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Abstract: Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to 

level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome 

(AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, 

cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients 

rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a 

cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated 

into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how 

the latent reservoir is established and maintained, residual viremia and viremic rebound upon with-

drawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. 

Selected technologies currently being used to advance our understanding of HIV latency will also 

be presented, as will a perspective on which areas of advancement are most essential for producing 

the next generation of HIV-1 therapeutics. 

Keywords: HIV, latency, provirus, integration, residual viremia, antiretroviral, T cell, CD4, TCR, clonal expansion, homeo-
static maintenance, multiple displacement amplification, MDA. 

1. INTRODUCTION 

Combination antiretroviral therapy (cART) against HIV-1  
infection is a truly remarkable achievement of modern medi-
cine, capable of reducing viral load to <50 particles/mL and 
halting disease progression [1-3]. Moreover, individuals 
whose viral load is stably suppressed cannot sexually trans-
mit the virus [4]. Typically comprised of two nucleoside 
reverse transcriptase inhibitors (NRTIs) and an integrase 
strand transfer inhibitor (INSTI), a non-nucleoside reverse 
transcriptase inhibitor (NNRTI), or a protease inhibitor (PI) 
with a pharmacokinetic (PK) enhancer such as cobicistat or 
ritonavir [5], modern cART is better tolerated than previous 
combinations of antiretroviral drugs. However, the cost of 
cART treatment is high, long term cardiac and hepatic toxic-
ity remains a concern [6-9], and because low-level viremia 
persists on cART and quickly rebounds upon cART cessa-
tion [10, 11], lifelong treatment is required.  

The principal barrier to a cure for HIV-1 infection is the 
stable reservoir of latent virus in resting memory CD4+ T cells 
[12-18] maintained even in patients whose viremia is sup-
pressed on long-term cART [19-24]. With a t½ alternatively 
measured at 3.7 [21, 23] or 3.6 years [20], the slow decay rate 
of the latent reservoir is prohibitive to cure by lifelong cART 
alone. Hence, the next generation of antiretroviral therapeutics 
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must target the latent viral reservoir for reduction and even-
tual elimination, and for this, a better understanding of HIV-1  
latency and the processes that promote, maintain, and reverse 
it, is required. 

Prolonged, reversibly quiescent infection is the essence 
of viral latency [25]. This requires that (i) the infecting virus 
does not elicit an immune response that kills the host cell, 
(ii) expression of viral genes is highly restricted yet can be 
activated under favorable intracellular conditions [25], and 
(iii) infected cells and their progeny can persist for an ex-
tended period of time. In the case of HIV-1, the first condi-
tion is met by integration of viral DNA into the genome of 
the infected cell [26, 27], creating a provirus essentially in-
visible to host antiviral surveillance. How HIV-1 meets the 
second condition is less clear, although evidence that the 
latent reservoir is maintained in CD4+ resting memory T 
cells that have an intracellular environment unfavorable for 
viral RNA transcription will be discussed. Finally, resting 
memory T cells are long lived and maintained by homeo-
static proliferation, thus satisfying the third condition. 

The reservoir of latent virus is established early in infec-
tion, even among those rare individuals who spontaneously 
control HIV-1 infection without cART [28, 29]. Hence, early 
administration of cART, while reducing the size and diver-
sity of the latent reservoir relative to those treated during 
later stages of infection [17, 30], does not prevent its estab-
lishment [29, 31]. This result and conclusion are supported 
by experiments with rhesus macaques infected with SIV, 
which also establishes a latent reservoir in resting CD4+ T 
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cells [32, 33]. Specifically, initiation of cART in these ani-
mals three days after infection effectively suppressed viremia 
but did not prevent establishment of the latent reservoir [34]. 
Taken together, these observations demonstrate that despite 
continuous cART, the latent reservoir of HIV-1 in resting T 
cells is established within a few days of infection and is large 
and stable enough to support continual low-level viremia and 
viral rebound if treatment is withdrawn. 

2. A GENERALIZED MODEL OF HIV-1 LATENCY 

There is ample evidence that the latent HIV-1 reservoir is 
comprised primarily of resting memory CD4+ T cells. For 
instance, by activating cells to reverse latency, and regard-
less of the duration of ART, replication-competent HIV-1 
can be recovered from highly purified resting CD4+ T cells 
isolated from infected individuals [14, 19-22, 35]. Indeed, 
resting CD4+ T cells are the only undisputed source of per-
sistent, replication-competent HIV-1 when cART is optimal 
[36]. Other cell types, including macrophages, may contrib-
ute to HIV persistence [37-48], although this is not easy to 
confirm, since tissue macrophages, especially those that are 
CNS resident, can be difficult to sample [42]. Latent HIV-1 
has also been found in naïve CD4+ T cells [12-14, 16-18]; 
however, these cells constitute only a small fraction of the 
latent reservoir.  

