
A distributional code for value in dopamine-based reinforcement 
learning

Will Dabney1,†, Zeb Kurth-Nelson1,2,†, Naoshige Uchida3, Clara Kwon Starkweather3, Demis 
Hassabis1, Rémi Munos1, Matthew Botvinick1,4

1DeepMind, London, UK

2Max Planck UCL Centre for Computational Psychiatry and Ageing Research, UCL, UK

3Center for Brain Science, Dept. of Molecular and Cellular Biology, Harvard University, USA

4Gatsby Computational Neuroscience Unit, UCL, UK

Abstract

Since its introduction, the reward prediction error (RPE) theory of dopamine has explained a 

wealth of empirical phenomena, providing a unifying framework for understanding the 

representation of reward and value in the brain1–3. According to the now canonical theory, reward 

predictions are represented as a single scalar quantity, which supports learning about the 

expectation, or mean, of stochastic outcomes. In the present work, we propose a novel account of 

dopamine-based reinforcement learning. Inspired by recent artificial intelligence research on 

distributional reinforcement learning4–6, we hypothesized that the brain represents possible future 

rewards not as a single mean, but instead as a probability distribution, effectively representing 

multiple future outcomes simultaneously and in parallel. This idea leads immediately to a set of 

empirical predictions, which we tested using single-unit recordings from mouse ventral tegmental 

area. Our findings provide strong evidence for a neural realization of distributional reinforcement 

learning.

The RPE theory of dopamine derives from work in the artificial intelligence (AI) field of 

reinforcement learning (RL)7. Since the link to neuroscience was first made, however, RL 

has made substantial advances8,9, revealing factors that radically enhance the effectiveness 

of RL algorithms10. In some cases, the relevant mechanisms invite comparison with neural 

function, suggesting new hypotheses concerning reward-based learning in the brain11–13. 

Here, we examine one particularly promising recent development in AI research and 
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investigate its potential neural correlates. Specifically, we consider a computational 

framework referred to as distributional reinforcement learning (Figure 1a,b)4–6.

Like the traditional form of temporal difference RL, on which the dopamine theory was 

based, distributional RL assumes that reward-based learning is driven by a RPE, which 

signals the difference between received and anticipated reward†. The key difference in 

distributional RL lies in the way that ‘anticipated reward’ is defined. In traditional RL, the 

reward prediction is represented as a single quantity: the average over all potential reward 

outcomes, weighted by their respective probabilities. Distributional RL, in contrast, employs 

a multiplicity of predictions. These predictions vary in their degree of optimism about 

upcoming reward. More optimistic predictions anticipate obtaining greater future rewards; 

less optimistic predictions anticipate more meager outcomes. Together, the entire range of 

predictions captures the full probability distribution over future rewards (more details in 

Supplement section 1.1).

Compared with traditional RL procedures, distributional RL can increase performance in 

deep learning systems by a factor of two or more5,14,15, an effect that stems in part from an 

enhancement of representation learning (see Extended Data Figure 2, 3 and Supplement 

section 1.2). This suggests the intriguing question of whether RL in the brain might leverage 

the benefits of distributional coding. This question is encouraged both by the fact that the 

brain employs distributional codes in numerous other domains16, and that the mechanism of 

distributional RL is biologically plausible6,17. Here we tested several surprising predictions 

of distributional RL using single unit recordings in the ventral tegmental area (VTA) of mice 

performing tasks with probabilistic rewards.

Different dopamine neurons utilize different value predictions.

In contrast to classical TD learning, distributional RL posits a diverse set of RPE channels, 

each of which carries a different value‡ prediction, with varying degrees of optimism across 

channels. These value predictions in turn provide the reference points for different RPE 

signals, causing the latter also to differ in terms of optimism. As a startling consequence, a 

single reward outcome can simultaneously elicit positive RPEs (within relatively pessimistic 

channels) and negative RPEs (within more optimistic ones).

This translates immediately into a neuroscientific prediction, which is that dopamine 

neurons should display such diversity in ‘optimism.’ Suppose an agent has learned that a cue 

predicts a reward whose magnitude will be drawn from a probability distribution. In the 

standard RL theory, receiving a reward with magnitude below the mean of this distribution 

will elicit a negative RPE, while larger magnitudes will elicit positive RPEs. The reversal 
point – the magnitude where prediction errors transition from negative to positive – in 

standard RL is the expectation of the magnitude’s distribution. By contrast, in distributional 

†For simplicity, we introduce the theory in terms of a single-step transition model. The same principles hold for the general multi-step 
(discounted return) case (see Supplement section 1)
‡Value is formally defined in RL as the mean of future outcomes. Here, for the sake of exposition, we relax this definition to include 
predictions about future outcomes which are not necessarily the mean.
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RL, the reversal point differs across dopamine neurons according to their degree of 

optimism.

We tested for such reversal-point diversity in optogenetically verified dopaminergic VTA 

neurons, focusing on responses to receipt of liquid rewards, the volume of which was drawn 

at random on each trial from seven possible values (Figure 1c). As anticipated by 

distributional RL, but not by the standard theory, we found that dopamine neurons had 

substantially different reversal points, ranging from cells that reversed between the smallest 

two rewards to cells that reversed between the largest two rewards (Figure 2a,b). This 

diversity was not due to noise, as the reversal point estimated on a random half of the data 

was a robust predictor of the reversal point estimated on the other half of the data (R = 0.58, 

p = 1.8 × 10−5; Figure 2c). In fact, in response to the 5 μL reward, 13/40 cells had 

significantly above-baseline responses and 10/40 cells had significantly below-baseline 

responses. Note that while some cells appeared pessimistic and others optimistic, there was 

also a population of cells with approximately ‘neutral’ responses, as predicted by the 

distributional RL model (cf. Figure 2a, right panel).

A stronger test of our theory is whether this diversity also exists within a single animal. Most 

animals had too few cells for analysis, but within the single animal with the most cells 

recorded, reversal points estimated on half of the data were robustly predictive of reversal 

points estimated on the other half (p = 0.008). And in response to a single reward magnitude 

(5 μL), 6/16 cells had significantly above-baseline responses and 5/16 cells had significantly 

below-baseline responses. Finally, Figure 2d shows rasters of two example cells from this 

animal, exhibiting consistently opposite responses to the same reward.

