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ABSTRACT	 Objective: Mantle cell lymphoma (MCL) is a rare subtype of non-Hodgkin lymphoma (NHL) with high heterogeneity and a high 

recurrence rate. How heterogenous cell populations contribute to relapse remains to be elucidated.

Methods: We performed single cell RNA sequencing (scRNA-seq) on approximately 4,000 bone marrow cells sampled from one 

patient with multidrug resistant MCL. We identified 10 subpopulations comprising 4 malignant B cell subtypes, 3 T cell subtypes, 

2 dendritic cell subtypes and 1 natural killer (NK) cell subtype. Subsequently, we identified cell markers, including a series of genes 

associated with immune escape and drug resistance. In addition, we explored the roles of these genes in the mechanism of immune 

escape and drug resistance, and we verified the expression imbalance and clinical prognostic potential by using GEO datasets 

including 211 MCL samples.

Results: The major immune escape mechanisms of MCL included anti-perforin activity, decreased immunogenicity and direct 

inhibition of apoptosis and cell killing, as mediated by type I and II B cells. The drug resistance mechanisms of different cell clusters 

included drug metabolism, DNA damage repair, apoptosis and survival promotion. Type III B cells closely communicate with 

other cells. The key genes involved in the resistance mechanisms showed dysregulated expression and may have significant clinical 

prognostic value.

Conclusion: This study investigated potential immune escape and drug resistance mechanisms in MCL. The results may guide 

individualized treatment and promote the development of therapeutic drugs.
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Introduction

Mantle cell lymphoma (MCL) is a relatively rare subtype of 

non-Hodgkin lymphoma (NHL) characterized by chromo-

somal translocation (11;14) resulting in constitutive over-

expression of cyclin D1. Most patients with MCLs must be 

treated quickly, and the treatment dose intensity should be 

individualized according to patient fitness status. For exam-

ple, younger patients are usually treated with high dose cytara-

bine combined with autologous stem cell transplantation for 

consolidation therapy and rituximab for maintenance ther-

apy. Moreover, conventional chemotherapy has a high remis-

sion rate in previously untreated patients with MCL, and 

most patients eventually relapse and have a median overall 

survival of 5 to 7 years1,2. Bruton’s tyrosine kinase (BTK) is 

a key component of the B cell receptor (BCR) signaling path-

way, which promotes lymphomagenesis and the progression 

of B-cell NHLs3,4. Ibrutinib, which irreversibly binds Cys-481 

in the ATP-binding pocket of BTK, is an approved second-line 

therapy for MCL5 with a 68% overall response rate and 

21% complete response (CR)6. However, relapse is inevita-

ble, owing to primary or secondary resistance to ibrutinib7. 

Interestingly, mutations in the BCR pathway (particularly in 

BTK and its downstream targets, such as PLCG2) are usually 

found in chronic lymphocytic leukemia, whereas mutations 

in the NF-κB pathway are associated with ibrutinib resistance 

in MCL8,9. Recently, Agarwal et al. first demonstrated that the 

mutation or deletion of genes encoding the SWI/SNF complex 
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renders patients with MCLs resistant to ibrutinib10. However, 

the mechanism of ibrutinib resistance in MCL is largely 

unknown. There is a great unmet need in the management 

of relapsed/refractory MCL; therefore, a deep understanding 

of the tumor biology and mechanism of lymphomagenesis 

is necessary to enable the development of novel therapeutic 

agents.

Although the widespread presence of tumor heterogeneity 

has been largely confirmed, the biological relationships 

between cell subpopulations and microenvironments in 

tumors remain unclear, but may be involved in tumor resist-

ance and recurrence11. Compared with traditional methods, 

single-cell RNA sequencing (scRNA-seq) technology can bet-

ter address the problem of cell population heterogeneity12-15 

and provide more information by sequencing of the smallest 

independent genetic unit of life16. In the present study, differ-

ent cell clusters in the bone marrow of a patient with multid-

rug resistant MCL were identified. Moreover, we explored the 

genetic relationships and proliferation potential of intratu-

moral cells at the levels of differentiation and evolution. After 

observing the gene expression in bone marrow cells, we iden-

tified a series of genes that were associated with immune eva-

sion and drug resistance pathways, and had high expression; 

these genes may serve as cell markers. Moreover, we further 

describe the role of these highly expressed genes in immune 

evasion processes and drug resistance pathways.

