. Tools like the 
Aspartate Aminotransferase-to-Platelet Ratio Index (APRI) are reliable at predicting 
severe fibrosis, but not for differentiating fibrosis in early stages. Therefore, serum 
biomarkers are an unmet necessity thus far. Promising research areas include further 
investigating the role of intestinal bile salt malabsorption such as the plasma fibroblast 
growth factor 19 (FGF19) and the intermediate of CYP7A activity and the 4-cholesten-
3-one (C4)[37]. Transient elastography may be useful as well, however appropriate 
validation in mild-to-moderate fibrosis is still pending[38]. Clinical trials for CF 
cholestasis, using the new generation of therapeutic targets beyond UDCA, would also 
provide benefits to patients. Some agents discussed previously had good results in 
preclinical research, such as NorUDCA, tested in mice[39].

Recent CF animal model investigations uncovered the underpinning relationship of 
the CF transmembrane conductance regulator and the control of biliary epithelial 
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Table 1 Potential pathways as targets for existing antibodies

Drug Primary role of the pathway in specific cholestatic liver disease Previous disease of 
drug-testing Ref.

Anti-CD40 
(dacetuzumab/lucatumumab)

T-cell-B-cell interactions in primary biliary cholangitis Multiple sclerosis (pre-
clinical)

[53]

Anti-CXCL10 (MDX-1100) CXCR3-CXCL9/10/11 CXCR3 is upregulated on liver-infiltrating Th1 and Th17 in 
primary biliargy cholangitis

Rheumatoid arthritis [54]

Anti-CXCL13 (Mab 5261) T- and B-cell migration to germinal centers in primary biliary cholangitis Preclinical development [55]

Anti-CCR6 Recruitment of Th17 cells around inflamed biliary epithelial cells in primary 
biliary cholangitis

Preclinical development [56]

Anti-GRP35 Activation of GPR35 reduces IL-4 release from natural killer T cells in primary 
sclerosing cholangitis

Antibody recently 
developed

[57]

Anti-PRKD2 SIK2 pathway in PSC, AMPK-related kinase PRKD2 polymorphism are seen in 
early inflammatory bowel disease in primary sclerosing cholangitis

Preclinical development [58]

PSC: Primary sclerosing cholangitis.

inflammation and permeability mediated by TLR4-NF-κB[40]. Moreover, a number of 
studies have identified a dysfunctional PPAR-gamma (peroxisome proliferator-
activated receptor gamma), that was partially recovered with PPAR-gamma ligands, 
as rosiglitazone, particularly attenuating biliary fibrosis in CF[41]. Another study, also in 
murine model, linked those PPAR-gamma as a limiting factor for NF-κB-dependent 
inflammation[42]. These findings can possibly be further studied as possible target for 
future therapies.

Polycystic liver disease
Polycystic liver diseases are autosomal dominant disorders that result from a mutation 
of PRKCSH or Sec63 genes; genes that are mainly expressed in cholangiocytes[43]. 
Cystogenesis in this scenario is due to benign cholangiocyte proliferation, with cell-
cycle dysregulation and increased level of cAMP in cholangiocytes leading to cyst 
progression and abnormal fluid transport[44]. Over time, the cyst growth may compress 
the biliary tree impairing bile flow as well. Liver volume is a prognostic marker as 
complications may occur as the disease progresses, such as hepatic cyst infection, 
rupture, hemorrhage and hepatic venous outflow obstruction[45]. Therapeutic 
developments have focused in preclinical studies in lowering cAMP and stopping or 
reversing progression, usually evaluated by the organ size and hepatic cystic volume. 
Octreotide became an option for treatment via decrease in cAMP levels[46,47]. Recently 
an open-label clinical trial tested UDCA effect in cystic liver diseases and reported a 
reduction of liver cyst volume growth after 24 wk of treatment[48,49]. This effect was 
expected as UDCA decreases the concentration of cytotoxic BA and therefore 
diminishes proliferation stimuli[50]. Additionally, more than 50% of patients may have 
fibrosis[51].

CONCLUSION
Although CLD pathogenic features are becoming unveiled, and translational research 
is achieving success, some findings still challenge what we know about the basic 
molecular developments in CLD, such as the relationship of FXR agonists, synthesis of 
FGF19 and metabolism expression and cell survival[52], and ultimately possible 
carcinogenesis. To date, inhibitors of the FGF19/FGFR4 pathway are in development 
for the treatment of hepatocellular malignancies. This acknowledgment for the regular 
hepatology practice is essential, as for a number of cases, hepatologists and oncologist 
specialized in hepatobiliary tumors do not often work on the same cases at the same 
point in time. However, the same patient may experience interactions with these 
professionals on different occasions in the course of disease progression. For the 
current therapeutics of cholestatic disease, FXR agonists may represent a novel 
approach for PBC, and trigger experimentational use for PSC. In the long run, 
however, the aberrant expression of FGF19 in its oncogenic driver is not entirely 
presumed. The landscape of modulation of the fibroblast growth factor family, as well 
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Table 2 Preclinical research cholestatic liver diseases

Area of concern Findings Approach Ref.