Because the diversity we observe is reliable across trials, it cannot be explained by adding 

measurement noise to non-distributional TD models. As detailed in section 2 of the 

Supplement (also see Extended Data Figure 4), we also analyzed several more elaborate 

alternative models, and while some of these can give rise to the appearance of reversal-point 

diversity under some analysis methods, the same models are frankly contradicted by further 

aspects of the experimental data, which we report below.

While our first prediction dealt with the relationship between dopaminergic signaling and 

reward magnitude, dopaminergic RPE signals also scale with reward probability2,18, and 

distributional RL leads to a prediction in this domain as well. Pursuing this, we analyzed 

data from a second task in which sensory cues indicated the probability of an upcoming 

liquid reward (Figure 1d). One cue indicated a 10% probability of reward, a different cue 

indicated a 50% probability, and a third a 90% probability. The standard RPE theory predicts 

that, considering responses at the time the cue is presented, all dopamine neurons should 

have the same relative spacing between 10%, 50% and 90% cue responses.§

Distributional RL predicts, instead, that dopamine neurons should vary in their responses to 

the 50% cue: Some neurons should respond optimistically, emitting a RPE nearly as large as 

to the 90% cue. Others should respond pessimistically, emitting a RPE closer to the 10% cue 

§Under neutral risk preferences, the 50% cue response should be midway between the 10% and 90% cues. Under different risk 
preferences, the 50% cue response might be at a different position between 10% and 90%, but it should be the same for all neurons.
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response (Figure 3a). Labelling these two cases as optimistically and pessimistically biased, 

distributional RL predicts that dopamine neurons, as a population, should show concurrent 

optimistic and pessimistic coding for reward probability.

To test this prediction, we analyzed responses of dopaminergic VTA neurons in the cued 

probability task just described (see Methods for more details). As predicted by distributional 

RL, but not by the standard theory, dopamine neurons differed in their patterns of response 

across the three reward-probability cues, with both optimistic and pessimistic probability 

coding observed (Figure 3b left and Extended Data Figures 6–7). Again, this diversity was 

not due to noise, as 10/31 cells were significantly optimistic and 9/31 were significantly 

pessimistic, at a p < 0.05 threshold (see Methods). By comparison, at a 0.05 threshold, 

approximately 3/31 cells in a non-distributional TD system are expected by chance to appear 

either significantly optimistic or pessimistic. At the group level, the null hypothesis of no 

diversity was rejected by one-way ANOVA (F(30, 3335) = 4.31, p = 6×10−14). Importantly, 

both forms of probability coding were observed side by side within individual animals. 

Within the animal with the greatest number of recorded cells, 4/17 cells were consistently 

optimistic and 5/17 cells were consistently pessimistic. This was also significant by ANOVA 

(F(15, 1652) = 4.02, p = 3 × 10−7).

Because most cells were recorded in different sessions, it was important to examine whether 

global changes in reward expectations between sessions might explain the observed diversity 

in optimism. To this end, we analyzed patterns of anticipatory licking. Here we found that, 

although within-session fluctuations in licking were predictive of within-session fluctuations 

in dopamine cell firing, there was no relationship between optimism and licking on a cell-

by-cell basis (Extended Data Figure 9).

This observation makes it unlikely that the diverse responses we observed in dopamine 

neurons are explained by session-to-session variability in global reward expectation. That 

interpretation is further undermined by the fact that reversal-point diversity was observed in 

the one case where several cells were recorded simultaneously in one animal (Figure 3c and 

Supplement section 4).

VTA GABA neurons encode diverse reward predictions in parallel.

In distributional RL, diversity in RPE signaling arises because different RPE channels listen 

to different reward predictions, which vary in their degree of optimism. From a 

neuroscientific perspective, it should thus be possible to track the effects we have identified 

at the level of VTA dopamine neurons back to upstream neurons signalling reward 

predictions. Recent work strongly suggests that VTA GABAergic neurons play precisely this 

role, and that the reward prediction used to compute the RPE is reflected in their firing 

rates19. Therefore, we predicted that, in the same task described above, the population of 

VTA GABAergic neurons should also contain concurrent optimistic and pessimistic 

probability coding. As predicted, consistent differences in probability coding were observed 

across putative GABA neurons, again with concurrent optimism and pessimism (Figure 3b, 

right). In the animal with the most cells recorded, 12/36 cells were consistently optimistic, 

and 11/36 were consistently pessimistic (example cells shown in Figure 3d).
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Distributional coding as a consequence of asymmetric RPE scaling.

The results reported in the preceding sections suggest that a distribution of value predictions 

is coded in the neural circuits underlying RL. But how might such coding arise in the first 

place? Recent AI work on distributional RL15 has shown that distributional coding arises 

automatically if a single change is made to the classic TD learning mechanism.

In classic TD, positive and negative errors are given equal weight. As a result, positive and 

negative errors are in equilibrium when the learned prediction equals the mean of the reward 

distribution. Therefore, classical TD learns to predict the average over future rewards.

By contrast, in distributional TD, different RPE channels place different relative weights on 

positive versus negative RPEs (see Figure 1b). In channels that overweight positive RPEs, 

reaching equilibrium requires these positive errors to become less frequent, so the learning 

dynamics converge on a more optimistic reward prediction. Conversely, in channels 

overweighting negative RPEs, a more pessimistic prediction is needed to attain equilibrium 

(Figure 4a and Extended Data Figure 1a). Taken together, the set of predictions learned 

across all channels encodes the full shape of the reward distribution.

When distributional RL is considered as a model of the dopamine system, these points 

translate into two testable predictions. First, dopamine neurons should differ in their relative 

scaling of positive and negative RPEs. To test this prediction, we analyzed activity from 

VTA dopamine neurons in the variable-magnitude task described above. We first estimated a 

reversal point for each cell as previously described. Then, for each cell, we separately 

estimated two slopes: α+ for responses in the positive domain (i.e., above the reversal point) 

and α− for the negative domain (Figure 4b). This revealed reproducible differences across 

dopamine neurons in the relative magnitude of positive versus negative RPEs (Extended 

Data Figure 5). Across all animals, the mean value of the ratio α+/(α+ + α−) was 0.48. 

