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Abstract
Inflammatory bowel disease (IBD) incidence has been increasing steadily, most 
dramatically in the Western developed countries. Treatment often includes 
lifelong immunosuppressive therapy and surgery. There is a critical need to 
reduce the burden of IBD and to discover medical therapies with better efficacy 
and fewer potential side-effects. Repurposing of treatments originally studied in 
other diseases with similar pathogenesis is less costly and time intensive than de 
novo drug discovery. This study used a treatment repurposing methodology, the 
literature-related discovery and innovation (LRDI) text mining system, to identify 
potential treatments (developed for non-IBD diseases) with sufficient promise for 
extrapolation to treatment of IBD. By searching for desirable patterns of twenty 
key biomarkers relevant to IBD (e.g., inflammation, reactive oxygen species, 
autophagy, barrier function), the LRDI-based query retrieved approximately 9500 
records from Medline. The most recent 350 records were further analyzed for 
proof-of-concept. Approximately 18% (64/350) met the criteria for discovery (not 
previously studied in IBD human or animal models) and relevance for application 
to IBD treatment. Many of the treatments were compounds derived from herbal 
remedies, and the majority of treatments were being studied in cancer, diabetes, 
and central nervous system disease, such as depression and dementia. As further 
validation of the search strategy, the query identified ten treatments that have just 
recently begun testing in IBD models in the last three years. Literature-related 
discovery and innovation text mining contains a unique search strategy with 
tremendous potential to identify treatments for repurposing. A more 
comprehensive query with additional key biomarkers would have retrieved many 
thousands more records, further increasing the yield of IBD treatment 
repurposing discovery.
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Core tip: A text-mining approach was used to identify treatments from non-inflammatory 
bowel disease (IBD) diseases that could be extrapolated to treat IBD. Sixty-four treatment 
concepts were identified in different phases of development, ranging from laboratory 
research to clinical application. Many more were possible with a longer and well-
resourced study. Ten of the non-IBD concepts that were excluded from being classified as 
discovery would have been classified as discovery if the study had been conducted in 
2016. Thus, this approach has the capability to identify/predict many new areas of research 
for treating IBD.

Citation: Kostoff RN, Briggs MB, Shores DR. Treatment repurposing for inflammatory bowel 
disease using literature-related discovery and innovation. World J Gastroenterol 2020; 26(33): 
4889-4899
URL: https://www.wjgnet.com/1007-9327/full/v26/i33/4889.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i33.4889

INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the 
gastrointestinal (GI) tract characterized by alternating phases of relapse and remission, 
clinically defined into two major subtypes: Crohn’s disease (CD) and ulcerative colitis 
(UC)[1]. Globally, the incidence of IBD is increasing, especially among newly 
industrialized countries where IBD was previously non-existent[2]. Childhood onset of 
IBD is also increasing in a similar pattern globally, suggesting evolving environmental 
risk factors[3].

In 2017, there were 6.8 million cases of IBD globally. The age-standardized 
prevalence rate increased from 79.5 per 100000 population in 1990 to 84.3 per 100000 
population in 2017. At the regional level of global burden of disease (GBD), the highest 
age-standardized prevalence rate in 2017 occurred in North America (422.0 per 
100000) and the lowest age-standardized prevalence rates were observed in the 
Caribbean (6.7 per 100000 population). High sociodemographic index (SDI) locations 
had the highest age-standardized prevalence rate, while low SDI regions had the 
lowest age-standardized prevalence rate[4].

The pathogenesis of IBD is multifactorial, which makes prevention and treatment of 
IBD challenging. Genetic predisposition contributes to dysregulation of both innate 
and adaptive immunity[5]. Environmental triggers (diet, infection, antibiotics, and toxin 
exposure) affect the intestinal microbiome and influence epigenetic changes that alter 
immune regulation[6]. Treatment, particularly in those with more aggressive disease, is 
generally lifelong, and often includes immunosuppressive therapy and surgery. There 
is a critical need to both (1) identify and eliminate contributing factors to disease to 
reduce the burden of IBD; and (2) discover novel medical therapies that provide better 
efficacy with fewer potential side-effects.

