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Zinc dysregulation in cancers and its potential as a 
therapeutic target
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ABSTRACT	 Zinc is an essential element and serves as a structural or catalytic component in many proteins. Two families of transporters are 

involved in maintaining cellular zinc homeostasis: the ZIP (SLC39A) family that facilitates zinc influx into the cytoplasm, and the ZnT 

(SLC30A) family that facilitates zinc efflux from the cytoplasm. Zinc dyshomeostasis caused by the dysfunction of zinc transporters 

can contribute to the initiation or progression of various cancers, including prostate cancer, breast cancer, and pancreatic cancer. In 

addition, intracellular zinc fluctuations lead to the disturbance of certain signaling pathways involved in the malignant properties of 

cancer cells. This review briefly summarizes our current understanding of zinc dyshomeostasis in cancer, and discusses the potential 

roles of zinc or zinc transporters in cancer therapy.
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Introduction

As an essential trace element, zinc plays crucial roles in pro-

tein structure, enzymatic activity, and gene regulation. Over 

300 enzymes require zinc for their activities, and more than 

2,000 transcription factors require zinc for maintenance of 

structural integrity and DNA binding activity. Thus, zinc 

metabolism and homeostasis are regulated in a sophisticated 

manner for normal cellular functions1. Both zinc deficiency 

and zinc excess may contribute to various health problems, 

including metabolic diseases, endocrine diseases, neuro-

degenerative diseases, immune deficiencies, cardiovascular 

diseases, and cancers2-5. In this review, we summarize the 

recent epidemiological, experimental, and clinical findings 

of zinc dyshomeostasis in cancer, and outline the potential 

clinical applications of zinc in cancer prevention, diagnosis, 

and therapy.

Zinc signaling

Two forms of zinc exist in our body: protein-bound and free 

zinc. Protein-bound zinc stabilizes and functionalizes proteins. 

Proteome analyses indicates that nearly 10% of genome-en-

coded proteins can bind zinc through interactive regions, 

especially zinc-finger motifs6. Free zinc is also known as labile, 

chelatable, or mobile zinc. The intracellular free zinc concen-

tration is tightly regulated within the pico- to low nanomolar 

range. Recently, the role of free zinc as a signaling molecule has 

received extensive attention.

Zinc signaling can be triggered by transient changes in free 

zinc at both extracellular and intracellular sites. Extracellular 

zinc signaling can be initiated by zinc efflux across the plasma 

membrane by zinc transporters or release from secretory ves-

icles that accumulate large amounts of zinc. Then, zinc serves 

as a ligand of several receptor channels on the plasma mem-

brane, such as the zinc sensing receptor (ZnR/GPR39), α-ami-

no-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors, N-methyl-D-aspartate (NMDA) receptors, volt-

age-dependent Ca2+ channels (VDCC), and γ-aminobutyric 

acidA (GABAA) receptors7.

Zinc signaling originating from zinc influx, can be divided 

into two categories depending on the timescale in which it 

acts8,9. Fast zinc signaling occurs within a few seconds to min-

utes. Zinc serves as an intracellular second messenger and 

modulates several signaling cascades in both cases. The other 
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zinc signaling pathway, namely “late” zinc signaling, takes place 

over a longer timescale. In this case, transcriptional regulation 

of zinc-related proteins, such as ZIPs and ZnTs, is triggered by 

diverse extracellular stimuli, including cytokines and growth 

factors. Then, alterations in intracellular zinc homeostasis result 

in the regulation of downstream molecular targets, includ-

ing protein kinase C (PKC), cAMP-dependent protein kinase 

(PKA), Ca/calmodulin-dependent protein kinase II (CaMKII), 

phosphodiesterases (PDEs), protein tyrosine phosphatases 

(PTPs), and transcription factors (for example, NF-κB)10.

