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Background: Analyses that use genome assemblies are critically affected by the contiguity, completeness, and accuracy of
those assemblies. In recent years single-molecule sequencing techniques generating long-read information have become
available and enabled substantial improvement in contig length and genome completeness, especially for large genomes
(>100 Mb), although bioinformatic tools for these applications are still limited. Findings: We developed a software tool to
close sequence gaps in genome assemblies, TGS-GapCloser, that uses low-depth (~10x) long single-molecule reads. The
algorithm extracts reads that bridge gap regions between 2 contigs within a scaffold, error corrects only the candidate
reads, and assigns the best sequence data to each gap. As a demonstration, we used TGS-GapCloser to improve the scaftig
NG50 value of 3 human genome assemblies by 24-fold on average with only ~10x coverage of Oxford Nanopore or Pacific
Biosciences reads, covering with sequence data up to 94.8% gaps with 97.7% positive predictive value. These improved
assemblies achieve 99.998% (Q46) single-base accuracy with final inserted sequences having 99.97% (Q35) accuracy, despite
the high raw error rate of single-molecule reads, enabling high-quality downstream analyses, including up to a 31-fold
increase in the scaftig NGA50 and up to 13.1% more complete BUSCO genes. Additionally, we show that even in ultra-large
genome assemblies, such as the ginkgo (~12 Gb), TGS-GapCloser can cover 71.6% of gaps with sequence data. Conclusions:
TGS-GapCloser can close gaps in large genome assemblies using raw long reads quickly and cost-effectively. The final
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assemblies generated by TGS-GapCloser have improved contiguity and completeness while maintaining high accuracy. The
software is available at https://github.com/BGI-Qingdao/TGS- GapCloser.
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The cost and time necessary to sequence 1 Mb of DNA has been
decreasing at a speed beyond Moore’s Law over the past decade
[1]. Databases of genetic sequences have been growing dramati-
cally, with the size of completed genomes increasing from small
bacterial and fungal genomes to very large eukaryotic genomes.
In addition to short-read next-generation sequencing technolo-
gies (NGS) that have enabled this dramatic increase in genome
sequencing, recent state-of-the-art techniques, such as third-
generation single-molecule longreads (TGS) [2, 3], syntheticlong
read (SLR) libraries [4-6], Hi-C [7], and BioNano physical maps
[8], have provided long-range genome information to help in-
crease the contiguity of genome assemblies. However, the fin-
ished assemblies for most large genomes (>100 Mb) remain im-
perfect and contain numerous gaps of unknown nucleic acids
(represented by N's) [9, 10]. These gaps are often due to repetitive
or difficult DNA sequences, polymorphisms between individual
genomes of the same species, limitations of sequencing plat-
forms, and algorithmic trade-offs. The process of gap closure or
gap filling can recover these unknown bases and extend scaftigs
(contigs within a scaffold without N’s) [11] to completely or par-
tially bridge these gaps, and there is a need for tools to enable
this on existing assemblies, especially for large highly complex
eukaryotic genomes.

The first efforts to close gaps in genome assemblies were
made using Fosmid and bacterial artificial chromosome libraries
combined with Sanger sequencing [12]. But the cost and la-
bor associated with this manual to semi-automated gap-closing
process were very high [10] and practically limited to only
very well-funded genome programs (e.g., the Human Genome
Project). As NGS technologies lowered sequencing costs, new
paired-end and mate-pair libraries made processes and several
bioinformatics tools were designed to help improve the gap-
closing process [13-17]. These tools were based on k-mer ex-
tension or local reassembly algorithms but were hindered by
large CPU and memory consumption. In addition, these strate-
gies rarely spanned repetitive DNA regions and tended to cause
more misassemblies due to the short read lengths of NGS.

Current single-molecule TGS technologies, such as those of
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT), have the potential to break through these limitations be-
cause their reads can exceed 100 kb and are typically longer than
most DNA repeats [18]. Although the de novo genome assembly
using TGS reads alone is possible, the lower raw read accuracy
relative to NGS platforms generally requires sufficient sequenc-
ing coverage and high computational costs for error correction
of the assembly [19]. This correction is necessary because these
base-calling errors may cause frameshifts and other changes in
the gene-coding or regulatory regions and thus cause inaccurate
interpretation of the genome [20].

Recently, there have been several hybrid assemblers de-
signed to take advantage of the combination of both TGS and
NGS read data. Most construct a final assembly graph by mixing
NGS contigs and TGS long reads based on the Overlap-Layout-
Consensus or string graph algorithm [21], or connect the con-