However, many cells had a value significantly above or below this mean (Figure 4c; see 

Methods for details of statistical test). At the group level there was significant diversity 

between cells by one-way ANOVA (F(38, 234) = 2.93, p = 4 × 10−7). Within the animal with 

the most recorded cells, 3/15 cells were significantly below the mean and 3/15 were 

significantly above, and ANOVA again rejected the null hypothesis of no diversity between 

cells: F(14, 90) = 4.06, p = 2 × 10−5.

Second, RPE asymmetry should correlate, across dopamine neurons, with reversal point. 

Dopamine neurons that scale positive RPEs more steeply relative to negative RPEs should 

be linked with relatively optimistic reward predictions, and so should have reversal points at 

relatively high reward magnitudes. Dopamine neurons that scale positive RPEs less steeply 

should have relatively low reversal points. Again using data from the variable-magnitude 

task, we found a strong correlation between RPE asymmetry and reversal point (p = 8.1 × 

10−5 by linear regression; Figure 4d,e), validating this prediction. Furthermore, this effect 

survived when only considering data from the single animal with the largest number of 

recorded cells (p = 0.002).
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Decoding reward distributions from neural responses

As we have discussed, the distributional TD model correctly predicts that dopamine neurons 

should show diverse reversal points and response asymmetries, and that these should 

correlate. We last turn to the most detailed prediction of the model. The specific reversal 

points observed in any experimental situation, together with the particular response 

asymmetries in the corresponding neurons, should encode an approximate representation of 

the anticipated probability distribution over future rewards.

If this is in fact the case, then with sufficient data it should be possible to decode the the full 

value distribution from the responses of dopamine neurons. As a final test of the 

distributional RL hypothesis, we attempted this kind of decoding. The distributional TD 

model implies that, if dopaminergic responses are approximately linear in the positive and 

negative domains, then the resultant learned reward predictions will correspond to 

expectiles* of the reward distribution35.

We therefore treated the reversal points and response asymmetries measured in the variable-

magnitude task as defining a set of expectiles, and we transformed these expectiles into a 

probability density (see Methods). As shown in Figure 5a–c, the resulting density captured 

multiple modes of the ground-truth value distribution. Decoding the RPEs produced by a 

distributional TD simulation, but not a classic TD simulation, produced the same pattern of 

results.

Parallel analyses focusing on the variable-probability task (see Methods) yielded similarly 

good matches to the ground-truth distributions in that task (Figure 5d–e). In both tasks, 

successful decoding depended on the specific pattern of variability in the neural data, and 

not on the mere presence of variability per se (Extended Data Figure 8).

It is worth emphasizing that none of the effects we have reported are anticipated by the 

standard RPE theory of dopamine, which implies that all dopamine neurons should transmit 

essentially the same RPE signal. Why have the present effects not been observed before? In 

some cases, relevant data have been hiding in plain sight. For example, a number of studies 

have reported striking variability in the relative magnitude of positive and negative RPEs 

across dopamine neurons, treating this however as an incidental finding or a reflection of 

measurement error, or viewing it as a problem for the RPE theory17. And one of the earliest 

studies of reward-probability coding in dopaminergic RPEs remarked on apparent diversity 

across dopamine neurons, though only in a footnote18. A more general issue is that the 

forms of variability we have reported are masked by traditional analysis techniques, which 

typically focus on average responses across dopamine neurons (see Supplement section 5 

and Extended Data Figure 10).

Distributional RL offers a range of untested predictions. Dopamine neurons should maintain 

their ordering of relative optimism across task contexts, even as the specific distribution of 

rewards changes. If RPE channels with particular levels of optimism are selectively activated 

with optogenetics, this should sculpt the learned distribution, which should in turn be 

*Expectiles are a statistic of distributions, which generalize the mean in the same way that quantiles generalize the median.
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detectable with behavioral measures of sensitivity to moments of the distribution. We list 

further predictions in Supplement section 6.

Distributional RL also gives rise to a number of broader questions. What are the circuit- or 

cellular-level mechanisms that give rise to a diversity of asymmetry in positive versus 

negative RPE scaling? It is also worth considering whether other mechanisms, aside from 

asymmetric scaling of RPEs, might contribute to distributional coding. It is well established, 

for example, that positive and negative RPEs differentially engage striatal D1 and D2 

receptors20, and that the balance of these receptors varies anatomically21–23. This suggests a 

second potential mechanism for differential learning from positive versus negative RPEs24. 

Also, how do different RPE channels anatomically couple with their corresponding reward 

predictions (see Extended Data Figure 4i–k)? Finally, what effects might distributional 

coding have downstream, at the level of action learning and selection? With this question in 

mind, it is interesting to note that some current theories in behavioral economics center on 

risk measures that can be easily read out from the kind of distributional codes that the 

present work has considered.

We close by speculating on implications of the distributional hypothesis of dopamine for the 

mechanisms of mental disorders such as addiction and depression. Mood has been linked 

with predictions of future reward25, and it has been proposed that both depression and 

bipolar disorder may involve biased forecasts concerning value-laden outcomes26. Of 

obvious relevance, it has recently been proposed that such biases may arise from 

asymmetries in RPE coding27,28. Potential connections between these ideas and the 

phenomena we have reported here are readily evident, presenting novel and inviting 

opportunities for new research.

Methods

Distributional reinforcement learning model—The model for distributional 

reinforcement learning (distributional RL) we use throughout the work is based on the 

principle of asymmetric regression and extends recent results in AI5,6,15. We present a more 

detailed and accessible introduction to distributional RL in the Supplement. Here we outline 

the method in brief.

Let f :ℝ ℝ be a response function. In each observed state x, let there be a set of value 

predictions Vi(x) which are updated with learning rates αi
+, αi− ∈ ℝ+. Then given a state x, 

next-state x′, resulting reward signal r, and time-discount γ ∈ [0, 1) the distributional TD 

model computes distributional TD errors

δi = r + γV i x′ − V i x , (1)

where Vj(x′) is a sample from the distribution V (x′). The model then updates the baselines 

with

V i x V i x + αi
+f δi forδi > 0 (2)
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V i x V i x + αi−f δi forδi ≤ 0 (3)

When performed with a tabular representation, asymmetry uniformly distributed, and f(δ) = 

sign(δ), this method converges to the τi-quantile, τi =
αi

+

αi
+ + αi−

, of the distribution over 

discounted returns at x6. Similarly, asymmetric regression with response function f(δ) = δ 
corresponds to expectile regression29. Like quantiles, expectiles fully characterize the 

distribution and have been shown to be particularly useful for measures of risk30,31.

