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We develop an analytically tractable method to estimate the fraction of unreported
infections in epidemics with a known epicenter and estimate the number of unreported
COVID-19 infections in the U.S. during the first half of March 2020. Our method
utilizes the covariation in initial reported infections across U.S. regions and the number
of travelers to these regions from the epicenter, along with the results of an early
randomized testing study in Iceland. Using our estimates of the number of unreported
infections, which are substantially larger than the number of reported infections, we
also provide estimates for the infection fatality rate using data on reported COVID-19
fatalities from U.S. counties.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The global pandemic COVID-19 is here in the United States. The number of confirmed cases is rising rapidly, reaching
98,809 as of April 7 with 12,895 reported deaths. The coronavirus outbreak was declared a national emergency on
arch 1.1 More than half of U.S. states have imposed some levels of lockdown measures.2 In addition to the public health
risis, the country is certainly looking at a deep and possibly long-lasting economic recession, according to Ben Bernanke
nd Janet Yellen in a recent Financial Times article.3
Given the level of severity of current conditions, a basic yet important question remains to be answered: How many

eople are actually infected with COVID-19 in the U.S. and what is the true fatality rate? Because of the shortage in testing
its, hospitals and disease control centers were only able to test the subsample of people with severe symptoms or travel
istory. The number of reported infections, especially early on in the course of the pandemic, is likely much lower than
he actual number of infections in the U.S. Indeed, these unreported infections may go unrecognized because they often
xperience mild or no symptoms (Nishiura et al., 2020a; Andrei, 2020). If not hospitalized or quarantined, they can infect a
arge proportion of the population. Thus, estimating the number of unreported infections can inform policy-makers about

∗ Correspondence to: Kenneth C. Griffin Department of Economics, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, United States of
America.
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1 https://www.whitehouse.gov/presidential-actions/proclamation-declaring-national-emergency-concerning-novel-coronavirus-disease-covid-19-

outbreak/.
2 https://www.wsj.com/articles/a-state-by-state-guide-to-coronavirus-lockdowns-11584749351.
3 https://www.ft.com/content/01f267a2-686c-11ea-a3c9-1fe6fedcca75.
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he proper scale of virus control policies (Alvarez et al., 2020; Eichenbaum et al., 2020). These estimates can also help to
ssess the effectiveness of public health policies such as social distancing in slowing the spread of the epidemic.
Estimating the number of unreported infections may also give a more accurate measure of the infection fatality rate

IFR). The widely reported case fatality rate (CFR), reports the rate of fatalities from reported cases of infection. The infection
atality rate is the proportion of those actually infected who die, not of those reported or confirmed infected. The reported
ase fatality rate is likely an overestimate of the true infection fatality rate, due to selection bias in testing.
Ideally, a randomized testing experiment will give an unbiased estimate of the IFR. However, given the limited supply

f testing kits and surging demand by people with symptoms, randomized testing may be infeasible, especially in the
arly periods of the outbreak. Therefore, it may be of great value to estimate the fraction of unreported infections with
bservational data at hand. With that knowledge, policy-makers will be better equipped to assess the proper level and
uration of virus control policies.
In this paper we develop an analytically tractable method that utilizes data on travel patterns to identify and estimate

he fraction of unreported infections for situations where the epidemic has a known epicenter. Our methodological
trategy, described in Section 3, exploits the covariation between the number of initial reported infections in locations
way from the epicenter, and the number of travelers from the epicenter to these locations. While we do not see our
ethod as a substitute for the ‘‘gold-standard’’ of well defined randomized/universal testing studies, we believe our
ethod can be useful towards providing estimates of unreported infections when results of randomized testing studies
re not available for a given location of interest.
To begin illustrating the idea, consider a time period when the epicenter is the only location with infections, and that

he only way another city/country can be infected is through travelers. Also assume, as in Section 3.1, that any infected
ravelers can only come from the unreported infected population in the epicenter — an assumption we find reasonable
as reported infected individuals would not be allowed to travel), but are able to relax in Section 3.2. Suppose now the
ypothetical situation where we know the reporting rate of infections in the epicenter (the fraction of reported infections
o the true number of infections), and that we know the number of travelers from the epicenter to another city/country.
ssuming travelers resemble the population of the epicenter, we can calculate the expected number of infected (but
nreported) travelers entering other cities/countries. Assuming further that we know the rate of transmission of the
isease, we can then calculate the expected number of infections these travelers will have generated in these locations.
omparing the expected number of infections that arise from travelers to reported cases of the infection, we can estimate
he reporting rate.

What can we do in the realistic case if the reporting rate in the epicenter is unknown? In Section 3.1, we propose
he following: suppose we make the assumption that the reporting rate at the epicenter and the previously uninfected
ity/country are the same (or directly proportional). We can then start with a guess on the unknown rate of reporting
t the epicenter, which allows us to calculate the implied reporting rate at the previously uninfected city/country, and
heck whether these are equal (or satisfy the proportion). If not, we update our guess, and try again. In other words, we
an solve for the reporting rate(s) balancing the expected number of infections from travel and the number of infected
hat are being reported in both locations.