tigs generated by NGS with their alignments against long reads
[22-24]. In contrast, the gap-closing algorithms provide a direct
way to reduce the computing complexity and costs through im-
provements only in the missing regions and preservation of the
majority of the existing assembly information. PBJelly [10] is the
first tool to use PacBio reads to close gaps through local assem-
bly of the long reads in gap regions. FGAP [25] selects the best
matched pre-assembled contig to fill gaps based on BLAST [26]
alignments. GMcloser [27] tries to increase the accuracy of gap
closure using likelihood-based classifiers. Cobbler [28] uses new
aligners to accelerate the build-up of the relationship between
long high-quality sequences (usually scaftigs/contigs from other
assemblies) and input scaffolds, and patches the gaps if the
alignment of long sequence to the assembly meets a threshold
score. Finally, LR_Gapcloser [29] reduces the computational costs
of alignments by fragmenting long reads into tags and aligning
the short tags against scaffolds instead of the whole long reads.
These tools have been widely used to close gaps with TGS long
reads, but their efficiencies and accuracies are very much de-
pendent on the quality of the long reads used. PBJelly improves
the quality of inserted long reads through local assembly but
requires sufficient coverage. Other tools bypass the limitation
of input quality and require or recommend pre-error-corrected
long reads or pre-assembled contigs. However, the additional as-
sembly or correction for all reads prior to gap closure necessi-
tates adequate coverage of expensive long reads or additional
short NGS reads. This requires extra time and memory con-
sumption, especially for large genomes. In addition, the correc-
tion algorithms might trim ambiguous segments [30] and split
long reads into short fragments [31] due to the undetermined
bases, thus losing valuable length information.

Three key factors should be considered to develop a TGS gap-
closing algorithm. First, use TGS data as little as possible. Al-
though the cost has been decreasing [32], the gap-closing effi-
ciency is still the first priority, particularly for small laboratories
or small projects. As such, local reassembly or pre-error correc-
tion based on the long-read overlaps is not preferable. Another
important factor is the accuracy and precision in the selection
of long reads to fill the gaps. It has been demonstrated that the
number of assembly errors caused by gap-closing tools is higher
than that of de novo assembled scaftigs [27]. The misalignments
of long reads against the scaffolds caused by base-calling errors
or repeats may increase the probability of large misassembly
events. An effective scoring mechanism can prevent the gap-
closing tools from making some of these incorrect selections
of reads. Finally, the filled sequences should not diminish the
single-base level accuracy of the whole assembly and thus affect
the quality of downstream analyses. There is still a need for er-
ror correction for the inserted raw long-read segments. It should
be noted that recently PacBio improved its base-calling accuracy
t0 99.8% [33], which may simplify the problem; however, this im-
proved accuracy comes at a significant cost to throughput and
read length.

In this work, we describe a software tool, TGS-GapCloser, that
uses low-coverage error-prone long reads to close gaps in large
genomes more efficiently and accurately than other current gap-
closing tools. Using only 10x coverage of ONT or PacBio long
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reads [34, 35] applied to 3 de novo assembled human genomes
we demonstrate an increase in the scaftig NG50 by 11.0- to 45.0-
fold and an increase in the scaftig NGAS50 by 6.8- to 30.6-fold. Fur-
thermore, we show that 71.6% of gaps in the ultra-large genome
assembly of ginkgo can be closed using just 10.5x coverage of
corrected PacBio reads, increasing the scaftig N50 from 57.1 to
364.8 kb. A hybrid strategy of updating a draft de novo genome
assembly with TGS-GapCloser is an efficient and accurate strat-
egy for improving the quality of gene annotation and structure
variation detection. Ultimately this will help lead to high-quality
downstream analyses of ontogeny, phylogeny, and evolution.

Three datasets from 2 species containing large genomes were
used to examine the gap-closing results by TGS-GapCloser: hu-
man, human Chr19, and ginkgo. We sequenced Homo sapiens
(HG001/NA12878, Coriell Cat# GM12878, RRID:CVCL.7526) using
the MGIEasy stLFR Library Prep Kit on the DNBSEQ-G50 platform
(formerly known as BGISEQ-500) (DNBSEQ-G50, RRID:SCR-01797
9), generating a total 660 Gb of read data. Reads mapped to the
Chr19 reference were also extracted for comparisons and fur-
ther analysis. These short reads were assembled using MaSuRCA
[23] (MaSuRCA, RRID:SCR-010691) version 3.3.1 or Mercedes (in-
house tool) to obtain short but highly accurate contigs, and the
SLR long-range (co-barcode/read cloud) and short-range (paired-
end) information provided by the single-tube long fragment
reads (stLFR) technique were exploited to do further scaffold-
ing by SLR-superscaffolder [36] (version 1.0.0). In addition, Super-
nova [37] (version 2.1.1) (Supernova assembler, RRID:SCR_016756)
was used to obtain draft scaffolds despite being originally de-
signed to assemble 10X Genomics data. To test the potential ap-
plication of TGS-GapCloser, we used newly generated data from
both long-read platforms (ONT and PacBio) to close gaps in hu-
man genome assemblies: ONT MinION Rel3 dataset (Rel3) [34]
and PacBio CCS HiFi dataset (HiFi) [35].

The genome assembly of a female Ginkgo biloba (estimated
genome size ~12 Gb) used in this study was obtained from Guan
et al. [38] and was initially assembled with SOAPdenovo2 (SOAP-
denovo2, RRID:SCR.014986) [13] and updated using Hi-C data
[38]. The PacBio reads for ginkgo were sequenced on a PacBio Se-
quel using a Sequel Sequencing Kit 3.0 Bundle (4 rxn). A total of
256 Gb of read data with an average read length of 38,623 bp was
generated. Error correction by Canu (Canu, RRID:SCR-015880)
[30] reduced the data size to 126 Gb, with an average read length
of 10,722 bp. Statistics for input assemblies and sequencing
reads can be found in Supplementary Tables S1 and S4, respec-
tively.