Regulation of zinc homeostasis

Zinc homeostasis is maintained primarily by the coordinated 

actions of zinc transporters, metallothioneins (MTs) and met-

al-regulatory transcription factor 1 (MTF-1). Mammalian zinc 

transporters have been classified into two major families, the 

ZIP (ZRT, IRT-like protein) family, also called solute carrier 

family 39A (SLC39A), and the ZnT (zinc transporter) family, 

also called SLC30A proteins11,12. The ZIP family comprises 

14 members (ZIP1-14) and they facilitate zinc influx into the 

cytoplasm from the extracellular compartments or intracel-

lular organelles, including the endoplasmic reticulum (ER), 

mitochondria, and Golgi apparatus. Most ZIP transporters 

contain eight predicted transmembrane domains (TMDs) 

with extracellular or luminal N- and C-termini (Figure  1A). 

A histidine-rich cluster in the intracellular loop between 

TMDs III and IV is thought to be important for zinc binding 

or regulation. The ZnT family is comprised of 10 members 

(ZnT1-10) and lowers cytoplasmic zinc in the opposite direc-

tion. Most members of this family are predicted to have 6 

TMDs with cytoplasmic N- and C-termini (Figure 1B), while 

ZnT5 has an exceptionally long N-terminal region with nine 

putative TMDs. Similar to the ZIP proteins, most ZnT proteins 

have a cytoplasmic His-rich loop between TMDs IV and V13. 

Both ZIP and ZnT transporters are localized at the plasma 

membrane or specific subcellular compartments and display 

changes in response to various stimuli (Figure 2). In addition, 

they are subject to post-transcriptional or post-translational 

regulatory mechanisms, including mRNA stability, miRNA 

regulation, protein cleavage, protein phosphorylation, and pro-

tein ubiquitination14,15. Diversities in the localization, traffick-

ing and regulatory mechanism of zinc transporters are crucial 

to maintain cellular zinc homeostasis. Recent studies involving 

mice and humans have revealed that zinc dysfunction caused 

by knockout (KO) or mutations of zinc transporters is strongly 

linked to clinical diseases11. We briefly summarize the informa-

tion in Supplementary Table S1.

MTs are cysteine-rich metal-binding proteins with low 

molecular weights (Figure 1C). Humans possess four classes 

of MT isoforms (MT1, MT2, MT3, and MT4) that can bind up 

to seven zinc ions to cysteines in two domains. Thus, MTs are 

capable of regulating intracellular zinc distribution, storage, 

and release to protect cells against oxidative stresses16. MTF-1, 

a cellular zinc sensor, possesses six Cys2His2 zinc fingers and 

three transcriptional activation domains (Figure 1D). These 
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regions are responsible for zinc sensing and zinc-dependent 

transcriptional activation. Once activated, MTF-1 translocates 

to the nucleus and regulates genes that are essential for zinc 

homeostasis via metal response elements (MREs)17.

Zinc transporters and zinc signaling 
in cancer

Because zinc regulates a multitude of cellular functions, zinc 

dyshomeostasis may cause various abnormalities, particularly 

the initiation or progression of cancer.

Zinc deficiency is an increased cancer 
risk

Accumulating evidence has recently indicated an association 

between zinc deficiency and cancers. Numerous epidemiologi-

cal studies indicate that zinc deficiency contributes to increased 

cancer risk. It has been reported that zinc deficiency is correlated 

with increased tumor size, tumor stage, and increased unplanned 

hospitalizations in head and neck cancer patients18. A series of in 

vivo studies have been conducted by Fong and his colleagues to 

show that dietary zinc deficiency (ZD) increases the incidence 

of N-nitrosomethylbenzylamine (NMBA)-induced esophageal 

cancer19-21. High dietary zinc intake can also decrease the risk of 

colon cancer in a prospective cohort study22.

Several mechanisms contribute to the anti-tumor activ-

ity of zinc, including DNA damage, DNA repair, oxidative 

stress, immune function, and inflammation. Zinc deficiency 

can result in alterations in the oxidant defense system. Many 

proteins involved in the antioxidant defense system, includ-

ing glutathione peroxidase, MTs, and Cu/Zn superoxide dis-

mutase (SOD), require zinc for their activity. Zinc is also 

required by multiple proteins mediating DNA damages and 

repair responses. For example, p53 is an important zinc-con-

taining transcription factor and is associated with the cellu-

lar response to DNA damage. Both in vitro and in vivo studies 

have indicated that zinc deficiency may cause oxidative DNA 

damage and compromise DNA damage repair responses23,24. 
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Therefore, the impaired oxidant defense system, compro-

mised DNA integrity, and damaged DNA repair enzymes 

increases the risk of cancer initiation and progression.