Materials and methods

Case presentation

A 50 year-old male patient was diagnosed with MCL (stage IV, 

simplified MIPI score = 3) in 2011. The immunohistochemical 

results of lymph node biopsy were as follows: CD20+, CD5+, 

CD23-, CD79a+, Cyclin-D1+, SOX-11+, Bcl-2+, Bcl-6-, CD3-, 

CD10-, TdT-, MUM-1-, Ki-67 20%+; FISH: t (11; 14) (q13; 

q32) positive. After diagnosis, he was treated with 6 cycles of 

R-HyperCVAD/R-MA, and a CR was obtained, which lasted 

for 24 months. In 2013, the disease relapsed for the first time, 

and the patient was treated with 3 cycles of bortezomib + 

rituximab + high-dose cytarabine. Although CR was attained, 

the collection of autologous stem cells failed. Thalidomide 

maintenance was initiated until the disease relapsed for the 

second time 20 months later, in 2015. Subsequently, 2 cycles 

of R-CHOP/R-DHAP were given, followed by lenalidomide 

maintenance. In 2017, the patient relapsed for the third time, 

with a progression free survival (PFS) of 26 months, with 

pancytopenia and high tumor burden. Afterward, ibrutinib 

monotherapy was administered at a dose of 560 mg per day. 

Two months later, CR was confirmed with both PET-CT scan 

and bone marrow biopsy. Relapse again occurred 7 months 

later in 2018, with substantial bone marrow infiltration. The 

ratio of mantle cell lymphoma cells in a bone marrow spec-

imen was 29.5% at the time of sampling. Thus, this patient 

appeared to be resistant to multiple drugs, including rituxi-

mab, cytarabine, bortezomib, lenalidomide and ibrutinib. At 

that time, the patient had already experienced widespread 

infiltration of MCL cells (Supplementary Figure S1). When 

he developed resistance to ibrutinib, 10 mL bone mar-

row aspiration was obtained for scRNA-seq. This study was 

approved by the ethics committee of Beijing Tongren Hospital 

(No. TRECKY2018-039), and an informed consent form was 

signed by the patient.

Preparation of bone marrow single cell 
suspension

According to standard operating procedures, mononuclear 

cells in the bone marrow were isolated with lymphocyte sep-

aration fluid (1:1 Ficoll separation solution:anticoagulant). 

Then, according to the needs of the experiment, phosphate 

buffered saline (PBS) with 0.5% bovine serum albumin (BSA) 

was added to adjust the cell concentration for sequencing, and 

samples were cryopreserved in 90% FBS/10% DMSO for stor-

age in liquid nitrogen.

10x sample processing and cDNA library 
preparation

Samples were prepared as described in the 10x Genomics Single 

Cell 3′ v2 Reagent Kit user guide. Briefly, the samples were 

washed twice in PBS (Life Technologies) + 0.04% BSA (Sigma) 

and re-suspended in PBS + 0.04% BSA. Sample viability was 

assessed via Trypan Blue (Thermo Fisher) and with a hemocy-

tometer (Thermo Fisher). After counting, the appropriate vol-

umes for samples were calculated for a target capture of 6,000 

cells and loaded onto a 10× Genomics single-cell-A chip. After 

droplet generation, samples were transferred into pre-chilled 

8-well tubes (Eppendorf) and heat-sealed, and reverse tran-

scription was performed with a Veriti 96-well thermal cycler 

(Thermo Fisher). After the reverse transcription, cDNA was 

recovered with Recovery Agent from 10× Genomics, followed 
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by a Silane DynaBead clean-up (Thermo Fisher) as outlined 

in the user guide. Purified cDNA was amplified for 12 cycles 

before being cleaned up with SPRIselect beads (Beckman). 

Samples were diluted 4:1 and analyzed with a Bioanalyzer 

(Agilent Technologies) to determine cDNA concentration. 

cDNA libraries were prepared as outlined in the Single Cell 3′ 
Reagent Kits v2 user guide with appropriate modifications to 

the PCR cycles on the basis of the calculated cDNA concentra-

tion (as recommended by 10× Genomics).