TGS-GapCloser can accept as input any type of TGS long reads
or other pre-assembled contigs to fill gaps in a draft assembly in
the 4 steps as shown in Fig. 1: (i) identification of gap regions in
the draft assembly; (ii) acquisition of candidates from the align-
ments of long reads against gaps; (iii) base-level error correc-
tion of alternative sub-long reads; and (iv) gap closure using the
error-corrected candidates with the highest score for each gap
or linkage of the neighboring scaftigs with overlaps.

The input scaffolds were first split into fragments called
scaftigs from the observed N positions in the scaffolds, and each
pair of neighboring scaftigs based upon their positions in the
shared scaffold were defined as a gap to be filled. TGS-GapCloser
retains the input scaffold information as the base-level accuracy

and the order and orientation of scaftigs, but not the estimated
gap size. This is caused by the lack of sufficient resolution in the
long-range information provided by SLR, Hi-C, or BioNano to ac-
curately predict the size of gaps below ~10 kb.

We used minimap2 (Minimap2, RRID:SCR-018550) [39] to
align long reads against each gap to obtain the corresponding
candidate fragments. A candidate for a specific gap is defined
as the segment truncated from the aligned long reads in the N
region between 2 neighboring scaftigs plus 2-kb-long of aligned
sequence on both sides of the gap. Each long read might provide
several candidate sequences depending on the length spanned
and base-calling accuracy but is limited to give at most 1 can-
didate for the same gap. This is to avoid redundant alignments
induced by the alignment algorithm and the high error rate of
TGS reads.

The quantity and quality of candidate reads determine the
efficiency and accuracy of gap closure. Thus, we designed a scor-
ing system of candidates for quality control and filtration based
on the length and identity ratio (matched bases/aligned bases)
of the alignment between a long-read candidate and flanking
scaftig sequence next to the gap. The score QS is given by

QS =a-logA +b-logl; + a-logAi;1 + b -logli;1,

where A refers to the alignment length and I refers to the iden-
tity ratio for the ith and i+1th scaftigs, respectively; a and b are
2 arbitrary coefficients to distinguish A and I's weights on the
score and have been tuned to 1:6 for the ONT dataset as de-
fault. For each gap, a maximum of 10 candidates with the high-
est QS were chosen for error correction in order to limit the size
of data for further analysis. To further reduce the complexity and
requirements on computational resources, the overlapped can-
didates in the same long read were clipped and merged prior
to the correction. Either Pilon (Pilon, RRID:SCR.014731) [31] or
Racon (Racon, RRID:SCR_017642) [40] was used to enhance the
base-level accuracy of merged sequences. Pilon is capable of cor-
recting individual base errors, small indels, and local misassem-
blies with short but accurate NGS reads, while Racon corrects
sequencing errors by constructing a SIMD-accelerated partial-
order alignment graph from the overlap of long reads. The short
reads were aligned to candidates by minimap2 with the option
-k14 -w5 -n2 -m20 -s40 -sr —frag yes.

The corrected candidates were realigned to the gap and
scored again, and finally the one with the highest QS was se-
lected to fill the gap. The correction not only increased the
single-base accuracy but also helped to find the best final can-
didate. We hypothesized that the QS of a candidate with higher-
quality alignments would be increased due to the more precise
mapping to the gap region after error correction, while the can-
didates with relatively lower-quality alignments tend to fail to be
mapped. After final alignment to the gap region, those 2-kb se-
quences aligning to the scaftigs on either side of the gap were
removed and only the bases filling the gap from the highest-
scoring candidate were retained.

If the highest-scoring candidate resulted in a reduction in
bases within the gap, then the gap would collapse to a single
scaftig according to the alignment. A portion of scaftigs could
have overlaps with other scaftigs because of incorrect paths dur-
ing the initial assembly graph or over-aggressive scaftig exten-
sion. However, a TGS read spanning the gap has the ability to
solve the overlap if 2 scaftigs can be mapped to the correct posi-
tions. Candidates resulting in a reduction in bases were selected
only with more stringent criteria because large indels or ho-
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Figure 1: A schematic of TGS-GapCloser workflow. (A) A flow chart of the overall algorithm; (B) a schematic description on how gap regions are identified, the acquisition
of candidate long-read fragments, and the error correction of alternative sub-long reads; (C) a detailed flow chart for gap filling or scaftig merging in a gap region with

the most appropriate medium/long-range information provided by long reads.

mopolymeric repeats in long reads tend to cause incorrect over-
laps. Gaps lacking any candidates could not be closed; in some
cases this could be due to misassemblies in the draft assembly.

TGS-GapCloser is coded in the C++ programing language (re-
quires GCC 4.4+). It uses minimap2 to obtain alignments, and Pi-
lon (requires Java runtime 1.7+) or Racon (requires GCC 4.8+) to
correct candidate fragments. The algorithm automatically iden-
tifies gaps and tries to find the best matched long-read frag-
ments to close gaps or merge adjacent scaftigs. To accelerate

the gap closure without losing efficiency and accuracy, TGS-
GapCloser only selects a limited number of fragmented long
reads as candidates for subsequent error correction and compe-
tition. This also reduces the computational complexity and im-
proves the accuracy through a straightforward but efficient scor-
ing system (Supplementary Table S3) and correction-enhanced
mapping (Supplementary Table S4). In addition, the aligner, min-
imap2, shows noticeable improvements in speed and mapping
accuracy for error-prone long reads [39], helping to shorten the



time of sequence alignment and improve the overall quality
of the final gap-closed sequence. The details of each step of
this process, including gap identification, mapping, candidate
identification, error correction, and final candidate selection, are
recorded. The final outputis reported in FASTA format, with a log
file describing the detailed insertion/merging information.