Zinc deficiency also causes dysfunction of the immune sys-

tem. For innate immunity, zinc deficiency impairs the lytic activ-

ity of natural killer (NK) cells and phagocytosis of macrophages 

and neutrophils, and reduces cytokine production, whereas zinc 

supplementation has the opposite effect. For adaptive immunity, 

zinc deficiency induces thymic atrophy and lymphopenia, and 

compromises cell- and antibody-mediated immune responses. 

During T cell maturation in the thymus, zinc deficiency can lead 

to a 50% decrease in pre-T cells25. Zinc deficiency also decreases 

the production of Th1 cytokines (TNF-α, IL-2, and IFN-γ), 

whereas the Th2 cytokine response (IL-10, IL-6, and IL-4) is less 

affected. This change is accompanied by a Th1/Th2 functional 

imbalance, leading to the occurrence or progression of diseases 

in specific cancers26. Zinc deficiency also causes the loss of pre-

mature and immature B cells, and reduces antibody produc-

tion. In addition, zinc deficiency can affect cytokine production 

and promote systemic inflammation. It has been demonstrated 

that zinc deficiency promotes the release of proinflammatory 

cytokines, such as TNF-α, IL-1β, IFN-γ, IL-2, IL-6, IL-8, S100a8, 

and S100a919, which may be attributable to the ability of zinc 

to regulate nuclear factor-κB (NF-κB), the master regulator of 

inflammatory responses.

Dysregulation of zinc metabolism 
in cancer

Altered zinc levels have been reported in the serum and malig-

nant tissues of cancer patients. Many clinical studies use serum 

or plasma to estimate systemic zinc status as biomarkers of 

cancer patients. Epidemiological evidence has shown that the 

levels of serum zinc are strikingly reduced in most cancers, 

including cancers of the head and neck, breast, gastrointesti-

nal tract, female genital tract, gallbladder, lung and bronchus, 

thyroid, leukemia, and esophageal squamous cell carcinoma 

(ESCC)27-29. Other studies measuring zinc levels in hair sam-

ples also detected decreased zinc levels in cancers of the lung, 

breast, and ovary30,31. However, melanoma patients have 

increased serum zinc levels32.

Zinc levels in malignant tissues are not always consistent with 

those in serum. Zinc levels are dramatically reduced in cancers 

of the prostate, pancreas, liver, gallbladder, cervix, and uterine 

myeloma. Although serum zinc levels are reduced, zinc levels 

are elevated in the cancerous tissues of several cancers, including 

cancers of the breast, lung, intestinal, and metastatic nasopharyn-

geal28,29. In a similar manner, conflicting results of zinc levels 

have also been described by several other studies in cancers of the 

prostate, breast, stomach, and lung33,34. The contradictory results 

in these studies may be attributed to the following reasons. First, 

all samples including hair, nails, urine, or plasma are suscepti-

ble to environmental influences, leading to an inaccurate esti-

mation of zinc status in the observed populations. Additionally, 

the size of the samples and the experimental designs may also 

account for the mixed outcome results. Therefore, further large 

and well-designed cohort studies using standardized samples to 

estimate zinc status might elucidate the role of zinc in cancer.

Taken together, the present evidence suggests that zinc 

homeostasis is typically altered in a tissue-specific manner. The 

correlation between zinc levels and cancer progression appears 

to be complicated and less conclusive. The general opinion 

is that zinc shows antioxidant and proapoptotic properties 

by decreasing oxidative stress and improving immune func-

tion, which serves a protective effect on cancer initiation35,36. 

Notably, in some specific tumors such as breast cancer, men-

tioned above, the accumulating zinc levels are also observed 

in malignant tissues29. An explanation for this phenomenon 

is that increased demands for zinc are required for tumor sur-

vival and growth. The elevated zinc levels may facilitate the 

progression and malignancies of breast cancer.