Any theory explaining the mechanisms of HIV-1 latency 

must address how HIV-1, while demonstrating a strong pro-
pensity to infect activated CD4+ T cells [49, 50], establishes 

a latent reservoir primarily in resting memory CD4+ T cells 

[12-14, 16-18]. Actively infected T cells are short lived (t½ 
of 1-2 days [51, 52]), yet each is capable of producing on the 

order of 2000 infectious particles during its lifespan [53]. In 

contrast, the latent reservoir of infected memory T cells is 
largely inert with respect to virus production and has a col-

lective t½ of 3.6-3.7 years [20, 21, 23]. Arguably, the most 

straightforward explanation for this dichotomy is that HIV-1 
primarily infects activated T cells, some fraction of which is 

then transformed into memory cells that enter a quiescent, 

resting state conducive to viral latency [54]. 

There are several differences in the cellular microenvi-

ronments of activated and resting memory CD4+ T cells that 
may account for their differing permissiveness with respect 

to HIV-1 fusion with the cell membrane, reverse transcrip-

tion, integration, and gene expression. For instance, CCR5, a 
critical co-receptor for entry of the commonly transmitted 

forms of HIV-1 [55-60], is upregulated upon T cell activa-

tion [61], thus facilitating viral entry. Subsequent reverse 
transcription of viral RNA and integration of viral DNA into 

the infected cell genome occurs within hours [62], in part 

due to the relatively fluid cytoskeleton of the activated T cell 
and ready availability of cellular factors required for nuclear 

entry and chromatin binding. Active nuclear forms of key 

host factors such as NF-kB, NFAT, and pTEFb, which pro-
mote and facilitate transcription of viral RNA from the inte-

grated provirus, are also present in abundance in activated 

cells [63-70]. Collectively, these cellular characteristics 
demonstrate why infection and virus replication are favored 

in activated T cells at the expense of latency. 

Activated T cells are also short-lived, undergoing pro-
grammed cell death as part of the contraction phase of the T 
cell response [71], and their lifespan may be shortened fur-
ther by infection with HIV-1. Studies of viral dynamics after 
initiation of cART demonstrate a rapid, almost immediate 
decline in viremia, a function of both the short life span of 
actively infected T cells (t½ of ~ 1 day) and the decay of 
plasma virions (t½ of minutes) [3, 52, 72, 73]. In addition to 
contraction-phase apoptosis, cell death can result from the 
production of toxic viral proteins, integration of the HIV-1 
provirus into a metabolically critical segment of the host cell 
genome [74, 75], or a CTL response [76-79]. The contribu-
tion of the last of these possibilities is apparently minor 
however, as the CTL response does not appear to shorten the 
t½ of productively infected cells in aggregate [80, 81].  

In contrast to activated CD4+ T cells, resting memory T 
cells generally do not express the CCR5 HIV-1 co-receptor 
[61], thus impeding cellular entry, and the static nature of the 
actin cytoskeleton inhibits delivery of the reverse transcrip-
tion complex to the nucleus [82]. In addition, SAMHD1, a 
cellular restriction factor expressed at high levels in myeloid 
cells and resting CD4+ T cells [55-60], depletes cytoplasmic 
dNTP levels, thereby inhibiting reverse transcription directly 
[83-85]. As a consequence, reverse transcription of HIV-1 
RNA in resting T cells can take as long as three days [86-
88]. Prolonged residency of the reverse transcription com-
plex in the cytoplasm increases the likelihood that viral DNA 
intermediates are recognized by the intracellular DNA sensor 
IFI16, which leads to activation of caspase-1 and a pro-
inflammatory form of cell death known as pyroptosis [89-
91]. Together, these aspects of the cellular microenvironment 
serve to inhibit all stages of the HIV-1 life cycle up to and 
including integration. However, if viral DNA integration is 
successful, transcription of viral RNA is hindered by reduced 
levels of the active forms of NF-kB, NFAT, and pTEFb 
characteristic of resting memory T cells [63-65, 67, 68, 70]. 
Epigenetic modifications to the host cell genome, which con-
tributes to the quiescence of memory T cells in the resting 
state, may likewise contribute to longer-term and more com-
plete silencing of transcription from the HIV-1 provirus [92-
94]. Hence, both the dearth of important transcription factors 
and epigenetic modification of host cell DNA in resting 
memory T cells are likely to play important roles in estab-
lishing and maintaining the latency of an otherwise transcrip-
tionally prolific virus. 

3. DIFFERENTIATION OF CD4+ MEMORY T CELLS 

At least three models have been proposed to explain tran-
sition and differentiation among naïve and memory T cell 
subsets, namely, linear differentiation (LD), decreasing po-
tential/progressive differentiation (DP/PD), and divergent 
differentiation/disparate fate (DD/DF) [95]. In the LD model, 
naïve CD4+ T cells challenged with antigen become acti-
vated and progressively differentiate along a linear path to 
become effector cells, some of which then survive the con-
traction phase and persist as quiescent (resting) memory cells 
[71, 96-101]. Primary effector cells also become progres-
sively differentiated into effector cells in the DP/PD model; 
however, their progression down this path, and their capacity 
for acquiring memory function, respectively, are directly and 
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Fig. (1). Depiction of the DP/PD model of CD4+ T cell differentiation and immune response as a framework for HIV-1 infection, latency, 