Three assemblies and 2 TGS datasets were used to bench-
mark the utility of TGS-GapCloser in gap closure and scaftig
merging in the human genome. Using the same co-barcoded
short-read stLFR library, the whole genome was assembled
by (i) MaSuRCA-assembled contigs + scaffolds from SLR-
superscaffolder, (ii) Mercedes-assembled contigs + scaffolds
from SLR-superscaffolder, and (iii) contigs and scaffolds assem-
bled by Supernova using all of the barcoded long-range infor-
mation. Although MaSuRCA itself can scaffold the contigs, the
assembler does not utilize the SLR information and generates
relatively short scaffolds. As such, it is necessary to use SLR-
superscaffolder to obtain a scaffold NG50 comparable to Super-
nova.

To assess the efficiency of TGS-GapCloser, we used ~10x cov-
erage of long reads from an ONT Rel3 dataset with a claimed
mean read identity of 82.73% [34] and a PacBio HiFi dataset with
the claimed mean read concordance of 99.8% [33]. The long-read
fragments from ONT Rel3 were corrected by Pilon with NGS short
reads while those from HiFi were corrected by Racon using the
long reads themselves. Fig. 2 describes the improvements in the
assembly evaluation given by QUAST (QUAST, RRID:SCR-001228)
[41] after gap closure. Up to 91.8% of a total of 191,189; 94.8% of
a total of 129,408; and 86.8% of a total of 42,359 gaps were suc-
cessfully closed by TGS-GapCloser for 3 assemblies. The scaftig
NG50 increased from 13.6 to 610.6 kb with the ONT Rel3 reads
and to 243.7 kb with the PacBio HiFi reads for Assembly 1, 15.8
to 682.4 kb with the ONT Rel3 reads and to 173.7 kb with the
PacBio HiFi reads for Assembly 2, and 113.0 to 1,229.2 kb with
the ONT Rel3 reads and to 1,566.1 kb with the PacBio HiFi reads
for Assembly 3. Additionally, the corresponding scaftig NGAS0
was also improved from 13.4 to 411.1 and 205.9 kb for Assem-
bly 1, 15.7 kb to 418.2 and 153.2 kb for Assembly 2, and 108.5 kb
to 734.2 and 849.7 kb for Assembly 3 with ONT Rel3 and PacBio
HiFireads, respectively. Note that our current algorithm does not
split or merge input scaffolds. However, the scaffold NG50 and
NGAS50 may change as a result of the replacement of N’s and the
combining of scaftigs. As listed in Supplementary Table S2, the
genome fraction against the reference also increased by 1.4%,
3.2%, and 0.4% with ONT Rel3 reads and 1.2%, 1.9%, and 0.4%
with PacBio HiFi reads for Assemblies 1-3, respectively, indicat-
ing that many of the sequence filled gaps in each assembly are
mapped to the human reference assembly. The application of
the ONT Rel3 read dataset increased the large-scale misassem-
blies (>1 kb) created by the filled sequences by 22.2% and 6.3%
in Assemblies 2 and 3 but decreased misassemblies by 9.5% in
Assembly 1 as a result of the updated scaffolds mapping more
precisely to the reference. In addition, local misassemblies (<1
kb) increased by 1.2-, 7.4-, and 1.1-fold for Assemblies 1-3, re-
spectively, despite the ONT Rel3 reads having undergone error
correction. The PacBio HiFi dataset, with higher initial read accu-
racy, resulted in fewer induced misassemblies and local misas-
semblies: —6.1% and 0.3-fold for Assembly 1, 13.1% and 1.3-fold
for Assembly 2, and 13.9% and 0.5-fold for Assembly 3. Overall,
ONT Rel3 reads closed more gaps, resulting in better contiguity
than PacBio HiFi reads, with the trade-off of inducing more as-

sembly errors. This is because the ONT Rel3 dataset is composed
of single long reads (the longest >500 kb) while the PacBio HiFi
dataset produces ~10-fold coverage of each single read followed
by a read consensus process resulting in ~13-kb final reads with
higher single-base accuracy (Fig. S3). The performance of TGS-
GapCloser is substantially dependent on both the length and the
accuracy of inputlong reads, which are current balancing factors
for single-molecule sequencing techniques.

After gap closure of the assemblies, BUSCO [42] (version 3.0.2)
(BUSCO, RRID:SCR-015008) analysis indicated that there are pos-
sible improvements for bioinformatics analysis such as gene
annotation. The assemblies were compared against the verte-
brata_odb9 database. It revealed that 90.5%, 89.7%, and 94.1%
of the expected vertebrate genes are complete for Assemblies
1-3, respectively, with ONT Rel3, and 90.4%, 85.3%, and 94.0%
for Assemblies 1-3, respectively, with PacBio HiFi. A substantial
improvement was observed from the original 86.2%, 76.6%, and
90.7% for Assemblies 1-3, respectively.