Zinc transporters and cancer

As described in previous sections, intracellular zinc concentra-

tion is regulated by zinc transporters, zinc-binding proteins, 

and the MTF1 zinc sensor. While the data for zinc status in 

tumor tissues are paradoxical, it has been widely observed that 

zinc dyshomeostasis in tumors results mainly from aberrant 

expression of zinc transporters, especially the ZIPs. The avail-

able data suggest that cellular zinc dyshomeostasis mediated 

by malfunctions of zinc transporters contributes to the devel-

opment and progression of cancer. The present review mainly 

focuses on the roles of zinc transporters in breast, prostate, 

and pancreatic cancers, which have been thoroughly investi-

gated in many previous studies.

Prostate cancer

It is well recognized that zinc is important in maintaining 

prostate function and health. The human prostate gland 
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accumulates excessive zinc because of the existence of spe-

cialized zinc-accumulating epithelial cells in the peripheral 

zone37. Zinc accumulation allows these cells to accumulate and 

secrete citrate in the prostatic fluid. The ZIP1 zinc transporter, 

located at the plasma membrane of normal acinar epithelial 

cells, is a functional transporter contributing to prostate zinc 

uptake and accumulation38.

Compelling clinical and experimental evidence consistently 

shows that zinc decrease is a hallmark characteristic of pros-

tate cancer39,40. ZIP1 downregulation is also observed in pros-

tate intraepithelial neoplasia and prostate adenocarcinoma, 

and is considered to be an important mechanism for the loss 

of zinc accumulation41. The overexpression of Ras-responsive 

element binding protein 1 (RREB1) is involved in ZIP1 down-

regulation in prostate cancer. RREB1 is a downstream effector 

of the Ras-Raf-MEK-ERK pathway and is upregulated dur-

ing prostate cancer progression42,43. Upregulation of RREB1 

in the early development of malignancy leads to ZIP1 down-

regulation and a subsequent zinc decrease in prostate cancer. 

Other zinc importers, such as ZIP2, ZIP3 and ZnT4 also show 

decreased expression in prostate cancer44,45.

Increasing studies show that zinc affects the apoptosis and 

metabolism of prostate cells. The mechanisms include sup-

pression of mitochondrial aconitase activity and citrate oxi-

dation46,47, induction of mitochondrial apoptogenesis48, an 

increased Bax/Bcl-2 ratio49, induction of HIF-1α degradation, 

and a decreased expression of survivin50. In addition, zinc has 

been shown to suppress the metastatic potential of prostate 

cancer by inhibiting NF-κB signaling51,52, and suppressing the 

invasive potential of the proteolytic enzyme urokinase-type 

plasminogen activator, aminopeptidase N, and prostate spe-

cific antigen (PSA)53,54. Based on these observations, zinc sup-

plementation may be an effective therapy for prostate cancer 

(Figure 3A).
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In contrast, studies also show that zinc can promote growth 

and invasion of prostate cancer cells by increasing telomerase 

activity or suppressing the anti-tumor potential of bisphos-

phonates55. Further studies by Wong et al.56 have shown that 

high zinc supplementation may have inhibitory effects on 

prostate cancer cell growth, while continuous exposure results 

in more aggressive behavior in cancer cells.

Given that zinc plays diverse roles in cell signaling, more 

studies investigating the mechanisms underlying the mainte-

nance of zinc homeostasis are required to fully define its role 

in prostate carcinogenesis.

Breast cancer

Zinc is also critical for normal mammary gland expansion, 

remodeling, and lactation37. In mammary epithelial cells, 

numerous zinc importers and exporters function coordinately 

to maintain zinc homeostasis.

Studies have recently examined aberrant zinc homeostasis 

during the initiation and progression of breast cancer28,29. 

Regardless of the decrease in serum zinc previously men-

tioned, a significantly increased zinc level in breast cancer tis-

sues has been consistently observed57. In vivo studies using a 

N-methyl-N-nitrosourea (MNU)-induced rat mammary car-

cinogenesis model have also demonstrated higher zinc accu-

mulation in malignant tissue than in the normal mammary 

gland, consistent with the findings reported in human breast 

cancer58,59.