and re-activation (see text for details). Upon initial antigen exposure, naïve T cells (TN) are primed by antigen-presenting cells (APCs) in 

secondary lymphoid organs. Depending on the strength and quality of stimulatory signals, CD4+ T cells progress along an activation and 

differentiation pathway, losing naïve and acquiring effector properties. It is postulated that less differentiated cells are rescued into memory 

with greater frequency, while highly differentiated effectors are more susceptible to HIV-1 infection and support virus replication. All termi-

nally differentiated and most other effector cells are not rescued into memory, but are instead subject to programmed, activation-induced cell 

death (AICD), are killed by cytotoxic T-lymphcytes (CTL), or if infected with HIV-1, are killed by the cytopathic effects of active virus. La-

tency is established when infected effector cells are rescued into memory T cells in the resting state after the stimulating antigen is removed. 

Differentiation of memory cell subsets (TSCM, TCM, TTM, TEM) parallels effector cell differentiation, with less specialized cells tending to be 

longer-lived and having a greater capacity for homeostatic proliferation. Response to subsequent antigen exposure is faster and more potent as 

memory cells re-enter the effector differentiation pathway; however, this process may also cause quiescent HIV-1 to emerge from latency. As 

with initial exposure, some secondary effector cells are rescued into memory after the antigen has been removed, thus perpetuating the cycle 

of T-cell maintenance and response, and potentially HIV-1 latency.

 
inversely related to the strength and duration of TCR and 
costimulatory signaling [97, 102]. In other words, in the 
DP/PD model, early CD4+ effector intermediates can ulti-
mately transition into memory cells, but the most activated, 
terminally differentiated effector T cells cannot. Finally, 
according to the DD/DF model, initial proliferation of acti-
vated cells during the expansion phase yields heterogenous 
progeny with different capacities for differentiation to either 
effector or memory cells. This fascinating model invokes 
asymmetric cell division, in which the distribution of activa-
tion-associated signaling receptors between progeny is un-
even [103, 104]. The DD/DF model also supports the exis-
tence of terminal effector and memory precursor CD4+ T 
cells subsets homologous to subsets in the CD8+ T cell line-
age [98]. Since none of these models alone can fully explain 
the observations of CD4+ T cell differentiation reported in 

the literature, it is likely that memory is generated through 
multiple pathways, and the range of phenotypes and capacity 
for plasticity among effector and memory cells is extensive.  

In Fig. (1), proposed mechanisms for HIV-1 infection, la-
tency, and emergence from latency are superimposed on the 
DP/PD model of CD4+ T-cell differentiation and memory 
response. However, regardless of which specific T cell dif-
ferentiation pathways are applicable, the simplest explana-
tion for establishing HIV-1 latency involves infection of T 
cells of sufficient activated character to permit progression 
through stages of the virus life cycle up to and including 
integration, but which assume a resting state quickly thereaf-
ter so as to be non-permissive to high-level transcription of 
viral RNA and virus replication [15]. Such a mechanism 
would not only explain most physiological and clinical find-
ings related to HIV persistence, but would do so without 
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requiring the evolution of special viral mechanisms of la-
tency. One notable consequence of the stringent timing re-
quirement suggested by this model is that establishment of 
latent infection would be expected to be rare, and indeed, 
only approximately 1 in 10

6
 resting CD4+ T cells are latently 

infected in HIV-infected individuals on cART [14, 20-23]. 
Moreover, the feasibility of this model is supported by ex-
periments in which induction of and emergence from HIV-1 
latency have been successfully recapitulated in primary T 
cells in vitro; i.e., isolated primary T cells are activated, in-
fected, and then cultured under conditions that promote re-
version to a resting state [105-109]. Re-stimulation of these 
cells through the T cell receptor (TCR) leads to HIV-1 gene 
expression. 

4. T CELL SUBTYPES OF THE LATENT RESER-

VOIR 

CD4+ memory T cell pools possess vast functional and 
phenotypic heterogeneity. Hence, identifying and character-
izing the subsets that host long-term viral persistence during 
cART represents an area of active investigation and may 
have consequences for designing next-generation strategies 
to reduce and eliminate the latent reservoir. CD4+ memory T 
cells populate a differentiation hierarchy that includes naïve, 
T stem cell memory (TSCM), T central memory (TCM), T tran-
sitional-memory (TTM), T effector-memory (TEM) and termi-
nally differentiated helper T cells (Fig. 1) [110]. The more 
primitive T cells in this progression express a mix of naïve 
and memory cell markers, tend to be longer lived, and are 
more capable of homeostatic self-renewal, while the more 
differentiated cells are increasingly committed to specialized 
effector functions, are short lived, and are programmed to 
perish soon after the activating antigen is no longer present 
[111, 112]. Memory T cells may also be classified into sub-
populations by function, each defined by specific antimicro-
bial properties, cytokine secretion patterns, and expression of 
signature transcription factors [113]. These include Th1 (an-
tibacterial immune defense), Th2 (protection against 
helminths and other parasites), Th17 (protection against ex-
tracellular bacterial and fungal infections), Th9 (regulation 
of allergic inflammation, anti-tumor and anti-parasitic im-
munity), regulator T cells (regulation of antimicrobial im-
munity), and follicular helper cells (TFH; support of humoral 
immunity). Tissue-resident memory cells represent another 
distinct subset, localizing to barrier tissues at interfaces with 
the environment, but also within the brain, kidney, and joints 
rather than the secondary lymphoid organs [114], as do γδ T 
cells, which expressing a T cell receptors (TCR) produced 
from recombinant γ and δ genes instead of the typical α and 
β [115]. The γδ cells play important functional roles in rec-
ognition of lipid antigens, and do not require antigen presen-
tation by MHC complexes [116]. 