POTENTIAL IBD TREATMENT DISCOVERY
The standard approach to drug discovery is costly and time intensive. Repurposing 
treatments (1) already being developed; or (2) in clinical application for other 
conditions with overlapping pathogenesis is an attractive alternative to de novo drug 
discovery. This repurposing approach involves extrapolating a treatment developed 
for a non-IBD disease, such as rheumatoid arthritis, for use in IBD. Many of the 
upfront development costs can be avoided and some safety data already exists. 
However, given the vastness of the current published biomedical literature, quickly 
identifying potential novel treatments for IBD remains challenging.

http://creativecommons.org/licenses/by-nc/4.0/
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A unique methodology to facilitate treatment repurposing has been developed by 
the first author using a literature-related discovery and innovation (LRDI) text-mining 
approach[7]. This approach involves matching patterns of biomarker changes (tests that 
measure a normal biologic, a pathologic process, a response to treatment, or predict a 
response[8]) in the disease-of-interest core literature with similar pattern changes in the 
remainder of the biomedical literature. The objective of this study is to use the LRDI 
approach to identify potential novel treatments for IBD that cannot be found in the 
IBD core literature.

However, the simultaneous removal of contributing factors to disease pathogenesis 
is equally important to treatment. A protocol (that includes identification and removal 
of contributing factors) to prevent and reverse chronic diseases is described in 
Appendix 1, along with examples of contributing factors associated with IBD. 
Contributing factors as used in the present study are, in theory, modifiable (reduced or 
eliminated through personal choice and/or government regulation), and can be 
broadly categorized as Lifestyle, Iatrogenic, Biotoxins, Occupational/Environmental, 
PsychoSocial/SocioEconomic. They include smoking, excessive alcohol, pesticides, 
wireless radiation, ionizing radiation, brominated flame retardants, etc[9].

METHODOLOGY
The specific details of LRDI-based treatment repurposing steps are contained in 
Appendix 2, as are the specific search terms used in the query. The query was executed 
April 19, 2020.

Figure 1 shows the flow diagram of the treatment discovery/repurposing process. 
Briefly, key biomarkers and their direction of change in the existing IBD literature 
were identified from examination of a large number of existing IBD treatments in all 
phases of development and clinical application (the reasons for identifying/using the 
large numbers of existing treatments are discussed in more detail in Appendix 3). 
These biomarkers and their desired treatment-derived directions of change are 
combined to form a query. The query was then used to search the non-IBD literature in 
Medline for potential treatments whose effects on biomarker changes were similar to 
those from existing IBD treatments in the core IBD literature (i.e., similar biomarker 
“signatures”). Those potential treatments from the non-IBD Medline literature that 
could not be found in the core IBD Medline literature were considered to be discovery.

Once the biomarkers associated with IBD were identified, they were ranked by (1) 
prevalence in the literature; and (2) clinical relevance. From hundreds of potential 
biomarkers, the top twenty (and variants) were prioritized and, along with their 
treatment-derived directions of change, were used in the treatment discovery query. 
Biomarkers from multiple pathways known to be associated with the 
inflammatory/immune response in IBD (i.e., cytokines, reactive oxygen species, 
autophagy and barrier function markers) were selected. All combinations of two 
biomarkers were then used to define the pattern for matching (e.g., decrease CRP AND 
increase IL-10). Categorical phrases, such as “anti-inflammatory” were also used as a 
biomarker term. The resultant query was entered into the Web of Science search 
engine for Medline.

In a proof-of-concept model, the 350 most recent records from 9500 records 
retrieved were analyzed further to (1) demonstrate the potential power of the 
technique; and (2) provide useful results to the IBD community as well. These 
potential treatments were then validated independently to assess applicability to IBD, 
in order to ensure the treatment was not already being tested in IBD models.

RESULTS
The treatments identified in this study include both (1) potential novel IBD treatments 
(Table 1)[10-73]; and (2) examples of recently studied IBD treatments that would have 
also been identified as potential novel treatments had this study been performed in 
2016 (Table 2)[74-95]. The latter reflect the predictive nature of the LRDI treatment 
repurposing technique.

Table 1 contains the potential novel IBD treatments. The leftmost column contains 
the novel treatment and alternative name(s); the center column contains the 
biomarkers that were assessed in the reported study and that changed in the desired 
existing IBD treatment-derived directions; the rightmost column contains the reported 
study reference.

https://f6publishing.blob.core.windows.net/17282cca-bfd4-450d-a45a-a887dc7f19e7/WJG-26-4889-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/17282cca-bfd4-450d-a45a-a887dc7f19e7/WJG-26-4889-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/17282cca-bfd4-450d-a45a-a887dc7f19e7/WJG-26-4889-supplementary-material.pdf
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Table 1 Potential novel treatments

Treatment Biomarkers changed in desired direction Ref.