Notably, the zinc transporting network shows a distinct 

subtype-specific dysregulation in breast cancer15. X-ray anal-

ysis of malignant tumors showed high zinc accumulation 

around the luminal tumor periphery, while zinc was distrib-

uted evenly in basal tumors. In addition, gene expression pro-

filing of the zinc transporting network was significantly differ-

ent in these two subtypes. Numerous zinc transporters show 

high expression in luminal cells, except for MTs, ZIP10, and 

ZnT1. The changes in zinc transporters are also in accordance 

with subtype-specific alterations in the subcellular zinc pools. 

For example, ZnT2 is strikingly overexpressed in luminal cells 

(T47D, poorly invasive) and luminal tumors, which could 

protect cells from zinc cytotoxicity by mobilizing zinc into 

intracellular vesicles60. However, the loss of ZnT2 expression 

in basal-like cells (MDA-MB-231, highly invasive) and basal 

tumors leads to zinc accumulation and ultimately contrib-

utes to the invasive malignant phenotype. This subtype-spe-

cific zinc accumulation in intracellular pools may explain the 

phenotypic differences of malignant breast cancers and help 

develop novel diagnostic and therapeutic methods.

For the zinc transporters in breast cancer, ZIP6 was first 

identified as an estrogen-regulated gene and positively cor-

related with estrogen receptor (ER). In addition, high ZIP6 

expression has been proposed to be a reliable marker of the 

luminal A subtype of breast cancer61. ZIP6 has been shown to 

play a mechanistic role in modulating the epithelial-mesen-

chymal transition (EMT) in breast cancer. ZIP6 is transacti-

vated by STAT3 during gastrulation in zebrafish. Then Snail, a 

zinc-finger transcription factor, translocates to the nucleus and 

represses the expression of the epithelial adhesion molecule, 

E-cadherin62. The overexpression of ZIP6 in breast cell lines 

and tumors shows a strongly positive correlation with phos-

phorylated (activated) STAT363. Hogstrand et  al.64 demon-

strated that ZIP6 is transcriptionally induced by STAT3 and 

activated by N-terminal cleavage. ZIP6 then translocates to the 

plasma membrane and promotes the accumulation of cellular 

zinc. A zinc influx/GSK-3β inhibition/Snail activation/E-cad-

herin loss pathway is sequentially activated, resulting in cell 

migration and metastasis (Figure 3B).

ZIP10 also contributes to the invasive behavior of breast 

cancer65,66. High mRNA expression of ZIP10 is associated with 

lymph node metastasis. Elevated ZIP10 mRNA levels are also 

observed in highly invasive breast cancer cell lines, includ-

ing MDA-MB-435S and MDA-MB-231. ZIP10-mediated 

zinc uptake is required for the malignant behavior of breast 

cancer cells, as ZIP10 gene attenuation or intracellular zinc 

depletion by the zinc chelator TPEN inhibits the migra-

tion of MDA-MB-231 cells. Furthermore, ZIP10 may form 

a functional heteromeric complex with ZIP6. These mole-

cules have been found to regulate embryonic development 

and cell migration by inactivating GSK-3 and downregulat-

ing E-cadherin. These results indicate that zinc transporters 

may integrate to conduct biological activities, and the results 

further highlight the important roles of zinc transporters in 

tumorigenesis (Figure 3B).

Recently, ZIP7 has also been shown to be involved in aber-

rant growth factor signaling in breast cancer cells67. Increased 

ZIP7 expression has been shown to contribute to zinc accumu-

lation in tamoxifen-resistant (TamR) breast cancer cells. ZIP7 

is phosphorylated by the protein kinase CK2 at the Ser275 and 

Ser276 residues68. Then, zinc release from the ER and Golgi 

apparatus results in the activation of the downstream sign-

aling pathway and promotes tumor growth and invasion69. 

Moreover, recent findings suggest that ZIP7 is essential to 
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maintain intestinal epithelial homeostasis and skin dermis 

development70,71 (Figure 3B).