Finally, we note that throughout the paper, we use the terms ‘optimistic’ and ‘pessimistic’ to 

refer to return predictions that are above or below the mean (expected) return. Importantly, 

these predictions are optimistic in the sense of corresponding to particularly good outcomes 

from the set of possible outcomes. They are not optimistic in the sense of corresponding to 

outcomes that are impossibly good.

Artificial agent results—Atari results are on the Atari-57 benchmark using the publicly 

available Arcade Learning Environment32. This is a set of 57 Atari 2600 games and human-

performance baselines. Refer to previous work for details on DQN and computation of 

human-normalized scores8. The Distributional TD agent uses our proposed model and a 

DQN with multiple (n = 200) value predictors, each with a different asymmetry, spaced 

uniformly in [0, 1]. The training objective of DQN, the Huber loss, is replaced with the 

asymmetric quantile-Huber loss, which corresponds to the κ-saturating response function 

f(δ) = max(min(δ, κ), −κ), with κ = 1.

Finally, at each update we train all channels based upon the immediate reward and the 

predicted future returns from all next-state value predictors. Further details can be found in 

Dabney et al.6. The physics-based motor-control task requires control of a 28 degrees-of-

freedom humanoid to complete a 3-dimensional obstacle course in minimal time33. Full 

details for the D3PG and Distributional D3PG agents are given in Barth-Maron et al.14. 

Distributions over return shown in Extended Data Figure 2d and 2f are based on the 

network-predicted distribution in each of the given frames.

Tabular simulations—Tabular simulations of the classical TD and distributional TD 

models used a population of learning rates selected uniformly at random, αi
+ u 0, 1  for each 

cell i. In all cases the only algorithmic difference between the classical and distributional TD 

models was that the distributional model used a separately varying learning rate for negative 

prediction errors, αi− u 0, 1  for each cell i. Both methods used a linear response function. 

Qualitatively similar results were also obtained with other response functions (e.g. Hill 

function34 or κ – saturating), despite these leading to semantically different estimators of the 

distribution. The population sizes were chosen for clarity of presentation and to provide 

similar variability as observed in the neuronal data. Each cell was paired with a different 

state-dependent value estimate Vi(x). Note that while these simulations focused on 

immediate rewards, the same algorithm also learns distributions over multi-step returns.
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In the variable-probability task, each cue corresponded to a different value estimate and 

reward probability (90%, 50%, or 10%). When rewarded, the agent received numerical 

reward of 1.0, and 0.0 when omitted. Both agents were trained for 100 trials of 5000 

updates, and both simulated n = 31 cells (separate value estimates). The learning rates were 

all selected uniformly at random between [0.001, 0.2]. Cue response was taken to be the 

temporal difference from a constant zero baseline to the value estimate.

In the variable-magnitude task, all rewards were taken to be the water magnitude measured 

in micro-liters (qualitatively same results obtained with utilities instead of magnitudes). For 

Figure 2 we ran 10 trials of 25000 updates each for 150 estimators with random learning 

rates in [0.001, 0.02]. These smaller learning rates and larger number of updates were 

intended to ensure the values converged fully with low error. We then report temporal 

difference errors for 10 cells taken uniformly to span the range of value estimates for each 

agent. Reported errors (simulating change in firing rate) are the utility of a reward minus the 

value estimate and scaled by the learning rate. As with the neuronal data, these are reported 

averaged over trials and normalized by variance over reward magnitudes. Distributional TD 

RPEs are computed using asymmetric learning rates, with a small constant (floor) added to 

the learning rates.

Distribution decoding—For both real neural data and TD simulations, we performed 

distribution decoding. The distributional and classic TD simulations used for decoding in the 

variable-magnitude task each employed 40 value predictors, to match the 40 recorded cells 

in the neural data (neural analyses were pooled across the six animals). In the distributional 

TD simulation, each value predictor used a different asymmetric scaling factor 

τi = αi
+/ αi

+ + αi− , and therefore learned a different value prediction Vi.

The decoding analyses began with a set of reversal points, Vi, and asymmetric scaling 

factors τi. For the neural data, these were obtained as described elsewhere. For the 

simulations, they were read directly from the simulation. These numbers were interpreted as 

a set of expectiles, with the τi-th expectile having value Vi. We decoded these into 

probability densities by solving an optimization problem to find the density most compatible 

with the set of expectiles35. For optimization, the density was parameterized as a set of 

samples. For display in Figure 5, the samples are smoothed with kernel density estimation.

Animals and behavioral tasks—The rodent data we re-analyzed here were first 

reported in Eshel et al.19. Methods details can be found in that paper and in Eshel et al.34. 

We give a brief description of the methods below.

Five mice were trained on a ‘variable-probability’ task, and six different mice on a ‘variable-

magnitude’ task. In the variable-probability task, in each trial the animal first experienced 

one of four odor cues for 1 s, followed by a 1 s pause, followed by either a reward (3.75 μL 

water), an aversive airpuff, or nothing. Odor 1 signaled a 90% chance of reward, odor 2 a 

50% chance of reward, odor 3 a 10% chance of reward, and odor 4 signaled a 90% chance of 

airpuff. Odor meanings were randomized across animals. Inter-trial intervals were 

exponentially distributed.

Dabney et al. Page 9

Nature. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An infrared beam was positioned in front of the water delivery spout, and each beam break 

was recorded as one lick event. We report the average lick rate over the entire interval 

between the cue and the outcome (i.e., 0–2000 ms after cue onset).

In the variable-magnitude task, in 10% of trials an odor cue was delivered that indicated that 

no reward would be delivered on that trial. In the remaining 90% of trials, one of the 

following reward magnitudes was delivered, at random: 0.1, 0.3, 1.2, 2.5, 5, 10, 20 μL. In 

half of these trials, this reward was preceded 1500 ms by an odor cue (which indicated that a 

reward was forthcoming but did not disclose its magnitude). In the other half, it was 

unsignalled.