Sequencing

The molarity of each library was calculated according to library 

size, as measured with a Bioanalyzer (Agilent Technologies) 

and qPCR amplification data. Samples were pooled and nor-

malized to 10 nM, then diluted to 2 nM with elution buffer 

with 0.1% Tween20 (Sigma). Samples were sequenced on a 

Novaseq 6000 instrument with the following run parameters: 

read 1, 26 cycles; read 2, 98 cycles; index, 1–8 cycles. A median 

sequencing depth of 50,000 reads/cell was targeted for samples.

Sequence filtering and comparison

After Casava base recognition, the original obtained image 

file was converted into sequenced reads and stored in FASTQ 

format. The BCL file was split according to the sample index 

to obtain the FASTQ sequence of each sample. Then the 10X 

Barcode and UMI sequences were extracted from R1 accord-

ing to the library structure and 10X Barcode filter. R2 was the 

insert part (cDNA insert/RNA reads). The RNA reads (inserts) 

were aligned to the human genome reference sequence with 

STAR alignment software. Subsequently, the CellRanger (10× 

Genomics) analysis pipeline was used to generate a digital 

gene expression matrix from the data. Then, the CellRanger 

(10× Genomics) analysis pipeline was used to generate a digi-

tal gene expression matrix from the data.

Data processing with the Seurat package

Seurat (http://satijalab.org/seurat/)17 is an R package allowing 

users to identify and interpret sources of heterogeneity from 

single-cell transcriptomic measurements18. First, a suitable 

threshold was determined to filter unwanted cells from the 

dataset according to the number of unique genes detected in 

each cell, the total number of molecules detected within a cell 

and the percentage of reads mapping to the mitochondrial 

genome. Then the LogNormalize method was used to normal-

ize the data. We identified a subset of features that were highly 

expressed in some cells but weakly expressed in others, exhib-

iting high cell-to-cell variation in the dataset. By default, we 

returned 2,000 features per dataset, which were used in down-

stream analysis. Subsequently, the FindClusters function was 

applied to identify different cell clusters, and the UMP method 

was used for visualization. Moreover, we identified markers 

for every cluster (compared with all remaining cells) with the 

FindAllMarkers function, retaining only positive genes. The 

FindMarkers function was applied to differential expression 

analysis and ROC analysis. For each gene, we evaluated (with 

the AUC) a classifier built on the gene alone, to classify two 

groups of cells. The DoHeatmap function was used to generate 

an expression heatmap for given cells and features.

Functional enrichment analysis and 
calculation of cell stemness index

The clusterProfiler package19 in R was used for functional 

enrichment analysis of marker genes in various cell clusters. 

According to the enriched cancer signal pathway, the specific 

cell cluster was defined as a malignant B cell cluster. P < 0.05 

was considered significant. Additionally, under the default 

parameters, the TCGAbiolinks package20 in R was used to cal-

culate the stemness index of each cell.

Pseudotime analysis

Monocle is an R package that introduces the strategy of order-

ing single cells in pseudotime. Single cells were placed along a 

trajectory corresponding to a biological process, such as cell 

differentiation, by taking advantage of an individual cell’s 

asynchronous progression. This package allows users to deter-

mine the track of a cell’s transition from one state to another 

during development, in the presence of disease and over the 

lifetime. In our study, data were used for pseudotime analysis 

with Monocle 2 after being filtered, normalized and clustered 

with the Seurat package.

Exploration of genes involved in the 
mechanism, in an independent data set

To expand the applicability and value of our research, we 

examined a clinical cohort of patients with MCL to verify 

the expression imbalance and clinical prognostic potential of 

http://satijalab.org/seurat/
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key marker genes involved in the mechanisms (“mechanism 

genes”). From Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/)21, we downloaded 3 datasets 

related to MCL. Among them, GSE30189 was based on the 

GPL6884 platform, including 17 MCL samples and 4 con-

trol samples; GSE10793 was based on the GPL30789 plat-

form, including 71 MCL samples; and GSE93291 was based 

on the GPL570 platform, including 123 MCL samples. The 

normalizeBetweenArrays function in the limma package22-24 

was used to normalize gene expression profiles in GSE10793 

and GSE93291. Moreover, the limma package was used for 

differential expression analysis, in which P < 0.05 was con-

sidered significant. Subsequently, we extracted common 

genes between the set of mechanism genes and differentially 

expressed genes for clustering analysis. A heatmap of com-

mon genes was visualized with the pheatmap package (https://

cran.r-project.org/web/packages/pheatmap/index.html) and 

ggplots package25. In addition, genes in common between 

the set of mechanism genes and genes from GSE10793 and 

GSE93291 were selected for survival analysis with the survfit 

function in the survival package. The ggsurvplot package in 

the survminer package (https://cran.r-project.org/web/pack-

ages/survival/index.html) was applied to visualize the sur-

vival curve.