Mitochondrial damage by GCDCA Mitofusin 2 protects hepatocyte mitochondrial function In vitro (LO2 cell 
lines)

[59]

Immunomodulation in primary biliary 
cholangitis with CTLA-4-Ig (immunoglobulin) 
as an immunotherapeutic agent

Signaling by CTLA-4 can modulate costimulation and induce inhibitory 
signals

In vivo (murine 
models)

[60]

Immunomodulation in primary biliary 
cholangitis with anti-CD40L

Reduced liver inflammation significantly initial lowering of anti-mitochondrial 
antibodies was observed but non-sustained.

In vivo (murine 
models)

[61]

Action of nuclear bile acid receptor FXR in 
cholestasis

Hepatoprotection from cholestasis by inducing FGF-15 In vivo (murine 
model)

[9]

Immunomodulation Anti-CCR5/CCR2 in 
combination with all-trans-retinoic acid

Significant reduction in plasma liver enzymes, bilirubin, liver fibrosis, bile 
duct proliferation and hepatic infiltration of neutrophils and T cells and 
expression of cytokines

In vivo (murine 
model)

[62]

Curcumin acts through FXR signaling Protection against alpha-naphthylisothiocyanate ANIT-induced cholestasis In vitro and in 
vivo (murine 
model)

[63]

Modulation of bile duct proliferation, with 
Melatonin

GnRH stimulated fibrosis gene expression in Hepatic stellate cells; melatonin 
may improve outcomes of cholestasis by suppressing GnRH.

In vivo (murine 
model)

[64]

Apamin, an apitoxin (bee venom) derivate 
prevented tetrachloride-induced liver fibrosis

Apamin suppressed the deposition of collagen, the proliferation of BECs and 
expression of fibrogenic genes

In vivo (murine 
model)

[65]

Toxic bile acids induce mitochondrial 
fragmentation. Preventing fragmentation 
improved outcome

Decreasing mitochondrial fission substantially diminished ROS levels, liver 
injury, and fibrosis under cholestatic conditions

In vivo Knockout 
mouse models

[66]

Epigenetic approach Histone deacetylase 4 
(HDAC4) restores prohibitin-1 (PHB1)

Genomic reprogramming, with regression of the fibrotic phenotype In vivo Knockout 
mouse models

[67]

Anti-γ-glutamyl transpeptidase antibody for 
osteodystrophy in cholestatic liver disease

GGT inhibited mineral nodule formation and expression of alkaline 
phosphatase and bone sialoprotein in osteoblastic cells.

In vivo (murine 
model)

[68]

EGFR signaling protects from cholestatic liver 
injury and fibrosis.

STAT3 is a negative regulator of bile acids synthesis and protects from bile 
acid-induced apoptosis. Additionally, it regulates EGFR expression

In vivo Knockout 
mouse models

[69]

Necroptosis pathway in primary biliary 
cholangitis

Necroinflammatory pathways regulated by receptor-interacting protein 3 
(RIP3), with deleterious progress in cholestatic diseases. RIP3 deficiency 
blocked bile-duct-ligation-induced (BDL) necroinflammation at 3 and 14 d 
post-BDL

In vivo Knockout 
mouse models

[70]

Tauroursodeoxycholic acid modulates 
apoptosis in mice

Significant reduction of liver fibrosis, accompanied by a slight decrease of liver 
damage

In vivo (murine 
model)

[71]

as its signal through the transmembrane tyrosine kinase receptors, needs an operable 
spotlight in cholestatic diseases.

Moreover, in pre-carcinogenic sclerosing conditions such as PSC, the agonistic effect 
of cell proliferation, differentiation, and tissue repair through a potential oncogenic 
signaling pathway demands further scrutiny. Besides, a possible role in therapeutic 
resistance for advanced metastatic hepatocellular carcinomas, once the pathway is 
wired up, is also concerning. Epigenetic modulation in the core of the CLD and the 
hepatostat growth activation through FGF19/FGFR4 may interface with the Hippo-
Yap signaling and play an essential role in liver carcinogenesis.

It is expected that the current understanding of the multifactorial pathogenic 
process and the potential substantial role of epigenetics will drive further much 
needed basic research and introduce new concepts and prospective therapeutic targets 
to the world of CLD.
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Table 3 Clinical trials and translational research

Area of concern and specific 
cholestatic liver disease Findings Phase, study description Clinical trial 

number Ref.