While the above strategy, outlined in Section 3.1, is in principle implementable using only data on travel patterns and
eported cases, it is crucially dependent on the assumption that reporting rates are the same across the epicenter and
estination locations (or at least proportional). Moreover, its results are very sensitive to knowing the transmission rate of
he infection from travelers, as this allows us to project the number of infections in the destination city/country of interest.
owever, suppose now that we have access to the reporting rate of infections from another destination city/country,
.g. through universal or randomized testing, as has been done in Iceland.4 This allows us to estimate how infectious the
ravelers from the epicenter are. Assuming that this transmission rate from travelers is the same as the transmission rate
t the destination city/country of interest, we can then calculate the expected number of infections we would expect from
ravel. Intuitively, the ratio between number of travelers to two destination cities/countries from the epicenter should tell
s the ratio of total infections between the two cities/countries. Randomized or universal testing at one of the destinations,
celand in our case, will give us its number of total infections, so total infections at the other destination can be computed.
his strategy is laid out in detail in Section 3.2.
We would like to be very upfront that the estimation strategies outlined above are dependent on strong assumptions

nd reliable data on travel patterns, and that any results are very sensitive to these assumptions. However, our hope is that
our approach is clear in terms of its assumptions and its corresponding limitations; we hope that future research can
improve upon these limitations. We have attempted to account for some of the limitations. For example, in Section 3.3,
we discuss how to correct for the fact that infections are often reported with a delay, as there is a delay to the outset
of symptoms that are often a prerequisite for testing for the infection, as well as a delay in laboratory testing. Another
important limitation is the assumption that the city/country with randomized test results has the same transmission rate
as the city/country of interest. Section 5.4 discusses what may be done to address violations of this assumption.

Our data consists of detailed daily reported infections/deaths for all infected U.S. counties and Iceland collected by Johns
Hopkins University of Medicine Coronavirus Resource Center from January 22 to April 13, 2020; international travel data

4 Of course, another strategy is to assume that the reporting rate discovered through randomized testing in Iceland is the same in the destination
city/country of interest.
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o U.S. in January and February 2020 from I-94 travels data by National Travel and Tourism Office; international travel
ata to Iceland by Icelandic Tourist Board in January and February 2020.
Our model generates a range of estimates that depend on the traveler data that is incorporated, the date range

onsidered, and assumptions regarding the lags associated with reported case data. We report this range of estimates
n Table 3. Across these estimates, we find that 4% to 14% of cases were reported across the U.S. up to March 16, when
ocial distancing measures began to be applied in major metropolitan areas and travel declined significantly (Thompson
t al., 2020). This estimate assumes that cases are reported with a lag of 8 days as in Table 3(a); that is, we do not treat
eported cases of today as the appropriate measure of true infections today.5 ,6 This suggests that for each case reported
n late February/early March, between 6 to 24 cases remained unreported (after accounting for an 8 day lag from infection
o reporting of a case).

How do these estimates compare to other estimates in the literature? A very recent study by Bendavid et al. (2020)
ested a representative sample of Santa Clara county residents in early April and reports that 48,000–81,000 people are
nfected as of April 1, whereas only 956 are reported that day. This leads to their reported ratio of 50–85 of total infections
o reported infections. Importantly, this calculation does not account for the lag in reporting infections. Our data allows
s to compute a similar statistic for San Francisco County, which we report in Table 2; we obtain this by dividing our
stimate of the true infected by the reported infected on that day. For March 13, this yields a ratio of 85, which is at the
pper bound of the 50–85 range reported by Bendavid et al. (2020).
Our estimates of the number of total infections also allow us to estimate the infection fatality rates implied by observed

ata on fatalities. These calculations are reported in detail in Section 5.5, and reported in Table 2. We estimate a median
umulative infection fatality rate (cIFR) of 0.28−0.31% across U.S. counties. We note that a representative sample study in
anta Clara County by Bendavid et al. (2020) found an infection fatality rate of 0.12−0.2%. Our estimates show, however,
otentially substantial dispersion of IFR across U.S. counties. Once again, we would like to stress that our estimates are
ighly dependent on model assumptions, and the data that is used to inform it. We discuss how our results depend on
hese assumptions in some detail in Section 5 and in Appendix.

In the economic literature, Berger et al. (2020) and Stock (2020) study the importance of unreported cases in the
ontext of the coronavirus pandemic. Our paper contributes to the growing literature in epidemiology on estimating
he true number of infections using observational data and structural model assumptions. Notably, Li et al. (2020b), Wu
t al. (2020), Flaxman et al. (2020), Liu et al. (2020b,?), Nishiura et al. (2020) utilize simulated epidemiological models
o estimate the fraction of unreported infections in China and European countries. As Zhao et al. (2020) note, it is often
ifficult to identify the fraction of unreported alongside the growth of the infection purely by measures of fit. Our paper
omplements these extant papers: we provide what we believe is a transparent identification argument and a very
ight computational strategy that allows researchers to assess the sensitivity of model estimates to modeling and data
ssumptions. That said, our model may miss important components of disease dynamics that these more sophisticated
pidemiological models incorporate. These richer models may also allow one to estimate a richer set of model parameters
han we have been able to.7 Another related recent paper is Imai et al. (2020), who estimate potential total cases in Wuhan
hina from the confirmed cases in other countries due to international travel, assuming that all cases outside of China
re reported correctly.8 Korolev (2020) discusses non-identification in SEIRD models and proposes estimation strategy
onditional on knowing infectious period and incubation period.
Section 2 introduces our model of infection, which describes the early stages of the dynamics of the epidemic. Section 3

resents our two estimation/identification strategies. Section 4 describes the data we are using for estimation. Section 5
ays out the estimation results and our robustness checks.

. Model

Our model is based on the classic SIR model in epidemiology. We consider the evolution of the virus in both the
picenter c and into target city i over a period of time T0 ≤ t ≤ T1. We are considering a relative short period of time
n the early stage of the epidemics. Thus, the ‘‘recovered’’ population at the epicenter, which is a small fraction of the
opulation, is assumed not to play a significant role during this period.