G. biloba is considered a living fossil, with its form and struc-
ture essentially unchanged for >270 million years. This makes
it unique in the evolutionary tree of life [43]. We applied TGS-
GapCloser to the chromosomal-level assembly of G. biloba [38]
using ~10.5x coverage of Canu-corrected PacBio reads. The in-
put assembly has been assigned to 13 chromosomes totaling
9,570,195,624 bp of sequence interrupted by 613,821 gaps. TGS-
GapCloser filled 71.6% of the gaps in the assembly and replaced
N-containing regions by 411,608,879 bp of sequence. This re-
sulted in the scaftig N50 increasing from 57.1 to 364.8 kb. Pre-
viously most gap-closing tools had only been used for bacterial
and fungal genomes or small eukaryotic genomes [25, 27, 44].
This is the first example of using a gap-closing tool on an ultra-
large genome with reasonable computational resources.

As a sanity check, we mapped the gaps in input scaffolds to the
human reference assembly, generated filled sequences based
on the reference assembly, and compared these to the filled
long-read fragments created by TGS-GapCloser. Note that the
statistics for the filled gaps described here are different from
those given by direct counting (Fig. 2C) because the gaps closed
with scaftig overlapping are not counted. The evaluation (Ta-
ble 1) consists of 2 parts: long-read accuracy and single-base-
level accuracy. For the selection of fragments inserted by TGS-
GapCloser, the validated PPV ranges from 98.1% to 62.0% and
the sensitivity from 96.4% to 51.2% for the 3 assemblies. Overall,
gap-closing results with PacBio HiFi reads show relatively higher
PPV due to its higher read accuracy but lower sensitivity due to
its shorter read length. The accuracy of Assemblies 1 and 2 is
better than that of Assembly 3, which has more small gaps. This
result implies that TGS-GapCloser tends to fill large gaps.

In terms of single-base-level accuracy, we calculated the
Phred-like concordance quality value (QV) by the method de-
scribed by Wenger et al. [33]. The QV of the inserted long-
read fragments was improved after error correction. However,
the overall QV of the assembly decreased: the scaftig QV was
reduced from 45.8 to 40.8 with ONT Rel3 reads and to 42.1
with PacBio HiFi reads on average. Accuracy decline was less
obvious with PacBio HiFi reads after error correction, which
was consistent with the higher PPV in the long-read selec-
tion. That said, the final assemblies had >Q40 single-base qual-
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Figure 2: Gap-filling improvements and effects on the draft assemblies produced by TGS-GapCloser. (A) scaftig NG50, (B) scaftig NGAS0, (C) number of remaining gaps,
(D) genome fraction, (E) misassemblies, and (F) local misassemblies for the human genome were calculated by direct counting or reported by QUAST.

ity, making them comparable to or even better than most de
novo TGS assemblies with pre-error correction and polishing
[33, 34].

Performance of TGS-GapCloser for large genomes

TGS-GapCloser is relatively fast and accurate. For the human
genome, it consumed as little as 155 CPU hours in total and 32
GB of peak memory. The algorithm design substantially reduced
the time for read mapping and error correction. Gap closure us-
ing the NGS-based error correction for the inserted sequences
(~189 hours on average) was much slower than that with the
TGS-based correction (~15 hours on average). As a comparison,
the de novo assembly for 30x coverage of long reads requires
~40,000 CPU hours for ONT and ~62,000 CPU hours for PacBio
[34]. The computation can be further reduced by not using er-
ror correction. It only took 541 CPU hours for the ginkgo genome
using pre-corrected PacBio reads. TGS-GapCloser requires low
coverage of expensive long reads without pre-error correction,
making this approach more cost-effective and suitable for re-
search projects with limited budgets.

Comparison with other gap-closing tools

We did not compare TGS-GapCloser to NGS gap-closing tools be-
cause the use of TGS read information can span the repetitive
or other complicated regions in the assembly that k-mer-based
extension approaches cannot. In this article, we used a vari-
ety of published long-read gap closers, including PBJelly (PBJelly,
RRID:SCR_012091) [10], FGAP [25], GMcloser (GMcloser, RRID:SC
R_000646) [27], Cobbler [28], and LR_Gapcloser [29], on the same
Chr19 Mercedes + SLR-superscaffolder assembly with ONT Rel3
reads, and systematically compared their performances.

The comparison shows that TGS-GapCloser performed best
overall among 6 tools with this combination of inputs (Table 2).
Its gap-closing efficiency was considerably higher than that of
other tools, reducing the number of gaps from 2,600 to 288, and
increasing the scaftig NG50 from 9.6 to 194.5 kb. LR_Gapcloser,
the next best performing tool for total gaps filled, was able to in-
crease the scaftig NG50 to 157.2 kb. FGAP closed a similar num-
ber of gaps to LR_Gapcloser, leaving 458 gaps unfilled, and was
able to increase the scaftig NG50 to 127.4 kb. The remaining
tools, PBJelly, GMcloser, and Cobbler, left >1,000 gaps unresolved
and did not show much increase in scaftig lengths.
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Table 1: Gap-closing accuracy statistics and computational consumption for TGS-GapCloser

