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Abstract
BACKGROUND 
End-stage liver disease caused by non-alcoholic steatohepatitis (NASH) is the 
second leading indication for liver transplantation. To date, only moderately 
effective pharmacotherapies exist to treat NASH. Understanding the pathogenesis 
of NASH is therefore crucial for the development of new therapies. The 
inflammatory cytokine tumor necrosis factor alpha (TNF-α) is important for the 
progression of liver disease. TNF signaling via TNF receptor 1 (TNFR1) has been 
hypothesized to be important for the development of NASH and hepatocellular 
carcinoma in whole-body knockout animal models.

AIM 
To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis 
development in a mouse model of diet-induced NASH.

METHODS 
NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 
in hepatocytes (TNFR1ΔHEP) and their wild-type littermates (TNFR1fl/fl). Glucose 
tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding. 
After 20 wk mice were assessed for features of NASH and the metabolic 
syndrome such as liver weight, liver steatosis, liver fibrosis and markers of liver 
inflammation.
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RESULTS 
Obesity, liver injury, inflammation, steatosis and fibrosis was not different 
between TNFR1ΔHEP and TNFR1fl/fl mice. However, Tnfr1 deficiency in hepatocytes 
protected against glucose intolerance and insulin resistance.

CONCLUSION 
Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not 
protect from diet-induced NASH. However, improved insulin resistance in this 
model strengthens the role of the liver in glucose homeostasis.

Key words: Tumor necrosis factor alpha receptor 1; Non-alcoholic steatohepatitis; Non-
alcoholic fatty liver disease; Type 2 diabetes; Insulin resistance; Glucose intolerance
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Core tip: We investigated the role of hepatocellular tumor necrosis factor receptor 1 
(TNFR1) signaling in diet-induced non-alcoholic steatohepatitis in mice with a deficiency 
for TNFR1 solely in hepatocytes. In contrast to most whole-body knock-out models, diet-
induced non-alcoholic steatohepatitis is not aggravated by hepatocellular TNFR1 
deficiency in our study. However, insulin resistance was markedly improved, which 
strengthens the role of the liver in glucose homeostasis.
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INTRODUCTION
Complications of the obesity epidemic are increasing globally. Over 70% of obese 
adults have non-alcoholic fatty liver disease (NAFLD)[1]. Disease progression to non-
alcoholic steatohepatitis (NASH) and cirrhosis – often complicated by hepatocellular 
carcinoma (HCC) – worsens the prognosis. Therefore, NASH and its complications are 
becoming the second leading indication for liver transplantation[2,3]. Besides weight 
loss, only moderately effective therapies exist to reverse NASH[4]. Understanding the 
pathogenesis of NASH is therefore crucial for the development of novel treatment 
strategies.

The development of NAFLD and NASH is triggered by intestinal dysbiosis[5-13]. This 
is underlined by the transmission of the disease through co-housing experiments in 
mice and microbiota transplantation to germ-free mice[14,15]. Poor nutrition and 
dysbiosis can damage the intestinal epithelial barrier and facilitate endotoxemia[16]. 
Lipopolysaccharide (LPS), which is a component of the outer membrane of Gram-
negative bacteria, acts as an endotoxin. LPS activates toll-like receptor 4 (TLR-4). TLR-
4 expression is elevated in liver biopsies of patients with NASH compared with 
NAFLD[17]. Downstream signals of TLR activation, such as release of tumor necrosis 
factor alpha (TNF-α), contribute to liver inflammation and fibrosis[18-20].