TCM cells generally constitute the largest fraction of the 
memory CD4+ T cell pool. In one study, among the cell sub-
sets classified, TCM cells made the greatest fractional contri-
bution to the viral reservoir in individuals on cART (i.e., 
TCM, TTM, TEM, terminally differentiated, and naïve CD4+ 
cells contributed an average of 51.7, 34.3, 13.9, 1.9 and 0.3% 
to the infected cell populations, respectively) [13]. Persis-
tence of HIV-1 infection in this cell subset is likely facili-

tated by the relatively long half-life of these cells, greatly 
exceeding that of EM cells and approximating that of quies-
cent naïve T cells [117]. The preferential persistence of HIV-1  
in TCM cells is consistent with the increased propensity of 
these cells toward homeostatic proliferation relative to TTM 
and TEM [118, 119]. When driven by IL-7, this maintenance 
mechanism is not associated with viral reactivation or ex-
pression of viral antigens, and therefore is unlikely to be 
restricted by antiviral immune mechanisms [120]. Some rare 
individuals, who after an initial period of suppressive therapy 
spontaneously maintained undetectable levels of HIV-1 rep-
lication in the absence of cART, were demonstrated to have 
very low residual levels of HIV-1 infected TCM cells [121], 
thus emphasizing the importance of these cells in maintain-
ing the latent reservoir and contributing to viral rebound. 

TSCM cells likewise make a significant contribution to the 
latent reservoir of patients on cART. Although these cells 
represent a minor fraction of total memory CD4+ T cells, 
and their contribution to the proviral reservoir has been 
measured as ~8%, the stem cell-like properties of TSCM cells 
confer greater capacity to proliferate and survive than even 
TCM cells [122]. TSCM cells appear to occupy a stage of dif-
ferentiation between naïve cells and TCM cells, having a t½ 
of 277 months (compared to 144, 133, and 88 months for 
TCM, TTM, and TEM cells, respectively) and a strong propen-
sity for homeostatic proliferation [16, 122]. Among patients 
on cART, the longitudinal decline in HIV-1 DNA associated 
with TSCM cells was less steep than in the TEM and terminally 
differentiated subsets [122]. Hence, HIV-1 infected TSCM 
cells are likely to be overrepresented in the latent viral reser-
voirs of many patients on long term cART [16, 122], and this 
fractional contribution is likely to increase with the duration 
of therapy.  

Functional polarization of T cell subsets is associated 
with developmental and maturational properties that influ-
ence cellular longevity and long-term survival [123], and the 
process is regulated by specialized transcription factors that 
determine characteristic gene expression changes in each 
polarized cell population. These properties are also likely to 
influence the capacity of functionally polarized T cells to 
host latent HIV-1 infection. For example, while Bcl-6 [124], 
FoxP3 [125] and Gata3 [126] transcription factors have been 
shown to contribute to functional polarization, they can also 
bind to the HIV-1 promoter, thus potentially activating HIV-
1 gene expression and reversing latency. Th17 cells in par-
ticular exhibit common characteristics among cells known to 
contribute to the latent reservoir, including longevity and 
propensity for homeostatic proliferation [123, 127, 128], and 
were found to harbor high levels of HIV-1 DNA with greater 
longitudinal stability than Th1 cells in individuals on long 
term cART [129]. Moreover, some Th17-specific gene ex-
pression signatures produce a cellular microenvironment 
favorable for HIV-1 replication [130], and cells of this subset 
also seem to be intrinsically susceptible to HIV-1 infection in 
ex vivo assays [131]. 