Other zinc modulators including ZIP9 and MTs have also 

been implicated in breast cancer progression. ZIP9 acts as a 

novel membrane androgen receptor in both breast cancer and 

prostate cancer cell lines. ZIP9 mediates testosterone promo-

tion of apoptosis through MAP kinase- and zinc-dependent 

pathways72. MT overexpression is associated with chemore-

sistance in patients who received adjuvant therapy after sur-

gery, and promotes breast cancer cell invasion by increasing 

the expression of matrix metalloproteinase-9 (MMP9)73,74.

Pancreatic cancer

The pancreas functions as both an endocrine and exocrine 

gland. The exocrine gland produces enzymes required for 

digestion, while the endocrine gland produces hormones, 

especially insulin, to control metabolism. Zinc is involved in 

many processes within the pancreas, and cellular zinc dysreg-

ulation could be correlated with the pancreatic cancer devel-

opment and progression75. However, the function of zinc and 

zinc transporters in pancreatic cancer is controversial.

In situ zinc staining shows that zinc levels in pancreatic 

ductal and acinar epithelial cells are strikingly reduced in pre-

malignant PanIN lesions as well as during the development of 

pancreatic cancer76. ZIP3, localized predominantly at the basi-

lar membrane in normal ductal/acinar epithelium, is the likely 

zinc transporter for cellular zinc uptake and accumulation. 

Downregulation of ZIP3 as well as Ras responsive binding 

protein (RREB1) occur simultaneously with zinc loss during 

the progression to malignancy77. These changes are consid-

ered to be a common and early event in pancreatic cancer 

progression, which likely facilitate malignant cells to eliminate 

the cytotoxic effects of zinc. Although the expression levels of 

ZIP1 and ZIP2 are also decreased, they are not responsible for 

zinc loss in pancreatic adenocarcinoma76 (Figure 3C).

However, studies by Li et al.78,79 reported that another zinc 

transporter, ZIP4, localized at the basolateral membrane of 

pancreatic β cells, is markedly upregulated in cancerous tis-

sues compared with adjacent normal tissues. Overexpression 

of ZIP4 enhances zinc accumulation and cell growth in both 

cell lines and tumorigenic animal models. The gene expres-

sion profile conducted by Yang et al.80 revealed that, almost all 

zinc transporters except for ZIP4, are decreased in malignant 

pancreatic tissues compared to non-malignant tissues. This 

finding is in agreement with the previous results that ZIP4 

might contribute to the cellular zinc accumulation of pan-

creatic cancer. The underlying mechanisms for ZIP4 involve-

ment in the proliferation and metastasis of pancreatic cancer 

can be multifaceted. These mechanisms include the activation 

of the zinc finger transcription factor CREB-mediated IL-6/

STAT3/cyclin D1 pathway, the overexpression of neuropilin-1 

(NRP-1), vascular endothelial growth factor (VEGF), and 

matrix metalloproteases (MMP-2 and MMP-9), repression of 

zona occludens-1 (ZO-1) and claudin-1 by zinc finger E-box 

binding homeobox 1 (ZEB1), and RAB27B-mediated release 

of extracellular vesicles from cancer cells81-83 (Figure 3C).

Zinc signaling in other cancers

There are numerous studies reporting aberrant zinc status and 

zinc transporter expression in other cancers. In our previous 

study, we characterized the mechanism of ZIP6 overexpression 

in ESCC, indicating that targeted inhibition of ZIP6 or mod-

ulation of intracellular zinc homeostasis might be effective 

for the treatment of ESCC84 (Figure 3D). In addition, ZIP14 

downregulation is associated with decreased zinc levels in 

HCC85,86. However, recent studies have identified ZIP14 as a 

critical mediator of cachexia development in metastatic cancer 

models87,88 (Figure 3D). Zinc transporters involved in other 

cancers, such as ovarian cancer, renal cell carcinoma (RCC), 

cervical cancer, oral squamous cell carcinoma (OSCC), naso-

pharyngeal carcinoma (NPC), and lung cancer are also briefly 

summarized in Table 189-108.

Clinical applications of zinc and zinc 
transporters

As previously described, epidemiological studies provide 

compelling evidence that zinc deficiency is associated with 

increased cancer risk, suggesting that zinc might be utilized in 

the prevention and treatment of malignancy.