Results

The flow chart of this study is demonstrated in Figure 1.

Identification of cell types in MCL bone 
marrow

A total of 3,989 cells and 15,676 genes were filtered for down-

stream analysis after removal of low complexity transcrip-

tomes, weakly expressed genes and transcriptomic doublets. 

In our study, 10 feature genes (highly expressed in some cells 

and weakly expressed in others) showed high cell-to-cell 

variation in the dataset: IGKC, IGHG4, IGHG1, JCHAIN, 

IGLC2, MZB1, IGHA1, LST1, SSR4 and AIF1 (Figure 2A). 

All filtered cells were split into 10 clusters (Figure 2B), pri-

marily into clusters 0, 1, 2, 3. Moreover, the marker genes 

(area under curve (AUC > 0.7) of each cell cluster were 

identified by ROC analysis (Supplementary Table S1). 

These features were able to serve as biomarkers to distin-

guish cell clusters with good classification efficiency. In par-

ticular, we identified stemness genes from the features, thus 

suggesting that the dedifferentiation of tumor cells leads to 

increased stemness (Supplementary Figure S2A)26. We fur-

ther identified differentially expressed features of each cell 

cluster (Supplementary Table S2, Figure 2C, 2D) through 

differential expression analysis. The expression heatmap of 

features in each cluster showed that these features could be 

used to classify cell clusters (Figure  2E). In addition, we 

extracted the patient’s bone marrow for flow cytometry and 

analyzed it with SSC/CD19 gating. The results showed that 

84,106/286,279 abnormal cells (29.5% occupied nucleated 

cells) were positive for expression of CD5, CD19, CD20 and 

Data quality
control and filtering

Immune escape
analysis of MCL

Immune
mechanisms of MCL

Drug efficacy of MCL Drug resistance
mechanism of MCL

Functional enrichment
analysis for maker genes
by clusterProfiler package

Pseudotime analysis
by Monocle 2 package

Identification of cell
cluster marker genes and high
AUC genes by Seurat package

Figure 1  Flow chart of this study.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
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λ-LC, and negative for expression of CD10, CD23, CD38, 

CD56, CD79b, CD200 and κ-LC (Figure 2F). According 

to our analysis, CD19 was mainly expressed in type I and 

type III B cells (Supplementary Table S1). Furthermore, 

according to the cell markers and cancer-related signaling 

pathways involved in each cell cluster, the following 10 clus-

ters were identified as specific cell types: 4 malignant B cell 

subtypes, 3 T cell subtypes, 2 dendritic cell subtypes and 

1 NK cell subtype (Figure 2G, Supplementary Table S3). 

We additionally found that many known tumor antigen 

genes of MCL were differentially over-expressed in four 

malignant B cell clusters (Supplementary Figure  S2B). 

Simultaneously, we investigated the expression of a series 

of recognized clinical diagnostic markers for MCL, includ-

ing CCND1, CD5, CD19 and CD200 (Supplementary 

Figure S2C). After mapping their high expression to a sin-

gle cell atlas, we observed that the cell clusters could be well 

defined and distinguished, in agreement with our previous 

results, thus further suggesting that these four cell clusters 

were malignant B cells.
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Figure 2  Identification of cell subpopulations in the bone marrow of a patient with mantle cell lymphoma. (A) Characteristic genes with high 
variation. Red indicates genes with significant differences. (B) Clustering analysis of 10x single-cell transcriptome data from bone marrow cells 
in patients with mantle cell lymphoma (n = 3,989). Each dot represents a single cell and is colored according to cluster, as shown in the key. 
(C) Expression levels of selected markers, shown in a violin plot. The Supplementary Figure shows the expression levels of marker genes in 
different clusters. (D) Expression patterns of selected markers projected on the UMAP plot. Blue indicates high expression, and gray indicates 
low or no expression. For each cell type, one marker is shown in the main figures. (E) Expression heatmap of cell markers in each cluster. Each 
row represents a gene, and each column represents a single cell. (F) Detection of bone marrow by flow cytometry. Forward scattering (FSC) 
was used to characterize cell size. Side scattering (SSC) was used to characterize the complexity of cell particles. (G) Identification of cell cluster 
subpopulations.
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The proliferation and differentiation potential 
of cell clusters