HIV-1 can also infect TFH cells [132-135], which repre-
sent a major site for HIV-1 replication and production during 
untreated HIV-1 infection [135]. These cells are character-
ized by surface expression of CXCR5 and PD-1, reside in 
lymph node follicles in immediate anatomical proximity to B 
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cells, and support the germinal center reaction essential for 
generation of effective humoral immunity [136]. This tissue 
residency may render HIV-infected TFH cells especially dif-
ficult to eradicate by immunotherapy since CD8+ CTL lack 
chemokine receptors needed for migrating into B cell folli-
cles [133]. This problem is exemplified in rhesus macaques 
that spontaneously control SIV, and where viral replication is 
restricted to TFH, presumably because CD8+ CTL lyse in-
fected cells elsewhere in the lymph nodes [133]. Hence, if 
latently infected TFH cells persist, HIV-1 eradication strate-
gies that disrupt B cell follicles to permit access by CTL may 
need to be considered [133]. Currently, however, the extent 
to which TFH serve as a long-term reservoir for HIV-1 in the 
setting of optimal ART remains to be determined, although 
one study revealed a sharp decline of HIV-1 DNA levels in 
TFH within 1-2 years of suppressive cART [135]. Relatedly, 
HIV-1 DNA has been detected in PD-1 and CXCR5-
expressing TFH-like cells circulating in peripheral blood in 
individuals on cART [129], although the contribution of 
these cells to HIV-1 persistence is unknown.  

The contribution of regulatory T cells to the latent reser-
voir has likewise not been determined. These cells express 
FoxP3 as a master transcription factor and play a dual role in 
HIV-1 pathogenesis, both reducing pathologic immune acti-
vation and inhibiting beneficial antiviral immunity. Regula-
tory CD4+ T cells from patients on cART have been shown 
to harbor abundant levels of HIV-1 DNA, with an infected 
cell t½ of 20 months [137]. 

Constitutively expressing low levels of CD4 receptor, γδ 
T cells may be thought to represent less preferred target cells 
for HIV-1 infection. However, HIV-1 DNA has previously 
not only been detected in γδ T cells in patents on cART at 
levels exceeding those in resting CD4 T cells, but in most 
such instances, virus retrieved from these samples was found 
by the virus outgrowth assay to be replication competent 
[138]. Finally, tissue-resident memory cells represent a sub-
set of CD4+ T cells that includes lymphocyte populations in 
peripheral mucosal tissues, barrier surfaces, and in other 
non-lymphoid and lymphoid sites, and, at least in adipose 
tissues, may support HIV-1 infection [139, 140]. However, 
whether either γδ T cells or tissue resident memory cells con-
tribute significantly to HIV-1 reservoirs in individuals on 
cART remains unclear. 

5. RESIDUAL VIREMIA AND HIV PERSISTENCE 

Analyzing the evolution of viremia and HIV-1 DNA as-
sociated with peripheral blood mononuclear cells (PBMC) 
throughout the course of cART can provide insight into the 
mechanisms of HIV-1 persistence. For instance, levels of 
plasma HIV-1 RNA have been found to decrease by 4-5 or-
ders of magnitude during of the first year of therapy, sug-
gesting that pre-treatment viremia is almost exclusively pro-
duced by short-lived infected cells [141-143]. In contrast, 
levels of PBMC-associated HIV-1 DNA in these individuals 
was reduced no more than 10-fold over the same period; 
hence, infected cells that persist despite cART harbor HIV-1 
DNA but do not produce virus at high levels.  

Viremia declines steadily for approximately four years 
after treatment initiation [144-146], after which trace levels 

of free virus on the order of 1 copy/mL of blood plasma can 
be detected in individuals on effective cART. Such residual 
viremia reflects the nature of cART, which inhibits attach-
ment and fusion, reverse transcription, integration, and/or 
particle maturation after release but does not prevent virus 
production or release from the infected cell. Hence, virus 
generated despite effective cART is unlikely to be fully ma-
ture, and new infections originating from these viruses 
should be strongly inhibited at multiple stages. These postu-
lates are supported by data indicating that residual viremia in 
individuals on effective cART does not produce new infec-
tions [147-149]. Moreover, when administered early, cART 
seems to be effective in arresting expansion and diversifica-
tion of the HIV-1 reservoir, as evidenced by the strong corre-
lation among effectively treated patients between levels of 
PBMC-associated HIV-1 DNA and the state of infection at 
the time therapy was initiated [142, 143, 150]. These data 
also demonstrate that early treatment is critical to minimiz-
ing the size and diversity of the latent reservoir.  

Residual viremia in well controlled patients does not ap-
pear to be affected by treatment intensification, suggesting 
that there is little or no background virus replication to sup-
press by supplementing cART with additional classes of an-
tiviral drugs [147-149, 151]. Longitudinal studies of HIV-1 
sequence diversity in individuals on cART support this pos-
tulate as well. Specifically, HIV-1 RNA sequences obtained 
from patient blood samples after prolonged cART resemble 
those present earlier in infection and generally do not show 
evidence of ongoing evolution [152-156]. In fact, HIV-1 
sequences obtained at different times during treatment are 
often identical, and the fraction of identical sequences within 
samples increases with time [152, 157, 158]. Together, these 
observations controvert the notion of HIV-1 persistence be-
ing driven by ongoing replication and multiple rounds of 
infection, and instead support the idea of rare, sporadic viral 
activation from a reservoir of latently infected resting mem-
ory T cells maintained by clonal expansion [159]. 