5 A shorter assumed reporting lag of e.g. 5 days generates a range of estimated reporting rates between 1.5% to 10%.
6 The estimates use travel data from China, Italy, Spain, Germany, and the UK. We have excluded King county, Washington in these results

because this county, containing Seattle, shows much earlier community infections than other regions in U.S.
7 For example, that Li et al. (2020b) estimate different transmission rates for reported vs. unreported infections, which we are unable to identify

with our strategy. Li et al. (2020b) assume that unreported infected individuals transmit the disease at a slower rate than reported infected individuals.
However, since most reported infections are either hospitalized or self-quarantined, it is not clear whether this assumption is an a priori reasonable
ne.
8 Bogoch et al. (2020) and Lai et al. (2020) calculate how vulnerable countries are to the virus by the magnitude of travelers from Wuhan, and

orrelate these vulnerability/risk measures with reported cases in these countries.
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.1. What happens at the epicenter c

We denote infected, reported infected, and unreported infected in time t and epicenter c as Ic,t , Rc,t ,Uc,t respectively.
In all locations, total infected is given by the sum of reported infected and unreported infected: I.,t = R.,t + U.,t .

The epicenter starts with some initial infections Ic,0. We are considering a short period of time in between T0 and T1, so
the number of susceptibles at the epicenter remain relatively constant throughout this period. There are also no infected
cases traveling into epicenter. Since we are interested in the cumulative cases, assuming recovery plays no role is not a
restrictive assumption. So at time t , the total infections at epicenter with transmission rate β is given by

Ic,t = Ic,0 exp(β(t − T0)) (1)

It is worth noting that β includes spread minus recovery rate, since we do not model a changing number of susceptibles.
β should be viewed as the net spread of infections over time.

Each time t , there is a cohort of travelers Mi,t going from epicenter to target city i and potentially bringing the virus
to target city.9

2.2. What happens in target city i

We denote infected, observed reported infected, and unreported infected in time t and city i as Ii,t , Ri,t ,Ui,t respectively.
At period T0, target city i has zero infections, so Ii,T0 = Ri,T0 = Ui,T0 = 0.

Each time t ∈ [T0, T1], target city receives a cohort t of incoming travelers Mi,t from the epicenter. Among these
travelers, I inci,t are infected. Each cohort of incoming infected I inci,t will transmit the virus in target city with rate β for the
period of [t, T1]. We assume that the transmission rate at target city is the same as in epicenter, these locally infected
people are also infectious. Thus, at period T1, this cohort will infect I inci,t exp(β(T1 − t)) people in the city i. The total new
infections at target city at T1 caused by all cohorts of incoming infected travelers will be

Ii,T1 =

∫ T1

T0

I inci,t exp(β(T1 − t))dt (2)

We define α to be the expected percentage of cases that are reported. α provides a mapping between the expected
reported number of cases – which may be small – and the true number of infected spreading in the destination city.
Formally, α is defined as:

α = E
(
Ri,T1

Ii,T1

⏐⏐⏐⏐Ii,T1) (3)

One can interpret the above equation as the projection of Ri,T1 onto Ii,T1 .
10 Expanding Eq. (2) using the definition of α:

E
(
Ri,T1 |Ii,T1

)
= αIi,T1 = α

∫ T1

T0

I inci,t exp(β(T1 − t))dt (4)

3. Estimating the reporting rate α

The estimation/identification question is: can we recover α, the reporting rate, when we only observe reported
nfections Ri,T1 but not I inci,t , the total incoming infected in Eq. (4)? In the following Sections 3.1–3.2, we provide a complete
reatment of how one can recover α under different scenarios of data availability. We consider two sets of data that could
otentially be available: (i) data on travel from epicenter to U.S., and (ii) data from a randomized testing implemented
utside of U.S. In Section 3.3, we extend our model and estimation strategy to incorporate reporting lags.

.1. Travel data available but randomized testing data unavailable

When only travel data is available, we must take a stance on how many infected people are leaving the epicenter. We
ssume that the reported infected are unable to travel, so the spread of the virus is caused by those who are infected
ut unreported. This allows us to determine how infectious a traveler from the epicenter is (conditional on knowing the
arameters of the model.) This is a reasonable assumption especially in the case of COVID-19 because the vast majority
f reported infected individuals would be quarantined and not allowed to travel.
Our main assumption in this scenario is:

9 We assume that the magnitude of unreported infected among travelers is inconsequential to the dynamics of the virus in the epicenter because
the virus has progressed for a substantial period of time in the epicenter.
10 In reality α may be varying over time, due to e.g. changes in the extensiveness of testing. If this is the case, as we vary the [T0, T1] window,
e will obtain window-specific estimates of α, which can be thought of as a weighted average of α during this period.
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I inci,t

Mi,t
=

Uc,t

Nc − Rc,t
for any time t ∈ [T0, T1], city i and epicenter c (5)

Nc is the population of epicenter. In other words, we are assuming that the fraction of unreported infections among
incoming travelers from the epicenter is the same as the fraction of unreported infections among people capable of leaving
the epicenter. (We will relax this assumption in Section 3.2.) Let αc be the reporting rate at the epicenter, defined as
c =

Rc,t
Ic,t

.11 This implies that Uc,t = (1 − αc)Ic,t =
1−αc
αc

Rc,t . Therefore, Assumption 3.1 becomes:

I inci,t

Mi,t
=

(1 − αc)Ic,t
Nc − Rc,t

∀t ∈ [T0, T1], city i, epicenter c (6)

Plugging Eq. (1) in, we get

I inci,t =
(1 − αc)Ic,0 exp(β(t − T0))