Accuracy in single-base level

Accuracy in long-read selection

Input data

QV of filled
long reads with

No. of filled QV of input raw

Peak

Sensitivity Runtime memory No. of filled

No. of
closed gaps

QV of output
scaftigs (Phred)

long reads QV of input correction
scaftigs (Phred) (Phred)

bases in
theory (bp)

No. of
closed gaps intheory PPV (%)

(Phred)

(hours) usage (GB) bases (bp)

(%)

23.24 36.06

40.51

7.63

335,541,557 353,352,038

74,353 96.6 96.3 259

75,629

MaSuRCA + SLR-superscaffolder +

TGS-GapCloser (ONT)
MaSuRCA + SLR-superscaffolder +

40.51 35.52 37.64

26.99

198,327,815 353,352,038

13 33

89.8

98.2

74,353

74,321

TGS-GapCloser (PacBio)
Mercedes + SLR-superscaffolder +

40.19

23.23

48.09

352,316,717 497,208,670 7.63

93.4 145 51

97.7

61,267

58,938

TGS-GapCloser (ONT)
Mercedes + SLR-superscaffolder +

48.09 36.25 42.29

26.99

146,148,151 497,208,670

11

75.6

98.4

61,267

52,116

TGS-GapCloser (PacBio)
Supernova + TGS-GapCloser (ONT)

23.15 46.11

48.72

63

7.
26.99

38,276,270
38,276,270

49,669,581

163

51.2

62.0

24,760
24,760

22,563
26,919

46.48

34.82

48.72

22,178,115

61.2 20 38

76.1

Supernova + TGS-GapCloser

(PacBio)

All datasets were run with 42 threads. Note that the peak memory consumption by Pilon or Racon is not counted. The higher speed of runs using the PacBio HiFi dataset mainly originates from the

use of Racon to correct fragments with long reads. Note that QUAST accepts <10 continuous N’s in the scaftig. PPV: positive predictive value; QV: quality value.

In terms of accuracy, TGS-GapCloser led to the largest in-
crease (>5.2x) in the scaftig NGAS0 (16.0 folds to input) with
fewer misassemblies. Although FGAP and LR_Gapcloser ex-
tended the scaftig NG50 longer than 100 kb, both generated more
misassemblies, resulting in a shorter scaftig NGA50. Most gap-
closing tools were originally designed for error-corrected long
reads or high-quality pre-assembled contigs, and as a result,
their performances are mostly unsatisfactory with low-coverage
raw ONT reads.

In addition, we analyzed the running time and mem-
ory consumption for each tool under the same operat-
ing conditions. TGS-GapCloser ran approximately 261-, 224-,
1,428-, 2-, and 6-fold faster than PBJelly, FGAP, GMcloser, Cob-
bler, and LR-Gapcloser, respectively. GMcloser and FGAP (based
on BLAST [26]) and PBJelly (based on BLASR [45]) were the
most time-consuming. The relatively higher memory require-
ment of TGS-GapCloser was due to the error correction needs.
LR_Gapcloser used short-tag comparisons to avoid long-read
alignments and thus required less memory than others.

It is worth noting the effects of long-read coverage on the gap
closure. We randomly extracted 1x, 5x, 10x, 20x, and 29x cov-
erages of mapped ONT Rel3 reads against the Chr19 reference
and individually applied them to the same Chr19 MaSuRCA +
SLR-superscaffolder assembly by TGS-GapCloser using the same
default parameters. As shown in Supplementary Fig. S1A, the
number of closed gaps and the total filled bases grew with the
increasing coverage but saturated at ~10x coverage, close to the
level of theoretically filled gap numbers and bases. Surprisingly,
the total time usage did not change much with the increas-
ing coverage, but the peak memory showed an approximately
linear growth (Supplementary Fig. S1B). With more long reads,
the sensitivity of inserted sequences increased from 22.1% to
87.4% while the PPV remained similar (Supplementary Fig. S1C).
In terms of single-base-level accuracy, the average concordance
QV of inserted sequences decreased as more gaps were closed,
but there was a negligible effect on that of scaftigs (Supplemen-
tary Fig. S1D). The result indicates that TGS-GapCloser closes a
considerable number of gaps with high-quality sequence while
using low-coverage error-prone long reads. In contrast, a high-
quality long-read assembly requires >30x sequencing coverage
[19].

TGS read data have been shown to be useful in the assembly of
the human MHC region. This ~6-Mb region in Chr6 is difficult
to assemble with short reads only owing to high repetition and
polymorphism [34]. It contains class I and II human leukocyte
antigen genes, important to cancer and immunity studies [46].
We analyzed 3 assemblies before and after gap closure to inves-
tigate the contiguity and accuracy in this region as presented in
Table 3. For Assembly 3, a portion of a single long scaffold (>29
Mb) completely covered the MHC region, while several portions
of 2 or 3 scaffolds (0.6-27 Mb) covered the region for Assemblies 1
and 2. Gap closure with the ONT Rel3 dataset reduced the num-
ber of scaftigs in those scaffolds from 339, 271, and 76 to 31,
26, and 12 in Assemblies 1, 2, and 3, respectively. In addition,
TGS-GapCloser reduced the percentage of N bases from 15.2% of
the total assembly down to 3.7% on average while increasing the
genome fraction mapped to the reference assembly from 81.52%
to 91.17%. As a result, the scaftig NG50 and NGAS50 improved