To further study the potential relationships among cell 

clusters in MCL, we first identified the characteristic gene 

sets reflecting cell states for each cell cluster (Figure  3A). 

According to similarity of gene expression, cells were clustered 

and formed a relative cell trajectory in the simulation time 

via pseudotime analysis. The trajectory showed that these 

cells could be divided into five different states (Figure 3B). A 

closer relationship was observed between state 1 and state 2, 

as well as between state 4 and state 5 (Figure 3C). Malignant 

B cells were concentrated in state 4, and plasmacytoid den-

dritic cells were mainly distributed in states 4 and 5, whereas 

other microenvironment cells were concentrated in state 1 

(Figure 3D, Supplementary Figure S3A, 3B). Unexpectedly, 

we found a higher differentiation potential in type I and 

IV B cells that had lower maturity and higher malignancy 

(Supplementary Figure S3C).

Immunological mechanism of the 
microenvironment

Immunoglobulins are produced when the body is stimulated 

by antigens, such as pathogens. Its main function is to react 

with antigens, thus producing antigen antibody complexes, 

blocking the invasion of pathogens into human body and 

causing pathogens to lose their pathogenicity. In this study, the 

abnormal elevation of IgG and IgE in the patient indicated that 

his body had been stimulated by antigens (Supplementary 

Table S4); this response might have been associated with 

immune mechanisms. Notably the autoimmune hemolytic 

complications in this patient during treatment were associated 

with the increased expression of immunoglobulin Fc receptor 

genes (such as FCRLA, FCMR, FCGRT, FCER2, FCGR2B and 

FCRL2). After IgG sensitization of red blood cells (RBCs), Fc 

receptors on the macrophage surface can recognize and bind 

RBCs27, thus resulting in autoimmune hemolysis. In addi-

tion, T-helper cells and their cytokines play a major role in 
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regulating IgE synthesis28-30. T helper cells are subsets of T cells 

that have important roles in the differentiation of immune 

cells, the binding of effector cell subsets and the induction of 

responses31. Autoimmune hemolysis has been suggested to be 

associated with disorder in the immune environment.

Furthermore, we explored the potential immune mech-

anism of MCL in the bone marrow microenvironment 

(Figure  4, Supplementary Figure S4). During antigen rec-

ognition, tumor cells are phagocytized and degraded into 

peptide segments by dendritic cells32-35. The degraded pep-

tide segments bind MHC1 molecules and form the MHC1 

class complex36. This complex interacts with T cell receptors 

(TCRs) and induces activation of the TCR signaling pathway, 

thereby eventually leading to the T cell immune response37. 

Activation of the Src family kinases Lck and Fyn is key in 

activation of the TCR signaling pathway. In type I T cells, the 

elevated expression of FYB and PTRPC, a CD8 synergistic 

receptor, enhances the activation of FYN and Lck, respectively, 

thus promoting signal transduction of T cell activation and 

the expression of associated genes. In terms of immune kill-

ing, PRF1 (perforin-coding gene) was highly expressed in NK 

cells. Perforin with Ca2+ can form channels on target cells, and 

the cells are subsequently dissolved osmotically38-40. However, 

we observed high expression of the granzyme genes GZMM, 

GZMA, GZMB, GZMH and GZMK in type I T cells, type II 

T cells and NK cells. In cooperation with perforin, released 

granzyme acts on the nucleus and triggers a caspase cascade 

reaction, thus causing apoptosis41.