In order to identify dopamine neurons while recording, neurons in the VTA were tagged 

with channelrhodopsin-2 (ChR2) by injecting adeno-associated virus (AAV) that expresses 

ChR2 in a Cre-dependent manner into the VTA of transgenic mice that express Cre 

recombinase under the promotor of the dopamine transporter (DAT) gene (B6.SJL-

Slc6a3tm1.1(cre)Bkmn/J, The Jackson Laboratory)36. Mice were implanted with a head 

plate and custom-built microdrive containing 6–8 tetrodes (Sandvik) and optical fiber, as 

described in Cohen et al.37.

All experiments were performed in accordance with the US National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and approved by the Harvard 

Institutional Animal Care and Use Committee.

Neuronal data and analysis—Extracellular recordings were made from VTA using a 

data acquisition system (DigiLynx, Neuralynx). VTA recording sites were verified 

histologically. The identity of dopaminergic cells was confirmed by recording the 

electrophysiological responses of cells to a brief blue light pulse train, which stimulates only 

DAT-expressing cells. Spikes were sorted using Spike-Sort3D (Neuralynx) or MClust-3.5 

(A.D. Redish). Putative GABAergic neurons in the VTA were identified by clustering of 

firing patterns as described previously34,37. All confidence intervals are standard error unless 

otherwise noted.

Data analyses were performed using NumPy 1.15 and MATLAB R2018a (Mathworks). 

Spike times were collected in 1 ms bins to create peri-stimulus time histograms. These 

histograms were then smoothed by convolving with the function

1 − e−t ⋅ e−t/T

where T was a time constant, set to 20 ms as in Eshel et al.34. For single-cell traces, we set T 
to 200 ms for display purposes.

After smoothing, the data were baseline-corrected by subtracting from each trial and each 

neuron independently the mean over that trial’s activity from −1000 to 0 ms relative to 

stimulus onset (or relative to reward onset in the unexpected reward condition).
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Variable-probability task

n = 31 cells were recorded from five animals, with the following number of cells per animal: 

1, 4, 16, 1, 9. Responses to cue for dopamine neurons were defined as the average activity 

from 0 to 400 ms after cue onset. This interval was chosen to match Eshel et al.34. 

Responses to cue for putative GABA neurons were defined as the average activity from 0 to 

1500 ms after cue onset. This longer interval was chosen because these neurons had much 

slower responses, often ramping up slowly over the first 500 or 1000 ms after cue onset37 

(Figure 3d).

We were interested in whether there was between-cell diversity in responses to the 50% cue. 

We first normalized the responses to the 50% cue on a per-cell basis as follows:

c50
norm = c50 − mean c10 / mean c90 − mean c10

where mean indicates the mean over trials within a cell. In order to be agnostic about the risk 

preferences of the animal, we then performed a two-tailed t-test of the cell’s normalized 

responses to the 50% cue against the average of all cells’ normalized responses to the 50% 

cue. This is the test for optimistic or pessimistic probability coding that we report in the 

main text. Note that these t-statistics would be t-distributed if the differences between cells 

were due to chance. We also report ANOVA results where we evaluate the null hypothesis 

that all cells’ normalized 50% responses have the same mean.

The same pattern of results held when instead comparing responses to the 50% cue against 

the midway point between responses to the 10% cue and responses to the 90% cue.

The per-cell cue responses shown in Extended Data Figure 7 were normalized to zero mean 

and unit variance, to allow direct comparison of cells with different response variability. 

Each cell appears in one of three panels based upon the outcome of two single-tailed Mann-

Whitney tests evaluating the rank order for c10 < c50 and c50 < c90 (see Supplement section 

3.3 for further details). The left, center, and right panels correspond to outcomes (p ≥ 0.05, p 
< 0.05), (p < 0.05, p < 0.05 or p ≥ 0.05, p ≥ 0.05), and (p < 0.05, p ≥ 0.05) respectively.

Variable-magnitude task

n = 40 cells were recorded from five animals, with the following number of cells per animal: 

3, 6, 9, 16, 6. Responses to reward were defined as the average activity from 200 to 600 ms 

after reward onset. This time interval was selected to match Eshel et al.34 as closely as 

possible, while excluding the initial response to the feeder click34,38,39, which was not 

selective to reward magnitude and was positive for all reward magnitudes. This allowed us to 

find the reward magnitudes for which the dopamine response was either boosted or 

suppressed relative to baseline.

The reversal point (i.e., the reward magnitude that would elicit neither a positive nor 

negative deflection in firing relative to baseline) for each cell was defined as the magnitude 

MR that maximized the number of positive responses to rewards greater than MR plus the 

number of negative responses to rewards less than MR. To obtain statistics for reliability of 
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cell-to-cell differences in reversal point, we partitioned the data into random halves and 

estimated the reversal point for each cell separately in each half. We repeated this procedure 

1000 times with different random partitions, and we report the mean R value and geometric 

mean p value across these 1000 folds.

After measuring reversal points, we fit linear functions separately to the positive and 

negative domains of each cell. To obtain confidence intervals, we divided the data into seven 

random partitions (seven being the smallest number of trials in any condition for any cell), 

subject to the constraint that every condition for every cell contain at least one trial in each 

partition. In each partition, we repeated the procedure for estimating reversal points and 

finding slopes in the positive and negative domains. Our confidence interval on τ = α+/(α+ + 

α−) was then the SEM of the values calculated across the seven partitions. ANOVAs are also 

reported testing the null hypothesis that means (across partitions) were not different between 

cells.

Fitting linear functions to dopamine responses was more logical in utility space than in 

reward volume space. We relied on Stauffer et al.38 to approximate the underlying utility 

function from the dopamine responses to rewards of varying magnitudes. We used these 

empirical utilities instead of raw reward magnitudes for the analyses shown in Figure 4. 

However, none of the reported results were sensitive to this choice of utility function. We 

also ran the analyses using other utility functions, and these results are reported in Extended 

Data Figure 5. One cell was excluded from analyses in Figure 5: because it had no positive 

responses to any reward magnitude, a slope could not be fit in the positive domain.