Table 2: Gap-filling statistics for TGS-GapCloser and other gap-closing tools

Peak
Local Scaffold NGAS0 Scaftig NGAS0 Runtime memory
Input data Unfilled gaps Misassembly misassembly Scaffold NG50 (bp) (bp) Scaftig NG50 (bp) (bp) (min) (GB)
Draft assemblies 2,600 176 126 1,561,142 196,307 9,687 9,464 - -
TGS-GapCloser 288 187 324 1,426,438 383,995 194,512 149,166 12 16.37
PBJelly 1,730 664 741 1,240,439 83,803 29,715 19,247 3,137 9.93
FGAP 458 867 684 1,871,611 44,244 127,982 28,615 2,687 35.06
GMcloser 2,600 175 125 1,561,142 195,886 9,570 9,335 17,140 11.39
Cobbler 1,475 230 516 1,522,592 176,960 24,072 18,217 24 9.43
LR_Gapcloser 447 1,064 1,076 1,561,028 27,211 157,181 18,216 74 2.90
All datasets were run with 16 threads on the same computer. Note that QUAST accepts <10 continuous N’s in the scaftig.
Table 3: Improved assemblies in the MHC region by TGS-GapCloser
MaSuRCA + Mercedes +
SLR-superscaffolder + SLR-superscaffolder +
TGS-GapCloser TGS-GapCloser Supernova + TGS-GapCloser Reference [33]
Statistics
Draft Updated Draft Updated Draft Updated Rel3 Rel5
No. of scaffolds 2 2 3 3 1 1 - -
(>1kb)
339 31 271 26 76 12 7 1
No. of scaftigs/contigs
(>1kb)
Non-N bases (bp) 5,293,785 5,907,069 4,134,156 5,445,373 5,831,980 5,988,090 5,739,339 5,628,041
No. of gaps 343 31 268 23 81 16 - -
Scaffold NG50 (bp) 3,400,000 3,400,000 4,400,000 4,400,000 6,000,000 6,000,000 - -
Scaffold NGAS0 232,462 396,537 182,662 429,613 649,591 534,616 - -
(bp)
Scaftig/contig 17,483 324,807 12,244 450,213 110,320 980,326 3,007,673 5,628,041
NGS50 (bp)
Scaftig/contig 16,630 199,405 11,901 321,624 94,556 380,102 49,485 52,555
NGA5O0 (bp)
Genome fraction 82.801 92.623 67.869 85.609 93.887 95.292 62.521 59.855
(%)
No. of 11 25 13 22 15 17 20 53
misassemblies
No. of local 34 101 11 122 29 42 546 484
misassemblies

The statistical results were generated by QUAST. Note that QUAST accepts <10 continuous N’s in the scaftig/contig.

from 46.7 to 585.1 kb and 41.0 to 300.4 kb. Importantly, this result
would be expected to improve the gene annotations, structural
variation detection, and single-nucleotide polymorphism call-
ing in this region. Although TGS long reads resolved the MHC
locus into 1 or several contigs, the relatively short contig NGA50
(52.6 kb), low genome fraction (59.86%), and numerous local mis-
assemblies indicated that improving the accuracy in short-range
information was still a challenge for TGS applications.

There are potential future improvements to consider for TGS-
GapCloser. The selection of inserted sequences largely depends
on the performance of the aligner. Although minimap2 performs
well in most cases, the alignment results in errors if the pair-
wise sequences share small overlaps. We believe that this can
be solved by using other aligners or additional parameter opti-
mization. In addition, the computational consumption by error
correctors or polishers is still significant, even with our efforts to
reduce the input data size as much as possible. As error correc-
tion tools are updated and ideally become more efficient, TGS-
GapCloser performance will benefit from these improvements.
In addition, as long-read error rates continue to decrease, as

promised by ONT and PacBio, it may be possible to eliminate
this extra step of error correction. Finally, we use the input scaf-
folds including the orientation and order relations of scaftigs to
retain the existing assembly information, ignoring possible as-
sembly errors. As a future update we plan to use the informa-
tion provided by TGS reads to correct scaftig errors within the
same scaffold and link different scaffolds if sufficient overlap-
ping is present. Nonetheless, in its current form, TGS-Gapcloser
enables the combination of different genetic information with
different lengths and resolutions and makes it possible to com-
plete high-quality (ultra) large genome assemblies.

We compared the performance of TGS-GapCloser with that
of 5 TGS gap-closing tools, including PBJelly (version PB-
Suite_15.8.24) (PBJelly, RRID:SCR.012091), FGAP (version 1.8.1),
GMcloser (version 1.6.2) (GMcloser, RRID:SCR-000646), Cobbler
(version 0.6.1), and LR_Gapcloser (no version information avail-
able) (LR-Gapcloser, RRID:SCR-016194). Some were unable to
close gaps using the default parameters on low-coverage raw
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TGS reads. As a result, we needed to tune FGAP to be able to
close large gaps (<100 kb, default <500 kb). For GMcloser, we
used the example parameters for long reads from the manual.
In addition, the parameters for Cobbler were tuned according to
the authors’ guidance on GitHub. All other tools were run using
the default parameters for ONT data.