TNF is a pro-inflammatory cytokine thought to be substantially involved in the 
progression of liver disease[18-20]. TNF signal transduction is mediated by TNF receptor 
1 (TNFR1) and TNFR2. Whereas TNFR1 activation is thought to drive inflammation 
and metabolic alterations, TNFR2 regulates regeneration and immune response in a 
protective manner[21,22]. In obesity, adipocytes are a major systemic source of TNF, 
while in the liver TNF is mainly released from Kupffer cells[23,24]. Obese patients have 
higher serum levels of TNF, and patients with NASH have higher hepatic expression 
of TNF compared with NAFLD[25,26]. In a mouse model of NAFLD, TNF was suggested 
to be a driver of HCC development and tumor-associated inflammation[27,28]. 
Conversely, obese mice with whole-body knockout of Tnfr1 have lower hepatic lipid 
accumulation, lower level of the pro-inflammatory cytokine IL-6, and lower hepatic 
accumulation of neutrophils and macrophages[27]. Moreover, inducers of hepatocellular 
endoplasmic reticulum (ER) stress, which promotes NASH progression, are lower in 
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Tnfr1-deficient mice[28,29]. This suggests that TNF signaling via TNFR1 is important for 
the development of steatohepatitis. However, results are conflicting, with other studies 
showing more hepatic steatosis as well as fibrosis and higher inflammatory markers in 
mouse livers of high-fat diet-induced NAFLD and dysfunctional TNFR1[30]. Therefore, 
the role of TNF and TNFR1 signaling in NAFLD and NASH remains unclear. The 
abovementioned studies on TNFR1 involvement in hepatocellular ER stress suggest 
that TNFR1 signaling in hepatocytes is crucial for NASH progression (rather than 
TNFR1 activation in other liver-homed cells, such as Kupffer cells or stellate cells).

To address this question, we investigated the role of TNFR1 signaling in 
hepatocytes on hepatic steatosis and steatohepatitis in a mouse model of diet-induced 
NASH.

MATERIALS AND METHODS
Mice
Mice with loxP sites inserted in the tumor necrosis factor receptor 1 gene (Tnfr1flxneo/flxneo) 
were generated after receiving sperm from the European Mouse Mutant Archive[31]. 
These mice have exons 2 to 5 flanked with loxP sites and were crossed with albumin-
Cre transgenic mice (The Jackson Laboratory, Sacramento, CA) to create mice with a 
deficiency of Tnfr1 (Tnfrsf1a) specifically in hepatocytes (TNFR1ΔHEP). Albumin-Cre 
negative Tnfr1flxneo/flxneo littermates were used as controls (TNFR1fl/fl). All mice were on a 
C57BL/6 background, and were maintained on a 12:12-h light-dark cycle. After 
weaning, male mice were housed with littermates of the same genotype for 
experiments. At age 8 wk, mice were started on a fast food diet (FFD) consisting of 
irradiated western-style diet (AIN-76A; TestDiet, St. Louis, MO, United States) for 20 
wk[32]. Drinking water was supplemented with 23.1 g/L fructose (F0127; Sigma 
Aldrich, St. Louis, MO, United States) and 18.9 g/L glucose (G8270; Sigma Aldrich) to 
mimic high-fructose corn syrup containing soft drinks[3]. Control mice (Ctrl) received 
autoclaved tap water and irradiated standard chow (5053 PicoLab Rodent Diet; 
LabDiet, St. Louis, MO, United States). Mice had free access to food and water.

A glucose tolerance test (GTT) was performed after 18 wk of feeding by injecting 1 
µg glucose/g body weight intraperitoneally[32]. After 19 wk of feeding, an insulin 
tolerance test (ITT) was performed by intraperitoneal injection of 0.5 mU/g body 
weight insulin (Novolin N NPH; Novo Nordisk Inc, Princeton, NJ, United States). 
Prior to both tests, mice were fasted for 6 h. Blood glucose levels were assessed from 
tail vein blood before injection (t = 0 min) and at t = 15, 30, 60, 90, and 120 min 
following injection.

All animal studies were reviewed and approved by the Institutional Animal Care 
and Use Committee of the University of California, San Diego.