When cART is interrupted, viral rebound is usually ob-
served within two weeks [10, 11]. It is postulated that this is 
the time required for systemic clearance of antiviral drugs 
and stochastic activation of sufficient latent virus to seed 
new infections systemically. Despite an estimated 2 log 
variation in reservoir size, variation in the interval between 
treatment withdrawal and viral rebound is limited [160], and 
there is evidence to suggest that rebound is seeded by spon-
taneous activation of multiple cells per day from multiple 
anatomical sites (e.g., lymph node, ileum, and rectum) [11]. 
Moreover, as with residual viremia, sequences from early 
rebound viruses resemble those of viruses before treatment 
withdrawal, suggesting that rebound, like residual viremia, 
originates from a stable latent reservoir established before 
initiation of cART rather than an immune-privileged pool of 
perpetually replicating virus [161].  

There have been at least three notable cases of “near 
cure” in which the interval between treatment withdrawal 
and HIV-1 rebound greatly exceeded two weeks. Specifi-
cally, virus rebound in the two “Boston patients” did not 
occur until 3 and 8 months after cART withdrawal [162, 
163]. Prior to cART cessation, both individuals received 
stem cell bone marrow transplants to treat lymphomas not 
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responding to chemotherapy, and this was preceded by “con-
ditioning” therapy in which the patients’ existing T cells 
were destroyed by chemotherapy and radiation. In the case 
of the “Mississippi baby”, an infant was born to a mother 
known to be HIV-1 positive and was treated with cART al-
most immediately after birth [30]. Treatment was withdrawn 
after 15 to 18 months against medical advice, after which the 
child had undetectable levels of viremia for approximately 3 
years prior to virus rebound. An important shared feature of 
these cases is that the reservoir of infected T cells was 
probably extremely small when antiviral treatment was with-
drawn, being either diminished by pre-transplant condition-
ing or prevented from becoming established by early admini-
stration of cART. This marked reduction in reservoir size 
might, in turn, be expected to delay virus rebound, especially 
if rebound requires rare, spontaneous activation of latent 
HIV-1 harbored in quiescent CD4+ T cells. Conversely, it is 
difficult to imagine why rebound seeded by even a few T 
cells perpetually generating large amounts of virus would be 
delayed at all, since infection would be expected to expand 
exponentially in this case. Such exponential growth is actu-
ally typical of new infections, as indicated in phylogenetic 
studies of HIV-1 demonstrating that nascent infections are 
most often seeded by a single “founder” virus yet produce 
extreme levels of viremia over the course of a few weeks 
[164, 165]. 

Collectively, these data support the idea that residual 
viremia and viral rebound are seeded by a stable reservoir of 
latently infected cells that infrequently become activated to 
produce low levels of virus despite cART [166]. Neverthe-
less, there remains a contention that residual viremia and the 
persistent HIV-1 reservoir are in part maintained by ongoing 
virus replication in sanctuary sites such as lymph nodes 
[167-171] with subsequent trafficking of recently infected 
cells into the blood [171, 172]. Proponents of this argument 
cite evidence of HIV-1 evolution in lymph node and blood 
samples taken from three patients on cART [171], as well as 
reports of poor drug penetration in lymph nodes and mucosa-
associated lymphoid tissue (MALT) [169]. However, it must 
be noted that these findings have not been reproduced by 
other investigators applying different models of evolution to 
the same set of HIV-1 sequences [173], and most other stud-
ies of patients on long-term suppressive cART have not 
found evidence of sequence diversification from pre-therapy 
in blood or tissues [17, 152, 159, 174-176].  

6. MAINTAINING THE HIV-1 RESERVOIR BY 

CLONAL EXPANSION OF CD4+ MEMORY T CELLS 

Numerous lines of evidence indicate that HIV-1 persists 
in individuals on effective cART within a reservoir of long-
lived, latently infected CD4+ resting memory T cells. As 
depicted in (Fig. 1), such cells are natively produced by dif-
ferentiation from naïve T cells primed by their cognate anti-
gen for the purpose of establishing a capacity for memory 
response to a subsequent exposure. Memory responses can 
provide lifelong immunity, as exemplified in individuals 
who received the smallpox vaccine or have cleared hepatitis 
C infection [177, 178]. However, this persistence cannot be 
explained solely on the basis of memory T cell longevity, as 
the average t½ of memory T cells (approximately 22 weeks; 

[179-182]) is substantially shorter than that of naïve T cells 
(1-8 years), the functional memory T cells response (8-12 
years), and even the HIV-1 reservoir (3.7 years). Hence, it 
stands to reason that homeostatic proliferation of memory T 
cells must also contribute to persistence of both the func-
tional memory T cell response and the reservoir of HIV-
infected T cells in patients on effective cART.  

The cytokines thought to drive homeostatic clonal expan-
sion of CD4+ memory T cells are IL-7 and IL-15 [183]. In-
deed, in vitro studies in a primary cell model of HIV-1 la-
tency confirm that latently infected cells can proliferate in 
response to IL-7 (and IL-2) without upregulation of HIV-1 
gene expression [120], which would be detrimental to cell 
survival [120, 184-186]. These results are supported by 
clinical studies of patients on cART, where infusion of IL-7 
leads to the proliferation of latently infected memory CD4+ 
T cells with almost no induction of HIV-1 gene expression 
[119, 187]. Like IL-7, IL-15 has also been shown to be im-
portant for homeostatic proliferation of CD4+ memory T 
cells [188].  