Nc − Rc,t
Mi,t ∀t ∈ [T0, T1], city i, epicenter c (7)

Plugging back to Eq. (4), we get

E
(
Ri,T1 |Ii,T1

)
= αIi,T1 (8)

= α

∫ T1

T0

(1 − αc)Ic,0 exp(β(t − T0))
Nc − Rc,t

Mi,t exp(β(T1 − t))dt (9)

= α(1 − αc)Ic,0 exp(β(T1 − T0))
∫ T1

T0

Mi,t

Nc − Rc,t
dt (10)

= α(1 − αc)
Rc,0

αc
exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − Rc,t
dt (11)

= α
1 − αc

αc
Rc,0 exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − Rc,t
dt (12)

We assume the reporting rate at the epicenter to be the same as in the target city, i.e. αc = α (this will be relaxed in
ection 3.2). Let ϵi,T1 be the error term in prediction, i.e. ϵi,T1 = Ri,T1 − E

(
Ri,T1 |Ii,T1

)
. Then we have

Ri,T1 = (1 − α)Rc,0 exp(β(T1 − T0))
∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (13)

Regressing Ri,T1 on Rc,0
∫ T1
T0

Mi,t
Nc−Rc,t

dt will give us a consistent estimate of (1 − α) exp(β(T1 − T0)) since E(ϵi,T1 |Ii,T1 ) = 0
by definition of projection.12 ,13 Note that even when αc is a known linear function of α, we can still obtain consistent
estimates of α from Eq. (12) conditional on β . We can estimate β from the growth of reported infections in the epicenter
because there is no influx of infected people from other regions. Given that β is now determined, we can solve for α.
However, there is substantial variation in estimation of β within the literature, and our estimate of α varies with point
estimates of β (Liu et al., 2020a; Read et al., 2020; Shen et al., 2020).

3.2. When travel data and a random testing benchmark are available

In this scenario, we will be leveraging the same fact that the number of incoming unreported infections is informed
by the travelers from the epicenter. Now we can also allow for selection in traveling. More specifically, if we think that
e.g. urban areas are likely to have a higher infection rate than rural areas and travel abroad more,14 then Assumption 3.1
might not hold. Therefore, we introduce a bias correction term γ in the relation between the fraction of infected among
travelers and the fraction of unreported infected individuals in the general population. This bias correction term γ can also
account for the fact that a fraction of the unreported infected people might be too sick to travel. Our relaxed assumption
in this scenario is:

11 Because αc is unobserved and not a parameter of interest to be estimated, we define it in terms of the true Rc,t and Ic,t for analytical simplicity.
his modeling choice does not affect the analysis since αc does not affect our estimates of α once randomized testing is introduced.
12 Assuming E(ϵi,T1 |Ii,T1 ) = 0 is equivalent to assuming E(ϵi,T1 Ii,T1 ) = 0 and E(ϵi,T1 ) = 0. We assume E(ϵi,T1 ) = 0 because there is no constant term
n Eq. (4).
13 There is another interpretation of ϵ — measurement error. We observe in data R̂i,t = αIi,t + ϵi,t where ϵi,t is idiosyncratic measurement error
uch that E(ϵi,t |Ii,t ) = 0. Eq. (4) still holds in this specification. Both interpretations lead to the same estimator.
14 This is likely to be true in epicenters such as China.
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I inci,t

Mi,t
= γ

Uc,t

Nc − Rc,t
for any time t ∈ [T0, T1], city i and epicenter c , γ ̸= 0 (14)

We can further allow for the fact that the reporting rate in epicenter αc can be different from that of region i, so
c,t = (1 − αc)Ic,t =

1−αc
αc

Rc,t . We can now rewrite Assumption 3.2 as:

I inci,t

Mi,t
= γ

(1 − αc)Ic,t
Nc − Rc,t

∀t ∈ [T0, T1], γ ̸= 0, city i, epicenter c (15)

Plugging into Eqs. (1) and (4), we get

Ri,T1 = α
1 − αc

αc
γ exp(β(T1 − T0))Rc,0

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (16)

The additional parameters for the bias correction term γ and different reporting rate for the epicenter complicate
the estimation of α using travel data alone. However, having data from a country that has implemented randomized
or complete testing greatly helps overcome this challenge. In our case, we are able to identify α using additional
information given by the randomized testing benchmark provided by Iceland. Since the Iceland company deCODE genetics
implemented random testing of COVID-19 for a representative sample of the island population,15 we are able to observe
the infection rate of a representative sample of Iceland’s population at time T1. Assuming that this is the true infection
rate, and multiplying by the population of region j in Iceland will give us the actual number of infections in region j at
time T1, which is Ij,T1 . Thus, for any region j in Iceland we observe Ij,T1 −Ij,T0 , which in turn, equals the infections generated
by travelers from the epicenter:

Ij,T1 − Ij,T0 =
1 − αc

αc
γ exp(β(T1 − T0))Rc,0

∫ T1

T0

Mj,t

Nc − Rc,t
dt (17)

If there were repeated observations in countries with randomized testing that allows estimation of the true infection
rate, we could allow for an idiosyncratic error term in Eq. (17). However, when there is only one observation with
randomized testing, we must treat it as observed without error. Estimating Eq. (17) returns 1−αC

αc
γ exp(β(T1 − T0))Rc,0.

stimating Eq. (16) gives a consistent estimate of α 1−αc
αc

γ exp(β(T1 − T0))Rc,0. Taking the ratio, we have identified α.
One intuition for this strategy is the following: the ratio between travel to U.S. and travel to Iceland from the epicenter

hould tell us the ratio of total infections between U.S. and Iceland. Iceland’s randomized testing gives us its number of
otal infections, so U.S. total infections can be computed. In other words, we observe the outcome in U.S. with under-
eporting, and the unobserved counterfactual outcome with full reporting is given by the benchmark Iceland. An additional
dvantage of this estimation/identification strategy, as opposed to the previous strategy in Section 3.1, is that now we
o not need an estimate of β in order to recover α. We also allow for the fact that Rc,0 could be observed with error.
dentifying α does not require observing Rc,0 perfectly because Rc,0 appears identically in both equations.