Fluprostenol iNOS, TNF-α, CD11c, IL-10, NF-kB, p65 [10]

Liu Shen Wan Anti-inflammatory, IL-1β, TNF-α, IFN-γ, IL-6, TLR4, NF-kB p65, p-IkBα [11]

Erdosteine Anti-oxidant, anti-inflammatory, IL-1β, COX-2, iNOS, P65, ADAMTS-5, MMP1, MMP3, MMP-13, 
MAPK, Wnt/β-catenin

[12]

4-Octyl itaconate Anti-inflammatory, TGF-β/Smad, NF-kB, ROS, autophagy [13]

2 ,3-dihydro-5,6-dimethoxy-1H-inden-1-one ROS, LDH, MDA, TAC, anti-inflammatory [14]

Neutrophilic granule protein TNF-α, IL-1β, NF-kB, IL-10, anti-inflammatory [15]

Dioscorea zingiberensis BTB integrity, ZO-1, MDA, 8-OHdG, Nrf2, NOQ1, HO-1 [16]

FCPR16 TNF-α, Caspase-3, Caspase-8, NF-kB p65, iNOS, ROS, JNK [17]

7,8-dihydroxyflavone GSH, nitrite, MDA, NF-kB, iNOS, caspase-3, Nrf2, HO-1, BDNF [18]

X-inactive specific transcript Anti-inflammatory, NF-kB, IL-6 [19]

3-[3-pyridinyl]-1-[4-pyridinyl]-2-propen-1-
one

M1, autophagy, NF-kB, TNF-α, ICAM-1, VCAM-1 [20]

NMDEA IL-1β, IL-6, p65, iNOS [21]

Cashew gum MPO, TER, anti-inflammatory, barrier function [22]

Ampelopsin ROS, NOX2, NOX4, FN, Col IV, Nrf2, HO-1, NQO-1 [23]

Esculentoside A IL-1β, IL-6, IL-8, TNF-α, MMP -2, -3, -13, NF-kB, MAPK [24]

Phyllanthus emblica Antioxidant, GSH, SOD, MDA, inflammation [25]

Anoectochilus roxburghii Oxidative stress, SOD, GSH-PX, MDA, GPx-1, GPx-4 [26]

Ivacaftor; Tezacaftor IL-18, IL-1β, TNF, Caspase-1, IL-10, Anti-inflammatory [27]

Floccularia luteovirens SOD, GSH-Px, CAT, MDA, ROS, oxidative stress [28]

Ishige okamurae; DPHC ROS, elastase, MMPs, NF-kB, AP-1, MAPKs [29]

Syzygium polyanthum (Wight) walp.; Bay 
leaf

CRP, MPO, anti-inflammatory [30]

Empagliflozin LDH, total leucocytic count, IL-6, TNF-α, TLR4, TGF-β1, oxidative stress, Nrf2/HO-1 [31]

Isorhynchophylline Antioxidant, TGF-β1, CTGF, 4-HNE, MDA, Nrf2, MAPK [32]

Neoagarooligosaccharide Nrf2, GSH, glutathione, ROS, inflammation, antioxidant [33]

COMP-4; Muira puama NO, antioxidative, apoptosis, HO-1, MPO, GSH/GSSG ratio [34]

Quzhou fructus aurantii Anti-inflammatory, MAPK, NF-kB, TNF, IL-6, IL-1β, IL-10 [35]

Cerevisterol MAPK, NF-kB, AP-1, Nrf2, HO-1, anti-inflammatory [36]

Maslinic acid HO-1, COX-2/PGE2, STAT-1, Nrf2, IL-1, iNOS, NF-kB [37]

Scrophularia koraiensis nakai; 
Scrophulariaceae

Ig-E, anti-inflammatory, NF-kB, Nrf-2, HO-1 [38]

Grateloupia lithophila Blood glucose, TC, TGs, LDL, VLDL, HDL, SOD, GPx, MDA [39]

Acetyl-l-carnitine LDL, HDL, SOD, GSH-Px MDA, TNF-α, IL-1SS, iNOS, CRP [40]