Biochemical analyses
Biochemical analyses were done according to the manufacturers’ protocols. Alanine 
amino transferase (ALT) was measured from plasma obtained from inferior vena cava 
using a kinetic assay (TR71121; Thermo Fisher Scientific, Waltham, MA, United States). 
Triglyceride levels were measured with a colorimetric endpoint assay (T7532; Pointe 
Scientific, Canton, MI, United States) after tissue homogenization in phosphate-
buffered saline, and precipitation of lipids using methanol and chloroform. Liver 
hydroxyproline was extracted from 150-250 mg of mixed liver specimens from the 
right and left liver lobes[32]. The tissue was homogenized in 6N HCl (3750-32; 
USABlueBook, Forest Park, GA, United States) using lysing matrix C tubes (MP116912; 
MP Biomedicals, Santa Ana, CA, United States) and a Mini-BeadBeater-96 (GlenMills, 
Clifton, NJ, United States)[32,33]. The homogenate was incubated at 110 °C for 18 h and 
subsequently filtered using Whatman® filter paper grade 595 1/2 (WHA10311644; 
Sigma Aldrich). The lysate was incubated with chloramine T- (C9887; Sigma Aldrich) 
as well as Ehrlich’s perchloric acid solution (AC168760250; Thermo Fisher Scientific). 
Triplicates were measured at 558 nm (SpectraMax 190 Microplate Reader; Molecular 
Devices LLC, Sunnyvale, CA, United States)[33,34].

Tissue staining
At harvesting, the median liver lobe including the gall bladder was fixed in 10% 
formalin (HT501128; Sigma Aldrich) for 24 to 48 h, and then transferred to 70% ethanol 
and embedded in paraffin[32]. Five µm paraffin sections were stained with hematoxylin 
and eosin (H&E) (38015 and 380161 SelecTech; Leica Biosystems Inc., Buffalo Grove, 
IL, United States) or 0.1% picro Sirius red (color index 35780, 365548; Sigma-Aldrich), 
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respectively.

Gene expression analysis
Liver RNA was extracted using Ambion Trizol Reagent (15596; Thermo Fisher 
Scientific). RNA was treated with RQ1 RNase-Free DNase (M6101; Promega), and was 
reverse-transcribed using the Applied Biosystems High-Capacity cDNA Reverse 
Transcription Kit (43688; Thermo Fisher Scientific). Real-time qPCR was performed on 
the Applied Biosystems StepOnePlus Thermocycler (4376600; Thermo Fisher Scientific) 
using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, United States). 
Primer sequences were obtained from the Harvard PrimerBank[35,36]. The primer used 
for proving the absence of Tnfr1 was generated using NCBI primer blast; the 
sequences were: ACCGTGACAATCCCCTGTAA (Fwd) and CTCTTTGACA 
GGCACGGGAT (Rev). These primer amplified mRNA from exon 3 to exon 7. Gene 
expression was normalized to mouse TATA-Box binding protein gene and expressed 
relative to Ctrl-fed TNFR1fl/fl mice.

Statistical analyses
Numbers of biological replicates for each experiment are given in the respective figure 
legends. The area under the curve was used to compare blood glucose levels from ITT. 
The area over baseline (AOB) was calculated to compare blood glucose levels from 
GTT. Groups were compared by two-way analysis of variance with Tukey’s post hoc 
test. All results are expressed as mean + standard error of the mean. Analyses and data 
plots were done with GraphPad Prism 6.01 (GraphPad Software, Inc., La Jolla, CA, 
United States). Significant differences are marked with (a) if P < 0.05.

RESULTS
TNFR1ΔHEP mice were fed for 20 wk with a western-style diet (FFD) to evaluate, if the 
absence of TNFR1 in hepatocytes is protective against diet-induced NASH.

Mice with a deficiency of TNFR1 in hepatocytes are not protected from obesity
Lower Tnfr1 expression in liver samples from mice with a deficiency of TNFR1 in 
hepatocytes is shown in Figure 1A. Food intake is given in Figure 1B. FFD led to an 
increase in body weight and adipose tissue (Figure 1C-F). However, FFD-fed 
TNFR1ΔHEP mice did not differ from their TNFR1fl/fl littermates in terms of body weight, 
epididymal fat weight and brown fat weight (Figure 1C-E). Taken together, western-
style diet-fed TNFR1ΔHEP mice develop similar features of obesity compared with their 
TNFR1fl/fl littermates.