Immune escape of tumor cells

The occurrence of cancer is closely associated with the 

immune function of the body, which is activated when it 

encounters foreign invaders. Therefore, when cancer has 

occurred and developed, cancer cells can survive and prolif-

erate in vivo by avoiding recognition and attack by the body’s 

immune system. Numerous clinical data have shown that low 

or suppressed immune function in the host often leads to an 

MCL

Type I B cell Type II B cell Type III B cell Type IV B cell

Antigen recognition

Immune killing

GZMM
GZMK
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Figure 4  Immune mechanisms of the MCL microenvironment. As indicated in the figure, this mechanism mainly included antigen recogni-
tion, antigen presentation, T cell activation and immune killing.
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increase in tumor incidence. In this study, we identified several 

potential immune escape mechanisms of MCL malignant cells 

(Supplementary Figure S5), such as the anti-perforin pathway 

(Figure 5A) and the low tumor cell immunogenicity pathway 

(Figure 5B). On the one hand, the overexpression of BCL2 

family members (MCL1 in type I B cells and BCL2 L12 in type 

III B cells) inhibits perforin and decreases the damage caused 

by cancer cells. In addition, high expression of HSP90AA1 fur-

ther promotes the expression of BCL2 L12. On the other hand, 

the lack of MHCI class genes (including HLA-A, HLA-B and 

HLA-C) in MCL malignant cells leads to an absence of MHC 

complexes, thus avoiding recognition by type I, II T cells. In 

addition, BIRC5, CHD2 and PCNA are highly expressed in 

type III B cells. BIRC5 and CHCHD2 inhibit cell apoptosis, 

whereas PCNA inhibits the killing effects of NK cells, thus pro-

moting the survival of malignant cells by inhibiting cell apop-

tosis and cell killing (Figure 5C), in another potential immune 

escape mechanism of malignant cells.

Multidrug resistance of tumor cells

Drug resistance is one of the principal reasons for the failure of 

anti-infection drugs and cancer chemotherapy. In addition to 

determining the expression and functions of genes in cells, this 

study further elucidated the potential drug resistance mech-

anism in MCL at the cell level. First, some drug target genes 

were found to be highly expressed in the patient (Figure 6). 

For example, BTK is a gene upstream of the BCR signaling 

pathway, whose encoded protein is essential for the develop-

ment, differentiation and signal transduction of B lympho-

cytes3,42. Ibrutinib inhibits the proliferation of malignant B 

cells by inhibiting BTK43,44. MS4A1 (also called CD20) encodes 

a B lymphocyte surface molecule involved in the development 

and differentiation of B cells into plasma cells45,46. Rituximab 

specifically binds MSA1, thus inactivating it or causing its 

shedding from the cell surface47. In addition, FC receptors on 

B cells promote rituximab internalization, thereby decreasing 

its clinical efficacy48. Moreover, we observed high expression 

of FC receptor-encoding genes, including FCGR2A, FCGR2B 

and FCGR3A. In conclusion, high expression of these drug 

target genes indicated the emergence of drug resistance and 

the enhancement of B cell viability during drug resistance.

Specific niches within the tumor microenvironment of 

lymphoma provide shelter for subpopulations of cancer cells 

through interactions between stromal cells and tumor cells, 

thus leading to drug resistance in malignant B cells49,50. This 

mechanism is mainly mediated by chemokines and integrins, 

which are associated with the extracellular matrix51. Here 

(Supplementary Figure S6), we found many genes encoding 

secretory proteins and extracellular matrix proteins in NK 

cells, CD1C CD141− dendritic cells and type III B cells, thus 

indicating that malignant B cells may be protected by these 

Figure 5  The immune escape mechanism of MCL cells. (A) Anti-perforin. (B) Low immunogenicity. (C) Inhibition of NK cell killing.
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proteins in the development of drug resistance (Figure  7A). 

In addition, drug-binding receptors on the cell surface might 

decrease the concentrations of drugs entering the cell, thus 

diminishing the toxicity of the drugs to cancer cells and pro-

moting cell survival (Figure 7B). In naive CD8+ T cells, type 

III B cells and CD1C CD141− dendritic cells, we identified 

significant overexpression of genes participating in drug 

metabolism, including cytochrome P450 and other enzymes 

(Figure 7C), thus suggesting that these cells might be resistant 

to drugs through drug metabolism. In addition, genes asso-

ciated with DNA damage repair were significantly overex-

pressed in type I B, type III B and type IV B cells (Figure 7D). 