Methylseleninic acid GPx, Nrf2, Socs3, p-JAK1, p-STAT3, NF-kB [41]

Omentin-1 Pro-inflammatory cytokines, NF-kB, Nrf2 [42]

Dowijigi NO, PGE2, TNF-α, IL-6, IL-1β, COX2, iNOS, NF-kB [43]

AAL NO, iNOS, TNF-α, IL-6, IL-1β, NF-kB [44]

AXT and HupA Oxidative stress, LDH, ROS, SOD, MDA [45]

Continentalic acid (CNT) GSH, GST, catalase, SOD, MDA, POD, MPO, NO, Nrf2, iNOS [46]

7-Methoxyflavanone (7MF) IL-6, TNF-α, COX-2, iNOS, ICAM-1, MCP-1, TLR4, MyD88, p-JNK, p-ERK, Nrf2, NQO-1, Iba1 [47]
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Biseokeaniamide A NO, iNOS, IL-1β, IkBα [48]

Strigolactone GR24 NF-kB, Nrf2, PPARγ, occludin [49]

Timosaponin BII MDA, GSH, PS, NLRP3, IL-1β, oxidative stress [50]

Cycloastragenol (Y006) BAX, COX2, GSK3β, TNF-α, IFN-γ, IL-17, IL-10, IL-4 [51]

Ocellatin-K1(1-16); Ocellatin-K1(1-21) Nitrite, MDA, SOD, GSH, ROS, NF-kB, oxidative stress [52]

Leocarpinolide B (LB) NO, PGE2, IL-6, TNF-α, MCP-1, COX-2, iNOS, NF-kB, ROS, HO-1, Nrf2 [53]

Enteromorpha powder GSH-Px, MDA, lipid peroxidation [54]

Aminooxyacetic acid (AOAA) ATP, IL-6, TNF-α, IL-10, NLRP3, caspase-1, IL-1β [55]

Gastrodin ROS, 8-OHDG, MDA, GSH-Px, SOD, Nrf2, HO-1, Bcl-2, Bax, caspase-3 [56]

Cinnamtannin D1 (CTD-1) IL-17, IL-6, IL-1β, TGF-β, IL-10, Th17, Treg, STAT5/Foxp3 [57]

ent-Kaur-15-en-17-al-18-oic acid ROS, MDA, GSH, SOD, NF-kB, bcl-2, p53, Bax, caspase-3 [58]

Hederacoside-C (HDC) IL-6, IL-1β, TNF-α, IL-10, TLR2, TLR4, MAPKs, NF-kB [59]

PS-1145 dihydrochloride IL-6, TNF-α, IL-1β, NF-kB, COX-2 [60]

Cytokine-induced apoptosis inhibitor 1 
(CIAPIN1)

ROS, MAPKs, NF-kB, Bax, caspase-3, COX-2, iNOS, IL-6, TNF-α [61]

Ruscogenin CRP, TNF-α, IL-6, IL-1β, ICAM-1, NF-kB, NOS-1 [62]

Phascolosoma esculenta IL-1β, TNF-α, IL-10, MDA, Nrf2, inflammation, oxidation [63]

ALA/SFC Anti-oxidation, RANKL, IL-6, Nrf2 [64]

Xanthoplanine Inflammatory cytokines, ROS, STAT5 [65]

Lixisenatide ROS, NADPH, NOX-1, TNF-α, IL-6, IL-1β, MMP -2 -9, TLR4, NF-kB [66]

Germanium MPO, TNF-α, IL-1β, IL-6, IL-10, NF-kB p65, p38, ERK, JNK [67]

SDP Permeability, ZO-1, E-cadherin, NFkB, Il-6, hydrogen peroxide, IL-10 [68]

Amomum tsaoko IL-6, VEGF, Nh-kB, P-STAT3 [69]

Alkaline water ROS, SOD-1, GSH, telomerase activity, telomeres length [70]

Dihydrotestosterone NO, PGE2, iNOS, COX-2, TNF-α, IL-1β, TLR4, NF-kB [71]

Midazolam/Sufentanil TNF-α, IL-1β, HMGB1, NF-kB, ROS, SOD, inflammatory [72]

JNJ16259685 Permeability, VASP, p-VASP, occludin, AQP [73]

Table 2 Recently identified potential inflammatory bowel disease treatments.