We evaluated the gap-closing accuracy at 2 levels: the selection
of long reads and the single-base level. The former is determined
by whether the algorithm can capture the best long read to close
the corresponding gap. This will affect the detection of chromo-
somal variations, large relocations, and inversions. The qual-
ity of error correction and the size of inserted long-read bases
determines the single-base-level accuracy. This affects single-
nucleotide polymorphisms and small insertion/deletion calls.
QUAST [41] (version 5.0.2) (QUAST, RRID:SCR-001228) was
used to determine length statistics for the assembly such as
total length, scaffold NG50, and scaftig NG50, as well as align-
ment to the reference, including scaffold NGASO0, scaftig NGASO0,
genome fraction, misassemblies, and local misassemblies. To
further assess the efficiency and accuracy of TGS-GapCloser, we
aligned the reference assembly against the input scaffolds to
generate theoretically filled gap sequences using QUAST inter-
mediate files and compared them to the filled sequences by TGS-
GapCloser with minimap2 (-x map-ont). Gaps that were capable
of being filled by the reference were chosen to evaluate the sen-
sitivity and PPV. Note that gaps smaller than 100 bp were filtered
out. The sensitivity is defined as the ratio of the number of TGS-
GapCloser-filled gaps that the reference also successfully fills to
the total number of gaps that the reference can fill. The PPV is
defined as the ratio of the number of TGS-GapCloser—filled gaps
that can be uniquely matched to the reference-filled gaps to the
total number of filled gaps by both. Note that TGS-GapCloser
also completes gaps that the reference cannot fill and as such
the accuracy of these cannot be easily determined. The single-
base-level accuracy was quantified by mapping the scaftigs in
the assembly to the GIAB high-confidence regions in the ref-
erence genome GRCh37 to calculate the concordance QV with
the method in Wenger et al. [33], where the scaftigs were split
into bins of 100 kb, and those bins with >50% mapped length at
>50% identity ratio were used to calculate the average concor-
dance quality value. The QVs were expressed in Phred format.

To quantify the possible improvements for downstream bioin-
formatics analyses, we ran BUSCO on all the human assemblies
against the vertebrata_odb9 and the gingko assemblies against
the embryophyta_odb9 database. Note that we directly input
the whole human assemblies but split gingko ultra-long scaf-
folds (>1.1 Gb) into several portions at the position of large gaps
(>1 kb) because the aligner tblastn [47] in BUSCO could not han-
dle such long sequences. The additional random breakpoints in
the original scaffolds would decrease the contiguity and affect
the BUSCO benchmarking.

Project name: TGS-GapCloser
Project home page: https://github.com/BGI-Qingdao/TGS-GapCl
oser

Operating system(s): Linux

Programming language: C++, shell

Other requirements: Racon, or SAMtools and Pilon are required
to be pre-installed

License: GPLv3

RRID:SCR_017633

biotools ID: TGS-GapCloser

Conda access: conda install -c bioconda tgsgapcloser

The stLFR sequencing data for the human sample
(HGO01/NA12878) have been deposited in the CNGB under
accession No. CNP0000066. We downloaded the ONT long reads
of human from [48], and PacBio reads from GIAB [49]. The
PacBio long reads for ginkgo genome have been deposited in the
CNGB under accession No. CNP0000796 (PRJNA656117). All the
evaluated assemblies of human and ginkgo generated by us can
be obtained in the CNGB under accession No. CNP0O000796. The
genome assemblies and all supporting data can be accessed at
the GigaScience GigaDB database [50].

Supplementary Figure S1: Effects of long-read coverage on gap
closure. (A) the number of filled gaps and bases, (B) wall-clock
time and peak memory, (C) accuracy in long-read selection, and
(D) accuracy at single-base level. All datasets were run with 16
threads.

Supplementary Figure S2: Length distribution of gaps in draft
scaffolds and that of TGS-GapCloser-filled gap sequences.
Supplementary Figure S3: Read length distribution for the input
ONT Rel3 and PacBio HiFi reads.

Supplementary Table S1: Summary of the input assemblies in
this work.

Supplementary Table S2: Summary of the updated assemblies
in this work.

Supplementary Table S3: The effect of the scoring system on the
candidate selection and the gap-closing performance.
Supplementary Table S4: The effect of error correction on the
candidate selection and the gap-closing performance.
Supplementary Table S5: The effect of long-read coverage on the
TGS assemblies and gap-closing results.

Supplementary Table S6: Genomics dataset source.
Supplementary Table S7: Control parameters used for different
software tools.

BLAST: Basic Local Alignment Search Tool; bp: base pairs;
BUSCO: Benchmarking Universal Single-Copy Orthologs; Chr19:
Chromosome 19; Chr6: Chromosome 6; CNGB: China National
GeneBank; CPU: central processing unit; Gb: gigabase pairs;
GIAB: Genome in a Bottle; kb: kilobase pairs; Mb: megabase pairs;
MHC: major histocompatibility complex; NGS: next-generation
sequencing; ONT: Oxford Nanopore Technologies; PacBio: Pacific
Biosciences; PPV: positive predictive value; QS: quality score; QV:
quality value; SIMD: single-instruction-multiple-data; SLR: syn-
thetic long reads; stLFR: single-tube long fragment reads; TGS:
third-generation sequencing.
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