Mice with a deficiency of TNFR1 in hepatocytes are not protected from diet-induced 
steatohepatitis
To determine the significance of TNFR1 in hepatocytes for the development of NASH, 
parameters of liver injury, steatosis and fibrosis were investigated. Hepatic injury, 
expressed as plasma ALT, was not significantly different between FFD-fed TNFR1ΔHEP 
mice and their TNFR1fl/fl littermates (Figure 2A and B). Similarly, hepatic steatosis, 
expressed as total liver triglycerides and relative liver weight, did not differ between 
FFD-fed TNFR1ΔHEP mice and their TNFR1fl/fl l i t termates (Figure 2C and D). 
Representative liver sections are given in Figure 2B. Fibrosis, expressed as total liver 
hydroxyproline, was higher in FFD-fed mice, but not significantly different from 
control-fed mice in TNFR1ΔHEP as well as TNFR1fl/fl mice (Figure 2E and F). Liver 
inflammation, assessed by gene expression for Il1β, Tnf, and Ccl2, did not differ 
between FFD-fed TNFR1ΔHEP mice and TNFR1fl/fl littermates (Figure 2G). Taken 
together, western-style diet-fed TNFR1ΔHEP mice develop similar signs of liver 
inflammation and fibrosis compared with TNFR1fl/fl littermates.

Mice with a deficiency of TNFR1 in hepatocytes are partially protected from glucose 
intolerance
To assess the metabolic phenotype, TNFR1ΔHEP mice and their TNFR1fl/fl littermates 
were subjected to a glucose and an insulin tolerance test. The FFD-fed TNFR1ΔHEP mice 
did not develop glucose intolerance compared to their Ctrl-fed littermates (Figure 3A). 
The result was confirmed with the insulin tolerance test that showed a higher drop of 
blood glucose levels after insulin injections in FFD-fed TNFR1ΔHEP mice compared with 
TNFR1fl/fl littermates (Figure 3B). Taken together, although western-style diet equally 
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Figure 1  Effect of tumor necrosis factor alpha receptor 1 deficiency in hepatocytes on body weight. A: Tumor necrosis factor alpha receptor 1 
(Tnfr1) expression in liver samples (n = 4-5); B: Food intake per group over the course of the experiment, given in kilocalories (Kcal) and normalized to the mouse 
weight; C: Body weight and relative weights of epididymal (D) and brown fat tissues (E) after 20 wk of feeding; F: Example appearance of mice with a knockout of 
TNFR1 in hepatocytes (TNFR1ΔHEP) and their TNFR1-expressing littermates (TNFR1fl/fl) after 20 wk of fast food diet (FFD). Numbers of biological replicates: 
Ctrl/TNFR1fl/fl n = 11; FFD/TNFR1fl/fl n = 23; Ctrl/TNFR1ΔHEP n = 12; FFD/TNFR1ΔHEP n = 24. Line shows mean + standard error of the mean. Significant differences are 
marked with (a) if P < 0.05. Ctrl: Standard chow.

induced obesity in TNFR1ΔHEP and TNFR1fl/fl littermate mice, interestingly, TNFR1ΔHEP 
mice were resistant to the development of diet-induced glucose intolerance and insulin 
resistance.

DISCUSSION
The role of the TNF receptor 1 in hepatocytes for diet-induced NASH was investigated 
in mice with a hepatocyte-specific deficiency of TNFR1 (TNFR1ΔHEP). Obese mice with 
deficiency of TNFR1 in hepatocytes did not develop less liver disease than their 
TNFR1fl/fl littermates. However, TNFR1ΔHEP mice were protected from glucose 
intolerance and insulin resistance.