We should be clear that for terms with β to cancel out, the argument does assume that β is the same across Iceland
nd the U.S. We believe this might be a reasonable assumption for the early periods of the infection when social distancing
r other widespread measures had not yet been implemented (in a potentially differential fashion). In the case of
eterogeneous transmission rate, we show in Appendix A.2 how to estimate them if we have high quality travel data.
e also need the bias term γ to be the same for U.S. and Iceland; this means that proportion of (unreported) infected

ravelers from China to the U.S. and Iceland are the same. More detailed micro-data on travelers may be used to assess
he validity of this assumption.

This estimation strategy also works when a complete testing benchmark exists. If the whole population of region j is
ested, then we observe Ij,T1 − Ij,T0 trivially. Eq. (17) still gives consistent estimate of 1−αc

αc
γ exp(β(T1 − T0))Rc,0 and the

est of the argument follows.
Note that if in the model reported infections and unreported infections have different transmission rates, then our

trategy would not be able to capture the differential rates. We would need other sources of information to help us pin
own these differential rates.

.3. Incorporating reporting lags

In this section, we show how our model can incorporate a fixed reporting lag in reported infections and derive
dentification equations. Reporting lags are important, because if people are tested for the virus only after symptoms
how up, there will be a lag in reported infections. Another major reason for reporting lag is the lag in testing results. The
urnaround time for testing results in U.S. major laboratory companies could be 2 to 3 days (Kaplan and Thomas, 2020).

15 We will describe the randomized testing in detail in Section 4.
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We denote true infected, true reported infected, and true unreported infected in time t and target city i as Ii,t , Ri,t ,Ui,t
respectively. Those for epicenter c as Ic,t , Rc,t ,Uc,t . Let k be the lagged report period. At time t city i denote the lagged
reported infected LRi,t = Ri,t−k. For epicenter c , lagged reported infected is LRc,t = Rc,t−k.

Define reporting rate at city i as α = E
(

Ri,t−k
Ii,t−k

|Ii,t−k

)
= E

(
LRi,t
Ii,t−k

|Ii,t−k

)
and at epicenter c as αc =

Rc,t−k
Ic,t−k

=
LRc,t
Ic,t−k

. This
eans that we are considering the reporting rate of lagged reported cases as a fraction of the lagged total infections, not

he current total infections. We derive an alternative definition of reporting rate as lagged reported cases over current
otal infections in Appendix A.3.

When travel data are available but randomized testing data unavailable, we still maintain Assumption 3.1. For city i
ime T1, we estimate α using the following equation.

LRi,T1 = (1 − α) exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (18)

here ϵi,T1 is the prediction error defined analogously to Eq. (13). We assume that αc = α as before. α is identified
onditional on β and k.
When both travel data and randomized testing data are available, we maintain Assumption 3.2. In U.S. city i time T1,

LRi,T1 = α γ
1 − αc

αc
exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (19)

In Iceland region j time T1, the estimating equation is

Ij,T1−k = γ
1 − αc

αc
exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mj,t

Nc − Rc,t
dt (20)

If we know k, then we can compute Ij,T1−k from the randomized testing data. Estimating Eq. (20) gives γ 1−αc
αc

exp(β(T1−
T0 − k)LRc,k. Regressing Eq. (19) gives a consistent estimate of αγ 1−αc

αc
exp(β(T1 − T0 − k))LRc,k. Taking the ratio, we can

identify α if we know k. Again here we can also allow for the situation where we do not observe LRc,k perfectly. Details
of how we derive the estimating equations are in Appendix.

3.4. Identification of α, β , γ and αc

In this section we recap our identification arguments for both strategies presented above. We summarize which
parameters are identified and estimated, and which equations are used to identify them.

3.4.1. No randomized testing available
For simplicity, we will discuss identification of α and β under the assumption that αc = α. We note that without

randomized testing, our model is identified under Assumption 3.1, so γ is not present during this specification. The
remaining two parameters in Eq. (12) are α and β . Conditional on knowing β , α is identified and can be estimated by
ordinary least squares estimation.

How do we identify β separately from α? In the early onset of the pandemic, data on the growth of the virus in the
epicenter exclude travelers with the virus entering the epicenter. Applying Rc,t = αc Ic,t to Eq. (1), we see that

1
αc

Rc,t =
1
αc

Rc,0 exp(β(t − T0)) (21)

From this, we can identify β by dividing through and taking logarithms.

β =
1

t − T0
log
(
Rc,t

Rc,0

)
(22)

Data of reported infected in the epicenter identifies β separately from α. Conditional on an estimate of β , the only
emaining unknown coefficient of Eq. (12) is (1 − α). Thus α is identified conditional on β , and αc is identified by
assumption that αc = α.

3.4.2. Randomized testing available
When randomized testing is available, the model allows for a more complex relationship between the reporting rates

of the epicenter and the destination. We no longer have to assume that αc = α; moreover, we introduce an additional
arameter γ . Identification is based on Assumption 3.2. While this specification features more parameters, identification
f α requires separately identifying and estimating fewer parameters. The reason for this is the inclusion of additional
nformation from randomized testing. We assume that γ and β are constant across all countries.