When measuring the correlation (across cells) between reversal point and τ, we first 

randomly split the data into two disjoint halves of trials. In one half, we first calculated 

reversal points RP1 and used these reversal points to calculate α+ and α−. In the other half, 

we calculated reversal points RP2. The correlation we report is between RP2 and τ = α+/(α+ 

+ α−). We did this to avoid confounds associated with using the same data to estimate both 

slopes and intercepts.

Data and code availability—The neuronal data analyzed in this work, along with 

analysis code from our value-distribution decoding and code used to generate model 

predictions for distributional TD are available at https://doi.org/10.17605/OSF.IO/UX5RG.
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Extended Data

Extended Data Figure 1: Mechanism of distributional TD.
a, The degree of asymmetry in positive to negative scale determines the equilibrium where 

positive and negative errors balance. Equal scaling equilibrates at the mean, whereas a larger 

positive (negative) scaling produces an equilibrium above (below) the mean. b, 
Distributional prediction emerges through experience. Quantile (sign function) version is 

displayed here for clarity. Model is trained on arbitrary task with trimodal reward 

distribution. c, Same as (b), viewed in terms of cumulative distribution (left) or learned value 

for each predictor (quantile function) (right).
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Extended Data Figure 2: Learning the distribution of returns improves performance of deep RL 
agents across multiple domains.
a, DQN and Distributional TD share identical non-linear network structures. b-c, After 

training classic or distributional DQN on MsPacman, we freeze the agent and then train a 

separate linear decoder to reconstruct frames from the agent’s final layer representation. For 

each agent, reconstructions are shown. The distributional model’s representation allows 

significantly better reconstruction. d, At a single frame of MsPacman (not shown), the 

agent’s value predictions together represent a probability distribution over future rewards. 

Reward predictions of individual RPE channels shown as tick marks ranging from 

pessimistic (blue) to optimistic (red), and kernel density estimate shown in black. e, Atari-57 

experiments with single runs of prioritized experience replay40 and double DQN41 agents 

for reference. Benefits of distributional learning exceed other popular innovations. f-g, The 
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performance payoff of distributional RL can be seen across a wide diversity of tasks. Here 

we give another example, a humanoid motor-control task in the MuJoCo physics simulator. 

Prioritized experience replay agent is shown for reference.42 Traces show individual runs, 

averages in bold.

Extended Data Figure 3: Simulation experiment to examine the role of representation learning in 
distributional RL.
a, Illustration of tasks 1 and 2. b, Example images for each class used in our experiments. c, 
Experimental results, where each of 10 random seeds yields an individual run shown with 

traces, and bold gives average over seeds. d, Same as (c), but for control experiment. e, Bird-

dog t-SNE visualization of final hidden layer of network, given different input images 

(bird=blue, dog=red). Left column shows classic TD and right column shows distributional 

TD. Top row shows the representation after training on task 1, and bottom row after training 

on task 2.
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Extended Data Figure 4: Null models.
a, Classical TD plus noise does not give rise to the pattern of results observed in real 

dopamine data in varible-magnitude task. When reversal points were estimated in two 

independent partitions there was no correlation between the two (p=0.32 by linear 

regression). b, We then estimated asymmetric scaling of responses and found no correlation 

between this and reversal point (p=0.78 by linear regression). c, Model comparison between 

‘same’, a single reversal point, and ‘diverse’, separate reversal points. In both, the model is 

used to predict whether a held-out trial has a positive or negative response. d, Simulated 

baseline-subtracted RPEs, color-coded according to the ground-truth value of bias added to 

that each cell’s RPEs. e, Across all simulated cells, there was a strong positive relationship 

between prestimulus baseline firing and the estimated reversal point. f, Two independent 

measurements of the reversal point were strongly correlated. g, The proportion of simulated 

cells that have significantly positive (blue) or negative (red) responses showed no 
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magnitudes with both positive and negative responses. h, In the simulation, there was a 

significant negative relationship between the estimated asymmetry of each cell and its 

estimated reversal point (opposite that observed in neural data). i, Diagram illustrating a 

Gaussian weighted topological mapping between RPEs and value predictors. j, Varying the 

standard deviation of this Gaussian modulates the degree of coupling. k, In a task with equal 

chance of a reward 1.0 or 0.0, distributional TD with different levels of coupling shows 

robustness to the degree of coupling. l, When there is no coupling, a distributional code is 

not learned, but asymmetric scaling can cause spurious detection of diverse reversal points. 

m, Even though every cell has the same reward prediction they appear to have different 

reversal points. n, With this model, some cells may have significantly positive responses, 

and others significantly negative responses, in response to the same reward. o, But this 

model is unable to explain a positive correlation between asymmetric scaling and reversal 

points. p, Simulation of “synaptic” distributional RL, where learning rates but not firing 

rates are asymmetrically scaled. This model predicts diversity in reversal points between 

dopamine neurons. q, But it predicts no correlation between asymmetric scaling of firing 

rates, and reversal point.

Extended Data Figure 5: Asymmetry and reversal.
a, Left, All data points (trials) from an example cell. The solid lines are linear fits to the 

positive and negative domains, and the shaded areas show 95% confidence intervals 

calculated with Bayesian regression. Right, the same cell plotted in the format of main text 

Figure 4b. b, Cross-validated model comparison on the dopamine data favors allowing each 

cell to have its own asymmetric scaling (p = 1.4e – 11 by paired t-test). The standard error of 

the mean appears large relative to the p-value because the p-value is computed using a paired 

test. c, Although the difference between single-asymmetry and diverse-asymmetry models 

was small in firing rate space, such small differences correspond to large differences in 

decoded distribution space (more details in Supplement). Each point is a TD simulation; 

color indicates the degree of diversity in asymmetric scaling within that simulation. d, We 

were interested in whether an apparent correlation between reversal point and asymmetry 
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could arise as an artifact, due to a mismatch between the shape of the actual dopamine 

response function and the function used to fit it. Here we simulate the variable-magnitude 

task using a TD model without a true correlation between asymmetric scaling and reversal 

point. We then apply the same analysis pipeline as in the main paper, to measure the 

correlation (color axis) between asymmetric scaling and reversal point. We repeat this 

procedure 20 times with different dopamine response functions in the simulation, and 

different functions used to fit the positive and negative domains of the simulated data. The 

functions are sorted in increasing order of concavity. An artifact can emerge if the response 

function used to fit the data is less concave than the response function used to generate the 

data. For example, when generating data with a Hill function but fitting with a linear 

function, a positive correlation can be spuriously measured. e, When simulating data from 

the distributional TD model, where a true correlation exists between asymmetric scaling and 

reversal point, it is always possible to detect this positive correlation, even if the fitting 

response function is more concave than the generating response function. The black 

rectangle highlights the function used to fit real neural data in panel c. f, In this panel we 

analyze the real dopamine cell data identically to main text Figure 4d, but using Hill 

functions instead of linear functions to fit the positive and negative domains. Because the 

correlation between asymmetric scaling and reversal point still appears under these 

adversarial conditions, we can be confident it is not driven by this artifact. g, Same as main 

text Figure 4d, but using linear response function and linear utility function (instead of 

empirical utility).