Previous studies, using Tnfr1 whole-body knockout animals, concluded that TNFR1 
signaling is a driver for NASH. Constitutional activation of TNFR1 in mice promoted 
the progression of NASH, but protected from insulin resistance[37], in contrast to our 
findings and studies showing the importance of TNFR1 signaling in diabetes 
development[38-40] (discussed in more detail below). On the other hand, deficiency of 
Tnfr1 was used to prove the contribution of TNFR1 signaling for downstream 
activation of STAT3 or the induction of ER stress both to promote NASH progression 
and HCC development[27,28]. In contrast to these studies, in our study Tnfr1 was deleted 
in hepatocytes only. Kupffer cells are the primary source of hepatic TNF release[24]. 
Moreover, TNF acts on Kupffer cells in an autocrine manner[41]. Therefore, it can be 
speculated that the expected protective effect of hepatocyte-specific TNFR1 deficiency 
was reduced by increased TNFR1 signaling in Kupffer cells or recruited immune cells. 
These immune cells might have caused the release of different inflammation 
mediators, such as IL-1β or IL-6, which in turn resulted in activation of inflammatory 
pathways in hepatocytes that are independent from TNFR1 activation. This hypothesis 
is supported by a study that used mice with a whole-body knock out of Tnfr1 and also 
found increased NASH features[30]. In this study by Lambertucci et al[30], Tnfr1 
deficiency resulted in increased numbers of both resident (i.e. Kupffer cells) and 
recruited macrophages into the liver, as well as up-regulation of IL-1β and IL-6 in the 
liver along with increased release into the plasma. IL-1β promotes alcoholic and non-
alcoholic liver disease[42,43]. In the present study, we did not detect differences in IL-1β 
expression between obese mice with a hepatocyte-specific TNFR1 deficiency and their 
wild-type littermates.

Another possible explanation for our finding might be an enhanced signal 
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Figure 2  Effect of tumor necrosis factor alpha receptor 1 deficiency in hepatocytes on liver phenotype. A: Plasma levels of alanine amino 
transferase (ALT); B: Representative hematoxylin and eosin-stained liver sections; C: Relative liver weight; D: Relative amount of triglycerides normalized to liver 
weight. E: Total amount of hydroxyproline per liver; F: Representative Sirius Red-stained liver sections; G: Expression of the inflammatory genes interleukin 1-β (Il1-
β), tumor necrosis factor alpha (Tnfα), and C-C motif chemokine ligand 2 (Ccl2). Scale bars: 200 µm. Number of biological replicates: Ctrl/tumor necrosis factor alpha 
receptor 1-expressing littermates (TNFR1fl/fl) n = 9-11; fast food diet (FFD)/TNFR1fl/fl n = 19-23; Ctrl/TNFR1ΔHEP n = 11-12; FFD/TNFR1ΔHEP n = 19-24. Line shows 
mean + standard error of the mean. Significant differences are marked with (a) if P < 0.05. Ctrl: Standard chow.

Figure 3  Effect of tumor necrosis factor alpha receptor 1 deficiency in hepatocytes on metabolic function. A: Glucose tolerance test performed 
after 18 wk of feeding; B: Insulin tolerance test performed after 19 wk of feeding. Numbers of biological replicates: Ctrl/tumor necrosis factor alpha receptor 1-
expressing littermates (TNFR1fl/fl) n = 11; fast food diet (FFD)/TNFR1fl/fl n = 23-24; Ctrl/TNFR1ΔHEP n = 12; FFD/TNFR1ΔHEP n = 24. Line shows mean + standard error 
of the mean. Significant differences are marked with (a) if P < 0.05. Ctrl: Standard chow; GTT: Glucose tolerance test.

transduction via TNFR2. TNFR2 is a mediator of systemic inflammation and enhances 
cytotoxicity of monocytes[44-46]. Reduced expression of adhesion molecules VCAM-1 
and ICAM-1, which both facilitate leukocyte infiltration, was described in a double-
knockout model of Tnfr1 and Tnfr2, along with a reduction of hepatic steatosis and 
fibrosis[47]. However, a more prominent role of TNFR2 would have occurred in the 
whole-body knockout models as well. Higher serum level of soluble TNFR2 were 
detected in patients with HCC and hepatitis C[48]. The role of TNFR2 for NASH 
development is not conclusive, but it is thought to be protective[49].