Clonal expansion of CD4+ memory T cells can also be 
driven by recognition of cognate antigens presented on MHC 
class II receptors by antigen-presenting cells, as well as by 
cytokines produced as part of the normal course of an im-
mune response. The antigen specificity of HIV-1 infected T 
cells has not been well classified, although some may be 
HIV-1 specific [189]. Unlike homeostatic proliferation, anti-
gen-driven proliferation acting through the T cell receptor 
(TCR) is likely to both activate infected memory T cells and 
upregulate expression of HIV-1. Such activation, coupled 
with proliferation and subsequent reversion of a small num-
ber of activated cells to the resting state, may contribute to 
the maintenance of the HIV-1 reservoir, persistence of resid-
ual viremia of individuals on effective cART, and virus re-
bound upon cessation of treatment. 

Precise identification of HIV-1 integration sites within T 
cell genomic DNA has become an important tool for charac-
terizing and quantifying clonally expanded infected T cell 
populations. Although HIV-1 integration is not random, 
demonstrating a local sequence selectivity and favoring ac-
tive transcriptional units [190, 191], sites of integration are 
of sufficient diversity that the probability of independent 
infections producing proviruses integrated at precisely the 
same location in the respective host cell genomes is exceed-
ingly low. Instead, infected cells harboring proviruses that 
share a common integration site must almost certainly be the 
product of clonal expansion from a common parent cell. 
Such determinations can now be made relatively routinely, 
due to development of novel integration site mapping tech-
niques reliant on semi-nested PCR and next-generation se-
quencing [184, 192]. Moreover, the application of such 
methods to DNA extracted from PBMC patient samples has 
provided convincing evidence for the clonal expansion of 
HIV-1 infected cells [184, 186, 193]. 

Results from a seminal study in this area showed that of 
2410 integration sites identified in CD4+ T cells from five 
HIV-infected individuals, 43% were from clonally expanded 
populations [184], thus conclusively demonstrating that 
populations of infected cells are maintained by clonal expan-
sion. Intriguingly, some of the integration sites identified in 
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Fig. (2). Multiple displacement amplification (MDA) – single HIV-1 genome sequencing (SGS) workflow. Genomic PBMC DNA from an 

HIV-infected individual is diluted and dispensed into 96-well plates to maximize the number of wells containing exactly one provirus. MDA 

is then used to amplify DNA in each of these wells on the order of 1000-fold. Reaction products from wells originally containing a single 

HIV-1 provirus may thus be partitioned for downstream assays, including PCR-amplification and sequencing of segments of the virus ge-

nome (e.g., the RT gene), amplification and sequencing of near full length (NFL) provirus, and integration site determination. Further and 

more complete characterization of the latent HIV-1 reservoir will depend upon continued development of techniques such as these that permit 

examination of multiple facets of individual HIV-infected cells. 

 
the clonally expanded populations were within known hu-
man proto-oncogenes associated with cell growth [194-196] 
and demonstrated in other in vivo and in vitro studies to har-
bor HIV-1 integrants [184, 186, 190, 193, 197]. These genes 
include (i) myocardin-like protein 2 (MKL2), a transcription 
factor, and (ii) basic leucine zipper transcription factor 2 
(BACH2), a transcription regulator affecting lymphocyte 
growth, activation, senescence, and cytokine homeostasis. Of 
integration sites in these genes detected in patient samples, 
all were localized to specific intronic regions and found to be 
in the same transcriptional orientation as the gene in ques-
tion, although a similar pattern was not observed in DNA 
acquired from in vitro infections [184, 186, 191]. Insertion of 
the HIV-1 promoter into a non-coding region of a growth-
related gene might be expected to increase transcription lev-
els, thereby conferring a selective advantage favoring prolif-
eration and/or survival of these T cell clones in vivo. Indeed, 
enrichment for BACH2 integrants was confirmed in a recent 
study of HIV-1 integration sites in T cells both in vitro and 
from patient samples [198]. The same study also shows dis-
proportional integration within FOXP1 and STAT5B, two 
genes involved in T cell differentiation and activity. To-

gether, these data suggest that HIV-1 integration at specific 
sites and in a favorable orientation within select host genes 
may increase the propensity of the infected cells toward ho-
meostatic proliferation, prolonged survival, or both. 