Considerable evidence in solid tumors suggests that increased 

repair or tolerance of DNA lesions may contribute to the abil-

ity of cancer cells to survive in environments with high geno-

toxic stress52. Various oncogenes, cancer stem cells, a hypoxic 

environment, transcription factors and bystander signaling 

are activated in cancer cells, thus allowing for effective repair 

of DNA damage53. These repaired cancer cells are often more 

resistant to further treatment, thus leading to disease recur-

rence53. In this study, the genes associated with DNA damage 

repair were highly expressed, thereby suggesting that the recur-

rence of cancer and resistance might be due to DNA damage 

repair. Moreover, BTK was highly expressed in type I and IV B 

cells, whereas LYN and SYK were highly expressed in type III 

and IV B cells. These genes are upstream of survival pathways, 

such as the B cell receptor, MAPK, NF-kappa B and PI3K-Akt 

signaling pathways4,54; therefore, these 3 types of malignant 

B cells resist drugs and promote cell survival (Figure 7D). In 

addition, type I, II and IV B cells produce MDM4, CCND1 

and MCL1 proteins, which act on or bind P53, RB1 and 

other anti-cancer proteins55-57, and consequently decrease the 

activity of anti-cancer proteins, thus promoting cell survival 

(Figure 7E).

Figure 6  Drug target genes are highly expressed in cell clusters.
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Discussion

MCL is a highly aggressive B cell malignant lymphoma58. 

Frequent recurrence and drug resistance during treatment 

are major challenges in defining standard therapies, because 

of MCL’s biological and clinical heterogeneity59,60. In this 

study, bone marrow samples were collected from a multid-

rug resistant patient, and 10 cell clusters were identified by 

scRNA-seq: 4 malignant B cell clusters, 3 T cell clusters, 2 

dendritic cell clusters and 1 NK cell cluster. Subsequently, we 

identified the potential mechanism of immune escape and 

multidrug resistance in MCL. However, because of the small 

number of sequenced specimens (n = 1), we validated the 

main conclusions in a larger sample size, in a clinical cohort of 

patients with MCL from the GEO database.

Tumorigenesis has been proposed to arise from the orderly 

and uncontrolled differentiation potential of stem cells, 

whereas tumor cells originating from early stem cells have 

greater proliferation and differentiation potential61. In this 

study, pseudotime analysis showed that these cell clusters 

might arise from the same ancestors. In addition, we observed 

greater proliferation and differentiation potential of type I B 

cells than other clusters, thus indicating that these cells have 

greater potential for immune escape and drug resistance 

mechanisms, and therefore might be used as drug targets in 

the future. We speculate that the different proliferation and 

differentiation potentials of cancer cells confer them with 

Figure 7  Potential mechanisms of drug resistance in MCL. (A) Secretory protein and extracellular matrix related drug resistance. 
Microenvironment cells protected malignant B cells from drug resistance by secreting proteins and extracellular matrix. (B) Cell surface recep-
tors associated with drug resistance. Cell surface receptors bound to drugs, thus reducing drug concentrations in cells and diminishing the 
toxicity of drugs to cancer cells. (C) Drug resistance related to drug metabolism. Drug metabolic pathways led to drug resistance. (D) Survival 
promotion and DNA damage repair related to drug resistance. Malignant B cell resistance induced by DNA damage repair and survival promo-
tion. (E) Cancer gene related drug resistance. Malignant B cells promoted their survival by inhibiting the activity of tumor suppressor proteins, 
thus resulting in drug resistance.
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different advantages in immune escape and drug resistance 

mechanisms. Additionally, on the basis of the cell markers, we 

found high heterogeneity in each cell cluster (Supplementary 

Figure S4), which is the main driving force underlying tumor 

development, metastasis and drug resistance62. Tumor cells 

are genetically unstable, owing to somatic mutations, which 

eventually lead to subclones with different mutations and 

manifestations63,64. Under the pressure of specific chemother-

apeutic drugs, heterogeneous tumors can select subclones with 

intrinsic or acquired drug resistance to ensure the survival of 

tumor cells, thus promoting disease development65. Therefore 

the relapse of disease appears to be closely associated with the 

high heterogeneity of MCL. Further analysis revealed that the 

differentially expressed genes shared by 4 malignant cell types 

were mainly involved in biological processes such as immune 

response, antigen presentation, B cell receptor signal transduc-

tion, and promotion of B cell survival in vitro (Supplementary 

Figure S7C). These findings indicated that these malignant B 

cells play an important role in the malignant process of MCL, 

for example in immune escape and drug resistance.