The increase in hepatic triglyceride content in NAFLD is associated with hepatic 
insulin resistance[50]. This is mediated by the insulin receptor substrate IRS-2 and 
protein kinase-Cε. We did not detect a difference in hepatic triglycerides between 
obese Tnfr1 deficient mice and their Tnfr1fl/fl littermates. However, compared to lean 
controls, only Tnfr1fl/fl mice had high blood glucose level after glucose and insulin 
challenge. Our observation that mice with a deficiency of Tnfr1 in hepatocytes are 
protected from insulin resistance, strengthens previous findings of Tnfr1 deficiency 
and improved insulin resistance[38,49]. TNF-mediated insulin resistance occurs via 
phosphorylation of the insulin receptor substrate IRS-1, which inhibits insulin-action 
in hepatocytes, and therefore promotes insulin resistance[39,40]. Phosphorylation of IRS-1 
was reduced in mice with a whole-body deficiency of Tnfr1, thus enhancing insulin-
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uptake into hepatocytes[38]. A similar mechanism occurs in brown adipose tissue and 
myocytes – alternative major sites of insulin action[51]. The effect seen in our study 
emphasizes the important role of hepatocytes for glucose homeostasis during obesity 
development.

Our findings were limited by the selective deficiency of TNFR1 in hepatocytes. As 
mentioned above, selective deficiency of TNFR1 in Kupffer cells might have clarified 
the cell type specific role for the pathogenesis of NASH. Another limitation was that 
we could only speculate about the compensating role of TNFR2. As TNFR2 signaling 
is expected to be protective, a selective manipulation of TNFR2 would be an 
interesting target for future studies. Furthermore, we could not investigate the 
mechanisms leading to insulin resistance in more details, because samples were not 
taken from starved animals, as usually done in metabolic studies.

In conclusion, our results do not indicate that loss of TNFR1 in hepatocytes can 
protect from diet-induced NASH. However, improved insulin resistance in this model 
confirms the important role of the liver for glucose homeostasis during obesity.

ARTICLE HIGHLIGHTS
Research background
Understanding the pathogenesis of non-alcoholic steatohepatitis (NASH) is crucial for 
the development of new therapies. The inflammatory cytokine tumor necrosis factor 
alpha (TNF-α) is important for the progression of liver disease. It binds to two 
receptors, TNF receptor 1 (TNFR1) and TNFR2.

Research motivation
TNF signaling via TNFR1 has been hypothesized to be important for the development 
of NASH and hepatocellular carcinoma in whole-body knockout animal models.

Research objectives
The aim of our study was to investigate the hepatocyte specific role of TNFR1 
signaling for diet-induced steatohepatitis.

Research methods
NASH was induced by a 20-wk western-style fast-food diet in mice deficient of TNFR1 
in hepatocytes (TNFR1ΔHEP) and their wild-type littermates (TNFR1fl/fl). Features of 
NASH as well as glucose tolerance and insulin resistance were assessed.

Research results
Obesity, liver injury, inflammation, steatosis, and fibrosis was not different between 
TNFR1ΔHEP and TNFR1fl/fl mice. However, Tnfr1 deficiency in hepatocytes protected 
mice against glucose intolerance and insulin resistance.

Research conclusions
Our results do not indicate that inhibition of TNFR1 signaling in hepatocytes can 
protect from diet-induced NASH. However, improved insulin resistance in this model 
confirms the important role of the liver for glucose homeostasis during obesity.

Research perspectives
Compensatory mechanisms, possibly occurring via TNFR2 signaling, need to be 
investigated in future studies.
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