Treatment Biomarkers changed in desired direction Ref1 Ref2

Taraxasterol ROS, MDA, Caspase-3, Bcl-2, Bax, Nrf2, HO-1, NQO-1, GPx-3 [74] [75]

Rhodiola rosea; 
Salidroside

IL-6, sIL-6R, IFN-gamma, IL-17A, IL-4, Th1 cells, Th17 cells, Treg cells, JAK1, JAK2, STAT3, RORgammat [76-78] [79]

VAS2870 Nox2, ROS, Epithelium barrier integrity, Cell viability [80] [81]

Pinitol Oxidative stress, ROS, TNF-alpha, IL-1beta, IL-6, NO, PGE2, iNOS, COX-2, IkappaBalpha, NF-kappaB, TREM2, 
Inflammation

[82] [83]

TAK-242; Resatorvid TLR4, Apoptosis, IL-1beta, Inflammation [84] [85]

Troxerutin CK-mB, MDA, ROS, ATP [86] [87]

Vinpocetine MAPK, NF-kB, MMP-9, AKT, ROS, Nrf2, HO-1, NQO-1, IL-1beta, TNF-alpha [88] [89]

Poria Cocos ROS, MDA, SOD, LOX-1, Nrf2, HO-1, ERK, Oxidative stress [90] [91]

Carvacrol Nrf2, ROS, MDA, SOD, Oxidative stress [92] [93]

Saururus Chinensis NF-kB IL-6 IL-8 [94] [95]

Table 2 shows examples of recent studies that would have been captured as novel 
treatments had the study/query been performed in 2016. These results reflect the 
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Figure 1  Literature-related discovery and innovation treatment repurposing flow diagram.

predictive nature of the LRDI-based treatment repurposing methodology. The leftmost 
column contains the treatment and alternate name(s); the next column contains the 
biomarkers that were (1) assessed in the reported study; and that (2) changed in the 
desired treatment-derived direction; the final two columns reflect (1) the non-IBD 
application(s) of the treatment prior to 2016 (R1); and (2) the post-2016 evaluation of 
the potential treatment for IBD application (R2).

DISCUSSION OF RESULTS
The potential IBD treatments were derived from a wide swath of categories, including 
treatments for diabetes, cancer, and central nervous system disease, such as depression 
and dementia. Many of the compounds are derived from herbal remedies. Most are in 
the laboratory test phase, although many of these and their parent compounds have 
been in medical use for diseases other than the projected application represented by 
the paper cited. There is more emphasis on plant-based compounds and their 
derivatives than standard commercial synthetic drugs. This is to be expected, since the 
pharmaceutical companies who develop these drugs have substantial resources to 
devote towards searching for other applications for drugs under patent coverage with 
established manufacturing techniques.

Much of the research on plant-based treatments tends to be conducted by 
researchers indigenous to where these plants are most plentiful. They would not be 
expected to have the resources available to devote towards searching for the full 
spectrum of applications that the pharmaceutical companies have. Therefore, more 
targets of opportunity for treatment discovery exist in these non-mainline categories, 
as reflected in the results presented in this paper. It should be emphasized these 
drug/non-drug conclusions are based on results obtained using twenty selected 
biomarkers, out of a potential pool of hundreds of biomarkers. It is unknown whether 
the use of other available biomarkers for the discovery query would have generated 
novel treatments with a different drug/non-drug balance.

Approximately eighteen percent of the 350 records examined could be categorized 
as potential novel treatments for repurposing. Many of the records excluded from 
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discovery consideration were done so on the basis of one or two prior recent records 
(published in 2017-2020) containing the same treatment applied to IBD (human or 
animal studies).

Thus, had this study been done four-five years ago, using the same query, those 
studies would have been identified as a potential novel treatment discovery. This is 
confirmation of the predictive power of the present technique for use as a repurposing 
approach.

CONCLUSION
Potential novel IBD treatments have been identified using a powerful text mining 
approach that identifies pattern changes of clinically relevant biomarkers being 
studied in non-IBD populations. Approximately 64 potential novel IBD treatments 
were identified in this proof-of-concept model, but many more were possible from an 
expanded study. Additionally, the predictive power of the approach for identifying 
future treatments that would be pursued through laboratory research was confirmed, 
showing the value of this approach for identifying and expanding relevant fields of 
research.
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