An in vitro study showed that exogenous zinc could increase 

protein ubiquitination and lead to the cell death of pancre-

atic cancer cells109. Treatment of pancreatic cancer cells with 

zinc in the presence of the ionophore compound, pyrroli-

dine dithiocarbamate, induces cellular zinc accumulation 

and leads to caspase-independent apoptosis via reactive oxy-

gen species (ROS)/mitochondrial apoptosis inducing factor 

(AIF)110. These studies indicate that zinc can be used to treat 

pancreatic cancer. In vivo studies have also indicated that zinc 
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replenishment in NMBA-treated rodent models substantially 

reduces the development or progression of esophageal can-

cer111,112. Furthermore, animal cancer models reported that 

zinc supplementation may prevent the development of colon 

cancer113. Zinc supplementation is also effective in improving 

local recurrence-free survival in patients with advanced naso-

pharyngeal carcinoma and head and neck cancers114.

Zinc has also been shown to be useful in the prevention 

and treatment of prostate cancer. Ghosh et al.115 reported that 

local zinc depletion is associated with a higher Gleason score 

in prostatic malignancy, which may improve the selection of 

patients for biopsy, biopsy site selection, and local therapy. In 

addition, prostate cancer progression could be imaged in vivo 

by detecting decreased zinc levels in a transgenic adenocarci-

noma of the mouse prostate (TRAMP) model, using a novel 

zinc fluorescent sensor (ZPP1). Because the downregulation 

of ZIP1 and loss of zinc occur prior to discernible histopatho-

logical abnormalities in premalignancy, zinc status could serve 

as an auxiliary means of PSA screening.

Nevertheless, it should be mentioned that the results of 

studies investigating the therapeutic effect of zinc are contro-

versial in prostate cancer. An in vivo study showed that overex-

pression of ZIP1 transporter led to enhanced zinc uptake and 

reduced tumor growth in a xenograft model116. Zinc admin-

istration inhibits PC3 tumor growth by inducing apoptosis117. 

Zinc at optimal levels can also be protective against pros-

tate carcinogenesis in TRAMP mice and in N-methyl-N-

nitrosourea/testosterone-induced prostate cancer in rats118. 

Moreover, direct intratumoral injection of zinc inhibits the 

growth of prostate cancer and substantially prolongs animal 

survival with almost no detectable cytotoxicity to other tis-

sues119. However, another study found that high dietary zinc 

supplementation leads to zinc accumulation in the prostate 

and induces prostate intraepithelial neoplasia in a murine 

model of prostate cancer120.

These conflicting results may be partly due to the discrep-

ancies in the experimental design, the amount or duration 

of zinc administered, and the method to determine plasma/

serum zinc status. In addition, zinc accumulation might fail 

due to the diminished expression of zinc importers despite 

increased dietary intake. Although zinc might be a potential 

dietary chemopreventive or chemotherapeutic agent in some 

types of cancers121, dietary supplementation with zinc has 

issues with bioavailability and bioactivity. Consequently, zinc 

as a pharmacological agent is complex and requires further 

development.

However, studies focusing on utilizing zinc-related proteins 

in the treatment of cancer may be more relevant. Because 

the zinc LIV-1(SLC39A6) transporter is expressed in all 

breast cancer subtypes, Seattle Genetics constructed a novel 

Table 1  Zinc dysregulation in cancers

Cancers Serum Tissue Aberrant transporter References

Prostate cancer Contradiction† Decreased ZIP1, ZIP2, ZIP3, ZIP4, ZIP9, ZnT4 34,41,43-45

Breast cancer Decreased Increased ZIP6, ZIP7, ZIP9, ZIP10, ZnT2 31,33,60,65,67

Pancreatic cancer NR‡ Decreased ZIP3, ZIP4 77,79

Hepatocellular cancer (HCC) Decreased Decreased ZIP4, ZIP14, ZnT9 86,89,90

Esophageal squamous cell carcinoma (ESCC) Decreased Decreased ZIP5, ZIP6 11,91,92