Estimation of Eq. (17) yields 1−αc
αc

γ exp(β(T1 −T0))Rc,0, and estimation of Eq. (16) yields α 1−αc
αc

γ exp(β(T1 −T0))Rc,0. By
taking the quotient, 1−αc

αc
γ exp(β(T1 − T0))Rc,0 cancels out, leaving only α. Because of this cancellation, with randomized

testing, we need not identify β, γ or α to identify α.
c
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. Data

.1. COVID-19 data

Daily reported infections, recovery, and death data are collected by Johns Hopkins University of Medicine Coronavirus
esource Center from January 22 to April 13, 2020. We use data for all U.S. counties as well as epicenters.
Randomized testing data in Iceland is obtained from the website maintained by the Directorate of Health and the

epartment of Civil Protection and Emergency Management in Iceland.16 We have daily number of tests conducted by
eCODE genetics and daily number of confirmed cases. We use the first half of testing by deCODE which spans March 15–
9, 2020. During this round of testing deCODE performed 5490 tests and confirmed 48 cases, which implies an infection
ate of .874%.

Testing in Iceland conducted by deCODE genetics featured open invitations for testing among individuals who were
ot confirmed infected at the time. We believe that the confirmed infected population was very small at the onset of
nfections into Iceland. As a result, ignoring them from the sample does not contaminate the testing very much.

There is also a risk of selection into testing: people who were in contact with infected individuals are more likely to
elect into testing than socially isolated individuals. We assume that there is no selection into testing by the more at-risk.
hose who are at risk of contracting the virus were not aware of their high risk due to several reasons. The incubation
ime of the virus was not understood this early into its spread. Another aspect of the virus that was not understood was
he high number of asymptomatic but infectious individuals in the population. Under this assumption, we treat open
nvitations of the unconfirmed as randomized testing.

Moreover, we cannot consider the Iceland data as representative testing because of a sampling issue. The deCODE
esting does not attempt to re-weight its sample in order to be representative of the demographics of the population.
owever, as long as the previous assumption of randomization holds, this does not affect our results.
If the randomization assumption were incorrect, and the deCODE data was biased upwards in the number of infections

resent in Iceland, this would mean that the infectiousness of travelers from the epicenter was actually lower than what
ur model predicts. This would mean that reporting rate is higher, and there are fewer total infected in the United States.
his would bias our estimates of the infection fatality rate upwards as well.
In Gudbjartsson et al. (2020) more data from Iceland is considered. The paper considers two waves of studies: one set

s the open invitation from deCODE testing, and the other is a set of randomized invitations sent out via text-message. This
s a much larger set of testing than our data, but uses a later time-frame than our method. Using the entire first wave of
eCODE data, they find an infection rate of .8% rather than our .87%. They also consider a second wave of randomly invited
ndividuals which gives a .6% infection rate. However this second sample is restrictive in terms of age, only featuring
ndividuals from ages 20–70, which omits the very young and the elderly, two high-risk groups. This second wave is still
ulnerable to the same selection concerns as the deCODE testing data as well.

.2. Travel data

We obtain monthly data of international arrivals to U.S. by port of entry and country of origin from I-94 Arrivals by
ational Travel and Tourism Office. We use the number of visitors from China, Italy, Spain, UK, and Germany in January
nd February 2020 as the measure for incoming travelers to U.S. states. For international arrivals to Iceland, we get the
umber of visitors from China, Italy, Spain, UK, and Germany in January and February 2020 from the Icelandic Tourist
oard. We have not been able to obtain March travel data into either country.
The National Travel and Tourism Office of the United States provides monthly data for entry by port of entry, as well

s a separate data set for country of origin. We construct the number of visitors from China, Italy, Spain, Germany, and
he UK by scaling the port-of-entry data by the percentage of total visitors that are from these countries. This introduces
rror, as we cannot observe directly the number of e.g. Chinese travelers into a particular city or state. It is also important
o note that we do not observe inter-state travel. While this may not be important for the immediate infections caused
y travelers from the epicenter, our projections for the number of infections for T1 that are far removed from T0 will be
ess accurate due to interstate travel.

To attempt to alleviate this error, we note that The National Travel and Tourism Office of the United States also provides
market profile of travelers from each of the epicenters. This data however appears to be flawed. In particular several
ajor ports such as Portland, Oregon have no recorded travelers from any of our epicenters. This data also only contains

ravel for 2019 and the years before, and we have concerns over its stationarity. We report our results using this data in
ppendix A.2, but maintain our use of the 2020 data for our main results.
For Icelandic data, 99% of international travelers arrive through Keflavik airport into Iceland. The data contains a

reakdown of arrival by country of origin, broken down by month of arrival. We use January and February arrival data
rom China, Italy, Spain, UK, and Germany for estimation.

Our travel data for both countries does not control for connecting flights. However the United States data is limited
o the top-30 port of entries, many of which are large urban cities for which there will be less connecting flights. Further

16 https://www.covid.is/data.
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ork that can obtain more precise estimates of entry may be able to control for this. In the case of Iceland: a survey
onducted by the Icelandic Tourist Board suggests that 2%–5% of international travelers are aboard connecting flights,
uggesting it is less of a problem for this set of data.

.3. Population data

Estimates of U.S. State and county population data come from the U.S. Census Bureau. Data for the populations of
hina, Iceland, Italy, Spain, UK, and Germany as of 2020 are obtained from the United Nations Population Division.