Further investigations showed that malignant cells of MCL 

mainly avoid immune killing via inhibiting perforin, decreas-

ing autoimmunity and directly inhibiting apoptosis or NK cell 

killing. Perforin is a cytotoxic molecule in the body, and the 

perforin-dependent pathway is the main mechanism of killing 

cancer cells39,66. BCL2 inhibits the apoptotic pathway of per-

forin and granulase B67. In this study, the high expression of 

BCL2 family genes suggested that the BCL2 family might play 

a major role in the immune escape of MCL. In the follow-up 

treatment of our patient, his condition was completely allevi-

ated after the use of the BCL-2 inhibitor venetoclax, thus veri-

fying our hypothesis and confirming our conclusion regarding 

the immune escape mechanism.

High expression of some targeted genes by resistant drugs 

might signify that the effect of drugs on target genes is weak-

ened or ineffective. On one hand, a change in drug targets or 

the consumption of drugs in metabolic pathways may occur, 

thus preventing the drugs’ standard actions. On the other 

hand, the high heterogeneity of MCL malignant cells might 

play a role when cells are first treated by drugs. As a result 

of division and proliferation, daughter cells show changes in 

molecular biology or genes, thus leading to drug resistance. 

In contrast, other target genes of drugs were not found to be 

highly expressed, possibly because of partial drug efficacy or 

low concentrations of drugs in cells. According to the correla-

tions among the molecular characteristics of the cell clusters 

(Supplementary Figure S7D), we found that type III B cells 

and plasmacytoid dendritic cells communicated more closely 

with other cells. We speculated that type III B cells, as malig-

nant cells with active molecular communication, play a major 

role in both immune escape and drug resistance. In addition, 

plasmacytoid dendritic cells might act as antigen presenting 

cells, activating immune killer cells (mainly T cells), which in 

turn play a bridging role in the immune mechanisms specific 

to the microenvironment.

In the treatment of cancer, drug resistance has a major role 

in the recurrence and incurable status of cancer. There are 

many reasons for drug resistance, such as the tumor microen-

vironment, cancer stem cells, inactivation of anti-cancer drugs, 

increased drug efflux, reduced drug absorption, improved 

drug metabolism and drug target gene mutation68-70. In 

previous studies, overexpression of cyclin D1 and Bcl-2 has 

been considered to be the cause of cell cycle disorder and the 

decrease in apoptotis71, effects closely associated with drug 

resistance. In addition, we identified different resistance mech-

anisms in different cell clusters, thus possibly explaining why 

traditional chemotherapy is not effective for some patients. 

After studying independent datasets of an MCL cohort, we 

identified abnormal expression of the genes involved in these 

mechanisms (Supplementary Figure S8A). Moreover, most 

genes involved in these mechanisms, particularly CCND1 and 

ALOX5, were significantly associated with the prognosis of 

MCL (Supplementary Figure S8B, S8C). These genes not only 

were abnormally expressed in MCL but also were significantly 

correlated with the prognosis of MCL. CCND1 is associated 

with a variety of cancers72-75, and its abnormal expression is 

associated with the drug resistance of MCL56; therefore, this 

gene may become a potential therapeutic target for MCL. In 

addition, ALOX5 is a key gene effector of JAK2V617F driv-

ing PV, thus making it a candidate therapeutic target for the 

treatment of refractory myeloproliferative tumors76. Here, we 

found that ALOX5 was associated with the immune mecha-

nism of MCL, thus providing new ideas and strategies for fur-

ther research on MCL.

Conclusions

The high heterogeneity of malignant MCL cells enables 

them to evade immune attack and drug toxicity through 

different mechanisms, thus leading to drug resistance and 

a high recurrence rate. According to our findings, in clini-

cal practice, MCL may be treated with strategies targeting 
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different cell components, such as inhibiting drug metabolism 

or anti-apoptotic pathways. Although our research was mainly 

based on the analysis of bioinformatics and validation in a 

clinical cohort of patients with MCL from the GEO database 

in several molecular experiments, our work may provide mul-

tiple candidates for investigation in future research on drug 

resistance mechanisms in MCL.
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