Ovarian cancer Decreased Decreased ZIP4 31,93

Cervical cancer Decreased Decreased ZIP7 94,95

Kidney cancer NR Decreased ZIP1, ZIP10 96-98

Gastric cancer Decreased Increased Contradiction† 99,100

Lung cancer Decreased Increased ZIP4 101-103

Bladder cancer Decreased NR ZIP11, ZnT1 95,104,105

Oral squamous cell carcinoma (OSCC) NR NR ZIP4 106

Nasopharyngeal carcinoma (NPC) NR Increased ZIP4 107,108

†Conflicting results are reported in several articles. ‡Not reported.
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antibody-drug conjugate, SGN-LIV1A, targeting LIV-1 for the 

treatment of metastatic breast cancer122. SGN-LIV1A is cur-

rently in a Phase 1 trial and may be a new therapy for patients 

with metastatic breast cancer and cancers with LIV-1-positive 

indications. In addition, NVS-ZP7-4 is also recently identified 

as a ZIP7 inhibitor123. This chemical may be a potential treat-

ment of cancer patients with high ZIP7 expression.

Conclusions and perspectives

Over the past few decades, accumulating evidence has 

revealed disturbances of zinc metabolism and homeostasis 

in cancer (Figure 4). Extracellular stimuli such as growth 

factors and cytokines, which are probably produced in the 

microenvironments surrounding cancerous tissue, can 

directly or indirectly affect intracellular zinc status. In one 

case, an extracellular stimulus could activate zinc transport-

ers on the intracellular zinc stores, such as ZIP7 on the ER 

through phosphorylation at specific residues by the protein 

kinase, CK2, resulting in cytosolic free zinc. The increased 

intracellular free zinc functions as an intracellular second 

messenger and leads to the phosphorylation of ERK1/2 and 

AKT, and cell migration. In another case, extracellular stimuli 

can modulate various signaling cascades, such as the exten-

sively studied JAK-STAT signaling pathway. These processes 

contribute to transcriptional regulation of proteins involved 

in zinc uptake, distribution, storage, and release. The dys-

regulation of intracellular zinc homeostasis then influences 

multiple zinc-requiring proteins and phosphorylation-de-

pendent signaling cascades (for example, MAPKs, Akt, pro-

tein tyrosine phosphatases, MMPs, and zinc-finger proteins), 

thereby playing important roles in cell development, prolif-

eration, and cell death. Because altered zinc homeostasis is 

tissue-specific, further studies are required to elucidate the 

exact role of zinc in specific cancers. Zinc sensors for quanti-

tative detection of zinc levels or targeting specific subcellular 

zinc pools may provide more precise information regarding 

the role of zinc dyshomeostasis in the development and pro-

gression of cancer124,125. In addition, chemicals or treatments 

that specifically modulate zinc-transporter functions or zinc 

111

ZIPs

Zn2+

Zn2+

Zn2+

Zn2+Zn2+

Intracellular zinc fluctuations

Receptors

Signaling pathways
Cellular events

(proliferation, differentiation, migration, apoptosis, etc)

Cancers

Target molecules

Growth factors, cytokines, etc

Zinc pools

Zn2+

(cell organelles, vesicles)

Zn2+

Zinc transporters

Zn2+Zn2+

Zn2+

ZnTs

STAT3, etc

Zinc-related genes

Nucleus

CK2, etc

ZIPs
ZnTs

MTs
Zn

Zn

Zn
Zn

Zn

Zn
Zn

Transcriptional regulation

Figure 4  Summary of zinc signaling in pathogenesis. Intracellular zinc fluctuations can be triggered by zinc release from intracellular stores, 
or transcriptional regulation of proteins required for zinc metabolism and homeostasis. Then, zinc modulates multiple zinc-requiring proteins 
or phosphorylation-dependent signaling cascades, which contribute to numerous cellular events, such as survival, differentiation, prolifera-
tion, and migration, ultimately causing the initiation or progression of cancer.



Cancer Biol Med Vol 17, No 3 August 2020� 621

levels in subcellular zinc pools may serve as effective tools to 

treat patients with cancer.
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