. Empirical application

.1. Implementation

We now consider estimation of αUS using randomized sampling in Iceland, as described in Section 3.2. Randomized
sampling done by deCODE genetics gives a percentage of the population that has contracted the virus. We estimate Eq. (17)
using Randomized Testing to construct Ij,T1−k. We do not have city-level travel data into Iceland. 99% of all international
travel arrives through a single airport, and while the data provided is accurate, this gives only a single data point for
estimation. As a result, exp(β(T1 − T0))γ 1−αc

αc
Rc,0 is estimated without error by the ratio of Ij,T1 − Ij,T0 and

∫ T1
T0

Mj,t
Nc−Rc,t

dt .17

For estimation of reporting rates in the U.S., we need several pieces of data: Firstly Mj,t , and secondly of Ij,T1 − Ij,T0 . We
discuss the imputation of these here. We observe only monthly travel data to construct Mj,t , and to maintain robustness
to January travels and infections, we average February and January travel into both the United States and Iceland. We
assume that Mj,t is uniform over the entire time period such that

∫ Feb29
Jan1 Mj,t is equal to the sum of all travel into the

city from January and February. Thus the integrand of
∫ T1
T0

Mj,t
Nc−Rc,t

dt varies over time only by confirmed infections in the
epicenter. Estimation of Ij,T1 is complicated due to randomized testing by Iceland only being conducted at certain dates.
To resolve this problem, we scale the Iceland randomized results by the scale of the confirmed cases against March 15.
This means that if there were half the confirmed cases in March 5 as in March 15, the total infections would be half of
the randomized testing percent times the population of Iceland. This allows for us to consider T1 closer to the onset of the
infection than the randomized testing dates. We also remove the number of infected from Wuhan China from our data
on confirmed infected in China due to the lock-down restrictions placed on this city. We use the first wave of deCODE
testing to determine the percentage of the population that has contracted the disease. This testing took place during Mar
15 through Mar 19. The results show that .874% of the population of Iceland have contracted the disease as of Mar 15.18

We estimate Eq. (19) using multiple data points from U.S. states and counties. We obtain our estimate of αγ 1−αc
αc

exp
(β(T1−T0−k))LRc,k via OLS without a constant term. One important note is that if the magnitude of measurement error in
travel data were high, this problem may be alleviated via instrumental variables strategy using other travel data measured
with error.

We then construct our estimate of α by dividing the two estimates. It is important to note that as a result of the
division, this method is not reliant on population data from the epicenter of infection. As long as γ and β are the same
between Iceland and the United States we will have identified α. It is likely that at the onset of the infection similar
reventative measures have been taken in these two countries, meaning that β will be reasonably close for each country.
Is China the only epicenter for the United States? While the first confirmed infection in Seattle occurred from a visitor

rom China, our data on The United States and Iceland occurs later in the global progression of the virus than our Chinese
ata. By the time these countries were experiencing infections, Italy had also experienced an outbreak. To this end, we
lso allow for a second epicenter: Italy. Italy is located much closer to Iceland and constitutes a substantial amount of
ravel to the country. However, to maintain identification, we require that α, β and T0 be same for both China and Italy,
nd we observe LRc,k for both epicenters with no error. However we find that allowing T0 to vary does not affect our
stimates by much. We also consider a broader collection of epicenters of China, Italy, Spain, Germany and the UK. For
ome collection of epicenters L: Our estimation equation for the United States is given below.

LRi,T1 = α
1 − αc

αc
γ exp(β(T1 − T0 − k))

(∑
ℓ∈L

[∫ T1−k

T0

LRℓ
c,kM

ℓ
i,t

Nℓ
c − Rℓ

c,t
dt

])
+ ϵi,T1 (23)

A similar equation is also estimated with multiple epicenters (China and Italy, also with Spain, Germany, and UK) for
Iceland. Our results using multiple epicenters run OLS without a constant using this equation, as well as the corresponding
Iceland equation to estimate α.

17 Since exp(β(T1 − T0))γ 1−αc
αc

is measured without error from Iceland. We report the robust standard error for α from running the regression on
Eq. (16). For the case when Iceland is measured with error, Fieller’s method or the delta method can be used to compute the standard errors.
18 Stock et al. (2020) also estimate the undetected rate and total infection rate in the Iceland study.
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Table 1
Estimated average fraction of reported infections.

αUS
1−αUS
αUS

8 day lag

China and Italy Travel Data
.0416 23.1

Only Chinese Travel Data
.0458 20.8

China, Italy, Spain, Germany, UK
.0427 22.4

5 day lag

China and Italy Travel Data
.0161 61.2

Only Chinese Travel Data
.0169 58.3

China, Italy, Spain, Germany, UK
.0164 60.1

We report estimated α by OLS without a constant for several specifications of the
model. We use T0 as Feb 23 and T1 as March 10,13 for each lag respectively. For the
versions including European data, European travel to both Iceland and the United States
is considered. King County, WA is omitted from the calculation.

5.2. Results: Illustration

As a first illustration of our approach, we first estimate α using February 23 as T0 and March 13 as T1 with a lag of
8 days. This is because there were very few infections in January and early February. We check robustness of different
time periods in Section 5.3. We choose T1 to include the beginning of the growth of infections in the United States, while
still being early into the progression of COVID-19 so travel is still important. Using traveler data from China, Italy, Spain,
Germany, and the UK, in Table 1, we estimate α = 0.0427 (robust s.e. 0.0211). This would mean that for every case
confirmed in the United States in early March, there are still 1−α

α
= 22 unconfirmed cases (assuming a reporting lag of 8

ays). We also consider a 5 day lag model, the median time for symptoms to appear, but prefer 8 days, in order to capture
he testing lag in addition to symptom onset (Lauer et al., 2020; Kaplan and Thomas, 2020; Li et al., 2020a). For the 5 day
ag, T1 was set to March 10 for comparison. See Fig. 1 for county-level results.