Extended Data Figure 6: Cue responses versus outcome responses, and more evidence for 
diversity.
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a, In variable-probability task: firing at cue, versus firing at reward (left) or omission (right). 

Color brightness denotes asymmetry. b, Same as (a), but showing RPEs from distributional 

TD simulation. c, Data from Eshel et al.34 also included unpredicted rewards and 

unpredicted airpuffs. Top two panels show responses for all the cells recorded in one animal 

and bottom two panels show responses for all the cells of another animal. In the left two 

panels, the x-axis is the baseline-subtracted response to free reward, and the y-axis is the 

baseline-subtracted response to airpuff. Dots with black outlines are per-cell means, and un-

outlined dots are means of disjoint subsets of trials indicating consistency of asymmetry. The 

right two panels plot the same data in a different way, with cells sorted along the x-axis by 

response to airpuff. Response to reward is shown in grayscale dots. Asterisks indicate 

significant difference in firing rates from one or both neighboring cells. d, Simulations for 

distributional but not classical TD produce diversity in relative response.

Extended Data Figure 7: More details of data in variable-probability task.
a, Details of analysis method. Of the four possible outcomes of the two Mann-Whitney tests 

(described in Methods), two outcomes correspond to interpolation (middle) and one each to 

the pessimistic (left) and optimistic (right) groups. b, Simulation results for the classical TD 

and distributional TD models. Y-axis shows the average firing rate change, normalized to 

mean zero and unit variance, in response to each of the three cues. Each curve is one cell. 

The cells are split into panels according to a statistical test for type of probability coding 

(see Methods for details). Color indicates the degree of optimism or pessimism. 

Distributional TD predicts simultaneous optimistic and pessimistic coding of probability 

whereas classical TD predicts all cells have the same coding. c, Same as b, but using data 
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from real dopamine neurons. The pattern of results closely matches the predictions from the 

distributional TD model. d, Same as b, using data from putative VTA GABAergic 

interneurons.

Extended Data Figure 8: Further distribution decoding analysis.
This figure pertains to the variable-magnitude experiment. a-c, In the decoding shown in the 

main text, we constrained the support of the distribution to the range of the rewards in the 

task. Here, we applied the decoding analysis without constraining the output values. We find 

similar results, although with increased variance. d, We compare the quality of the decoded 

distribution against several controls. The real decoding is shown as black dots. In colored 

lines are reference distributions (uniform and Gaussian with the same mean and variance as 
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the ground truth; and the ground truth mirrored). Black traces shift or scale the ground truth 

distribution by varying amounts. e, Nonlinear functions used to shift asymmetries, to 

measure degradation of decoded distribution. The normal cumulative distribution function ϕ 
is used to transform asymmetry τ. This is shifted by some value s and transformed back 

through the normal quantile function ϕ−1. Positive values s increase the value of τ and 

negative values decrease the value of τ. f, Decoded distributions under different shifts, s. g, 
Plot of shifted asymmetries for values of s used. h, Quantification of match between 

decoded and ground truth distribution, for each s. i-j, Same as main text Figure 5d–e, but for 

putative GABAergic cells rather than dopamine cells.

Extended Data Figure 9: Simultaneous diversity.
Variable-probability task. Mean spiking (a) and licking (b) activity in response to each of the 

three cues (indicating 10%, 50% or 90% probability of reward) at time 0, and in response to 
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the outcome (reward or no reward) at time 2000 ms. c, Trial-to-trial variations in lick rates 

were strongly correlated with trial-to-trial variations in dopamine firing rates. Each cell’s 

mean is subtracted from each axis, and the x-axis is binned for ease of visualization. d, 
Dopaminergic coding of the 50% cue relative to the 10% and 90% cues (as shown in panel 

b) was not correlated with the same measure computed on lick rates. Therefore, between-

session differences in cue preference, measured by anticipatory licking, cannot explain 

between-cell differences in optimism. e, Four simultaneously recorded dopamine neurons. 

These are the same four cells whose timecourses are shown in Figure 3c in the main text. f, 
Variable-magnitude task. Across cells, there was no relationship between asymmetric 

scaling of positive versus negative prediction errors, and baseline firing rates (R=0.18, 

p=0.29). Each point is a cell. These data are from dopamine neurons at reward delivery time. 

g, t-statistics of response to 5 μL reward compared to baseline firing rate, for all 16 cells 

from animal ‘D’. Some cells respond significantly above baseline and others significantly 

below. Cells are sorted by t-statistic. h, Spike rasters showing all trials where the 5 μL 

reward was delivered. The two panels are two example cells from the same animal with 

rasters shown in Figure 2 of the main text.