While the notion that HIV-1 integration can confer a se-
lective advantage to latently infected cells is intriguing, it is 
important to note that all MKL2 and BACH2 proviruses in 
clinical isolates analyzed to date have been defective [199], 
and thus are not truly part of the latent HIV-1 reservoir. This 
is consistent with findings that among individuals on long 
term cART, approximately 98% of proviruses in long-lived 
cells are not intact [200, 201]. This fraction is significantly 
higher than has been observed with SIV infection [202], and 
may even constitute an underrepresentation, as HIV-1 inte-
grants having extensive deletions or hypermutations medi-
ated by host cytidine deaminases of the APOBEC3 family 
[203] are difficult to detect by PCR. Moreover, there is 
probably selection against integration of a replication-
competent provirus into a growth-related gene, since it is 
hard to imagine how HIV-1 promoter activity could increase 
expression of the host gene without also activating viral gene 
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synthesis and bringing the quiescent infection out of latency. 
Nevertheless, with respect to a general characterization of 
the latent reservoir, the question of whether cells with a high 
propensity for clonal expansion are capable of both harbor-
ing and maintaining the latency of a replication-competent 
provirus is highly salient.  

This question was answered in studies involving an HIV-
infected individual who also had squamous cell carcinoma 
[184, 185]. A single, highly-expanded clone was identified in 
samples obtained from this individual, comprising more than 
50% of the patient’s HIV-infected cells and approximately 
10

8
 cells in total. The integrant was designated AMBI-1 

(ambiguous) to indicate that the integration site of the provi-
rus could not be uniquely determined. Cells harboring the 
AMBI-1 integrant were found to be widely anatomically 
distributed but enriched in cancer metastases, suggesting that 
the clone expanded in response to cancer antigen. More im-
portantly, the AMBI-1 provirus was found to be intact and 
replication-competent, although only a small fraction of the 
highly expanded clone produced detectable levels of HIV-1 
RNA at any given time. This highly expanded clone is the 
first shown to be capable of harboring a largely latent, repli-
cation-competent HIV-1 provirus despite cART.  

CONCLUSION AND PERSPECTIVE 

The principle barrier to a cure for HIV-infection in indi-
viduals on effective cART is the reservoir consisting primar-
ily of long-lived, latently-infected, CD4+ resting memory T 
cells maintained by clonal expansion. Residual viremia in 
these patients is supported by infrequent, stochastic activa-
tion of a few quiescent cells from this reservoir each day, as 
is virus rebound if cART is discontinued. The capacity to 
rapidly and thoroughly characterize these viral reservoirs is 
of paramount importance for developing the next generation 
of antiretroviral therapeutics. However, progress in this area 
has been slow, in large part, because the methodologies used 
for this purpose are often labor intensive, of low throughput, 
or incompletely characterize HIV-1 proviruses and infected 
cells.  

Fortunately, methods are improving. Tens of thousands 
of viral RNA molecules can now be independently se-
quenced in a single experiment [204], and sequences of pro-
viruses can be obtained almost in their entirety by nested 
PCR combined with Sanger or next-generation sequencing 
(NGS) [205]. Moreover, using NGS, hundreds of integration 
sites can be sequenced in parallel after implementing a 
multistep preparatory method involving DNA fragmentation, 
adapter ligation, and PCR [184]. More recently, an exciting 
technology was developed that combines the properties of 
the last two of these assays [206, 207]. In brief, PBMC DNA 
samples are diluted and partitioned into aliquots of which 
approximately 30% contain a single HIV-1 provirus. Each 
aliquot is then subjected to multiple displacement amplifica-
tion (MDA; [208]), which uniformly amplifies both host and 
proviral DNA on the order of 1000-fold. Finally, by applying 
different assays to aliquots of each MDA reaction, both the 
sequences and integration sites of individual proviruses can 
be determined, thus significantly streamlining the characteri-
zation of proviral intactness and clonality (Fig. 2). 

Future efforts to characterize the latent HIV-1 reservoir 
will benefit broadly from continued development of method-
ologies that combine the advantages of existing approaches. 
Taken to the extreme, this could entail combining several 
assays into one and reducing reaction volumes to the nanoli-
ter and single-cell scale. This might allow researchers to se-
quence and determine the integration sites of thousands of 
individual replication-competent proviruses in a single ex-
periment, as well as examine the transcriptional profiles and 
sequence the TCR mRNA of infected cells.  

The last of these possibilities is particularly intriguing, 
given the importance of clonal expansion in maintaining the 
latent reservoir. For instance, one of the greatest limitations 
of the otherwise promising ‘shock and kill’ strategy for 
eradicating the latent reservoir is that it is not selective; i.e., 
there are no obvious means of activating only the latently 
infected resting memory T cells. Consequently, clinicians 
must either use an approach that activates only a small frac-
tion of an individual’s CD4+ T cells, leaving most of the 
reservoir unaffected, or activate them all, the immunological 
consequences of which would likely be severe. However, 
because a recombinant TCR is unique, yet common to all 
cells in an expanded clone [209], a TCR sequence deter-
mined for a single infected cell will be shared by all cells in 
the clonal population. Moreover, if the TCR sequences of 
multiple latently infected clones are known, this information 
could theoretically be used to segregate, activate, or even 
eliminate the respective clonal populations while leaving the 
unspecified T cells unaffected. Based on the promise of ideas 
such as these, the continued development of methods that 
combine the strengths of established approaches will ad-
vance our understanding of the latent HIV-1 reservoir and 
further the development of the next generation of antiretro- 
viral therapeutics. 
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