IL12/IL23 Inflammatory 
pathway and loss of self-
tolerance (Primary biliary 
cholangitis)

After 28 wk of treatment modest decreases in 
alkaline phosphatase

Phase 2, open-label proof of 
concept using Ustekimunab 
for ursodeoxycholic acid non-
responsive patients

NCT01389973 [72]

Ileal bile acid transporter (IBAT) 
(Primary biliary cholangiti, 
Alagille syndrome, progressive 
familial intrahepatic cholestasis)

Bile acid transporter inhibitor A4250 interrupts 
enterohepatic bile acid circulation at the terminal 
ileum

Phase 1 (40 individuals) 
completed Bile acids A4250 
either as monotherapy or in 
combination with colonic 
release cholestyramine

NCT02963077 [73]

Modified bile acid and FXR 
agonist derived from 
chenodeoxycholic acid 
Obeticholic acid (OCA) (Primary 
biliary cholangitis)

Durable treatment response; the drug was 
approved by FDA in May 2017 for non-UDCA 
responders

Phase 4, double-blind, 
randomized, placebo-
controlled, multicenter (428 
patients) estimated 
completion by 2025 (COBALT 
study)

NCT02308111 [34]

IBAT inhibition by GSK2330672 After 14 d, GSK2330672 demonstrated to be safe, 
well tolerated and reduced pruritus severity

Phase 2 double-blind, 
randomized, placebo-
controlled

NCT01899703 [74]

Bile acids Significantly reduced ALT and the bile acid 
intermediate C4

Phase I: Combination of 
UDCA and ATRA

NCT01456468 [75]

Bile acids Obeticholic acid 
monotherapy (Primary biliary 
cholangitis)

With ursodiol or as monotherapy for 12 mo 
decreases from baseline in alkaline phosphatase 
and total bilirubin levels that differed 
significantly from the placebo. observed changes

Phase 3, double-blind, 
placebo-controlled trial and 
long-term safety extension of 
obeticholic acid (217 patients) 
(POISE study)

NCT01473524 [76]

Bezafibrate 400 mg alternative PBC patients with inadequate response to 
ursodeoxycholic acid alone, treatment with 
bezafibrate in addition to ursodeoxycholic acid 
resulted in a rate of complete biochemical 
response that was significantly higher than the 
rate with placebo and ursodeoxycholic acid 
therapy

Phase 3 multi-center, 
randomized, placebo-
controlled, parallel-group (100 
patients) (BEZURSO study)

NCT01654731 [77]

Different doses of UDCA in 
primary sclerosing cholangitis

Significantly reduced ALP values dose-
dependently

Phase 2 double-blind, 
randomized, multi-center, 
placebo-controlled (159 
patients) (NUC3)

NCT01755507 [78]

Pentoxifylline as 
immunomodulator for primary 
biliary cholangitis

The study is small, and results were in 
clinicaltrials.gov, but due to study size no 
conclusion can be safely achieved

Phase 2, pilot study, open-
label Pentoxifylline 400 mg 
TID for six months (20 
participants)

NCT01249092 Results at 
clinicaltrials.gov

Umbilical cord-derived 
mesenchymal cells (UC-MSC)

A significant decrease in alkaline phosphatase Phase1/2 study, randomized, 
parallel group (100 
participants) 12 wk of 
treatment

NCT01662973 [79]

Mitomycin C in primary 
sclerosing cholangitis

Final results awaited Phase 2, double-blind, 
randomized, parallel group 
(130 participants)

NCT01688024 -

Curcumin in primary sclerosing 
cholangitis

Final results awaited Phase1/2 open-label pilot 
study Evaluating the safety 
and efficacy of curcumin (15 
participants)

NCT02978339 -

Human monoclonal antibody 
(BTT1023) that targets the 
vascular adhesion protein (VAP-
1) in primary sclerosing 
cholangitis

Recruiting Phase 2, a single arm, two-
stage, multicenter, open-label 
(41 participants)

NCT02239211 [80]

Cenicriviroc a CCR2/CCR5 
inhibitor proof of concept in 
primary sclerosing cholangitis

Results awaited Phase 2, proof of concept, 
open-label (24 participants) 
(PERSEUS study)

NCT02653625 -

Bile acids Maralixibat Apical bile 
acids transporter inhibition 
(ASBTi) in primary sclerosing 
cholangitis

Although results are online, complete 
information is still awaited

Phase 2, pilot, open-label NCT02061540 Results available 
at clinicaltrial.gov
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Immunomodulation 
Simtuzumab in primary 
sclerosing cholangitis 
Monoclonal antibody against 
lysyl oxidase-like 2 (LOXL2)

Results awaited Phase 2b, dose-ranging, 
randomized, double-blind, 
placebo-controlled (235 
participants)

NCT01672853 -

Bile acids Obethicolic acid in 
primary biliary cholangitis

Treatment with OCA 5-10 mg reduced serum 
ALP in patients with PSC. Mild to moderate 
dose-related pruritus was the most common 
adverse event

Phase 2, double-blind, 
placebo-controlled trial. Dose-
Finding (AESOP)

NCT02177136 [80]

PSC: Primary sclerosing cholangitis.
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