Extended Data Figure 10: Relationship of results to Eshel et al (2016).
Here we reproduce results for the variable-magnitude task from Eshel et al.34 with two 

different time windows. a, Change in firing rate in response to cued reward delivery 

averaged over all cells. b, Comparing hill-function fit and response averaged over all cells 

for expected (cued) and unexpected reward delivery. c, Correlation between response 

predicted by scaled common response function and actual response to expected reward 

delivery. d, Zooming in on (c) shows correlation driven primarily by larger reward 

magnitudes. e-h, Repeating the above analysis for a window of 200 – 600ms.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Distributional value coding arises from a diversity of relative scaling of positive and 
negative prediction errors.
a, In the standard temporal difference (TD) theory of the dopamine system, all value 

predictors learn the same value V. Each dopamine cell is assumed to have the same relative 

scaling for positive and negative RPEs (left). This causes each value prediction (or value 

baseline) to be the mean of the outcome distribution (middle). Dotted lines indicate zero 

RPE or pre-stimulus firing. b, In our proposed model, distributional TD, different channels 

have different relative scaling for positive (α+) and negative (α−) RPEs. Red shading 

indicates α+ > α−, and blue shading indicates α−> α+. An imbalance between α+ and α− 

causes each channel to learn a different value prediction. This set of value predictions 

collectively represents the distribution over possible rewards. c, We analyze data from two 

tasks. In the variable-magnitude task, there is a single cue, followed by a reward of 

unpredictable magnitude. d, In the variable-probability task, there are three cues, which each 

signal a different probability of reward, and the reward magnitude is fixed.
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Figure 2: Different dopamine neurons consistently reverse from positive to negative responses at 
different reward magnitudes.
Variable-magnitude task from Eshel et al.34. On each trial, the animal experiences one of 

seven possible reward magnitudes (0.1, 0.3, 1.2, 2.5, 5, 10, or 20 μL), selected randomly. a, 
RPEs produced by classical and distributional TD simulations. Each horizontal bar is one 

simulated neuron. Each dot color corresponds to a particular reward magnitude. The x-axis 

is the cell’s response (change in firing rate) when reward is delivered. Cells are sorted by 

reversal point. In classic TD, all cells carried approximately the same RPE signal. Note that 

the slight differences between cells arose from Gaussian noise added to the simulation; the 

differences between cells in the classic TD simulation were not statistically reliable. 

Conversely, in distributional TD, cells had reliably different degrees of optimism. Some 

responded positively to almost all rewards, and others responded positively to only the very 

largest reward. b, Responses recorded from light-identified dopamine neurons in behaving 

mice. Neurons differed markedly in their reversal points. c, To assess whether this diversity 

was reliable, we randomly partitioned the data into two halves and estimated reversal points 

independently in each half. We found that the reversal point estimated in one half was highly 

correlated with that estimated in the other half. d, Spike rasters for two example dopamine 

neurons from the same animal, showing responses to all trials when the 5 μL reward was 

delivered. We analyzed data from 200 to 600 ms after reward onset (highlighted), to exclude 

the initial transient which was positive for all magnitudes. During this epoch, the cell on the 

bottom fires above its baseline rate, while the cell on the top pauses.
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Figure 3: Optimistic and pessimistic probability coding occur concurrently in dopamine and 
VTA GABA neurons.
Data from variable-probability task. a, Histogram (across simulated cells) of t-statistics 

which compare each cell’s 50% cue response against the mean 50% cue response across 

cells. (Qualitatively identical results hold when comparing 50% cue response against 

midpoint of 10% and 90% responses.) The superimposed black curve shows the t-

distribution with the corresponding degrees of freedom. Distributional TD predicts 

simultaneous optimistic and pessimistic coding of probability whereas classical TD predicts 

all cells have the same coding. Color indicates the degree of optimism or pessimism. b, 
Same as (a), but using data from real dopamine and putative GABA neurons. The pattern of 

results closely matches the predictions from the distributional TD model. c, Responses of 

four example dopamine neurons recorded simultaneously in a single animal. Each trace is 

the average response to one of the three cues. Time zero is the onset of the odor cue. Some 

cells code the 50% cue similarly to the 90% cue, while others simultaneously code it 

similarly to the 10% cue. Gray areas show epoch averaged for summary analyses. d, 
Responses of two example VTA GABAergic cells from the same animal.
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Figure 4: Relative scaling of positive and negative dopamine responses predicts reversal point.
a, Three simulated dopamine neurons – each with a different asymmetry – in the variable-

magnitude task. For each unit, we empirically estimated the reversal point where responses 

switch from negative to positive. The x-axis shows reward minus the per-cell reversal point, 

effectively aligning each cell’s responses to its respective reversal point. Baseline-subtracted 

response to reward is plotted on y-axis. Responses below the reversal point are shown in 

green and those above are shown in orange. Solid curves show linear functions fit separately 

to the above-reversal and below-reversal domains of each cell. b, Same as (a), but showing 

three real example dopamine cells. c, The diversity in relative scaling of positive and 

negative responses in dopamine cells is statistically reliable. The 95% confidence intervals 

of α+/(α+ + α−) are displayed, where α+ and α− are the slopes estimated above. d, Relative 

scaling of positive and negative responses predicts that cell’s reversal point (each point is 

one dopamine cell). Dashed line is the mean over cells. Light gray traces show reversal 

points measured in distributional TD simulations of the same task, and show variability over 

simulation runs. e, All 40 dopamine cells plotted in the same fashion as in b, except 

normalized by the slope estimated in the negative domain. Thus, the observed variability in 

slope in the positive domain corresponds to diversity in relative scaling of positive and 

negative responses. Cells are colored by reversal point, to illustrate the relationship between 

reversal point and asymmetric scaling. In all panels, reward magnitudes are in estimated 

utility space (see Methods).
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Figure 5: Decoding reward distributions from neural responses.
a, Distributional TD simulation trained on the variable-magnitude task, whose actual 

(smoothed) distribution of rewards is shown in gray. After training the model, we interpret 

the learned values as a set of expectiles. We then decode the set of expectiles into a 

probability density (blue traces). Multiple solutions are shown in light blue, and the average 

across solutions is shown in dark blue. (See Methods for more details.) b, Same as(a), but 

with a classical TD simulation. c, Same as (a), but using data from recorded dopamine cells. 

The expectiles are defined by the reversal points and the relative scaling from the slopes of 

positive and negative RPEs, as shown in Figure 5. Unlike the classic TD simulation, the real 

dopamine cells collectively encode the shape of the reward distribution that animals have 

been trained to expect. d Same decoding analysis, using data from each of the cue conditions 

in the variable-probability task, based on cue responses of dopamine neurons (decoding for 

GABA neurons shown in Extended Data Figure 8 i,j). e, The neural data for both dopamine 

and GABA neurons were best fit by Bernoulli distributions closely approximating the 

ground-truth reward probabilities in all three cue conditions.
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