How does this estimate compare to other estimates in the literature? A very recent study by Bendavid et al. (2020) tests
or COVID-19 antibodies in a representative sample of Santa Clara county residents and reports that 48,000–81,000 people
re infected as of April 1, whereas only 956 cumulative infected are reported that day. This leads to their reported ratio
f 50–85 of total infections to reported infections. Importantly, this calculation does not account for the lag in reporting

infections. While we do not have travel data for Santa Clara county, we can compute a similar statistic for San Francisco
County: Our estimate of the true infected on March 13, divided by the reported cumulative infected on that day. This
yields a ratio of 85, which is at the upper bound of the 50–85 range reported by Bendavid et al. (2020). We report these
ratios for the counties in our data set in Table 2.

We note that there is one city present in our data that is a huge outlier. Seattle featured very early infections, and was
unable to contain the spread of early infections unlike other cities in the United States. We believe that for King County,
T0 may be much earlier than for the other cities. This means that within our time interval, there are substantial amounts
of infections caused by residents of the city, not only visitors. As a result, this city has a substantially higher (3700%)
amount of confirmed cases per visitor than any other city at the current time so we exclude it. Results from the profile
travel data are also provided in Appendix A.2.

Our approach is also sensitive to the travel data magnitudes, which may not be well estimated for the United States due
to data limitations. In particular, connecting flights after port of entry may lead to underestimates of international arrivals
into smaller cities and counties. We also lack inter-state travel between the United States, which would be important for
estimating α later into the spread of the virus.

Have we considered all epicenters of the virus for the United States and Iceland? There were other countries which
had seen substantial infections such as South Korea. Their exclusion biases both the estimates from both Iceland as well
as the United States, and as long as the magnitudes of travel were even between the two will not bias alpha. If these
other epicenters had more travel to the United States relative to Iceland, this would downward bias our estimates of α,
nd vice versa. However, we see little change in our estimates by adding in Spain, Germany and UK. If the travel patterns
etween the United States and Iceland to and from an omitted set of epicenter countries are not very different, we do
ot believe their omission will substantially alter our results.
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able 2
stimated county-level α and infection fatality rates.
County α U/R National α = 4.27% County α

U-A mIFR cIFR U-A mIFR cIFR

Broward, Fl 3.29% 29.36 349 0.16% 0.26% 453 0.13% 0.20%
Clark, NV 9.84% 9.16 184 0.33% 0.34% 80 0.76% 0.78%
Cook, IL 11.31% 7.84 321 0.21% 0.22% 121 0.55% 0.58%
Dallas, TX 3.56% 27.05 278 0.35% 0.40% 333 0.29% 0.34%
Essex, NJ 0.65% 153.60 834 0.38% 0.28% 5514 0.06% 0.04%
Fulton, GA 2.59% 37.59 290 0.28% 0.52% 478 0.17% 0.31%
Harris, TX 3.28% 29.50 177 0.15% 0.13% 230 0.11% 0.10%
Hillsborough, FL 6.70% 13.93 367 0.11% 0.18% 234 0.17% 0.29%
Honolulu, HI 0.29% 342.85 328 0.02% < .01% 4814 < .01% < .01%
Los Angeles, CA 3.20% 30.26 171 0.37% 0.38% 228 0.28% 0.28%
Maricopa, AZ 11.65% 7.59 382 0.33% 0.44% 140 0.89% 1.19%
Miami-Dade, FL 0.13% 776.68 1977 0.04% 0.05% 65714 < .01% < .01%
Multnomah, OR 7.08% 13.12 421 0.46% 0.47% 254 0.77% 0.79%
New York City, NY 9.80% 9.21 1144 0.66% 0.78% 499 1.51% 1.79%
Philadelphia, PA 5.10% 18.61 663 0.17% 0.25% 556 0.20% 0.30%
Ramsey, MN 6.58% 14.20 133 0.42% 0.50% 86 0.65% 0.77%
San Diego, CA 18.79% 4.32 371 0.14% 0.20% 84 0.60% 0.89%
San Francisco, CA 3.60% 26.76 85 0.14% 0.20% 101 0.12% 0.17%
Suffolk, MA 10.46% 8.56 97 0.11% 0.12% 40 0.28% 0.29%
Wayne, MI 1.48% 66.63 1193 1.81% 1.93% 3449 0.63% 0.67%

Median 3.60% 26.76 328 0.28% 0.28% 254 0.28% 0.31%

We estimate each counties’ death rate on March 13 using several measures of both the infection fatality rate and estimated infected. α is the
estimated fraction of reported infections for each county accounting for an 8-day lag. U

R =
1−α
α

gives the ratio of unreported to reported infections
or that county, again accounting for the fact that observed reported infections have an 8 day lag. U-A gives the under-ascertainment rate on Mar
3 given by the total infected on Mar 13 (accounting for lag) divided by the reported infected on Mar 13. mIFR matches cohorts of infected using
log-normal fatality lag distribution to determine the death rate, and cIFR compares cumulative deaths 15 days later. All of these calculations are
ased estimating the number of total infected on March 13 by reported infected on March 21st divided by α, to account for an 8-day reporting
ag. National α is taken from Table 1 Full EU travel. County α uses each county’s individually computed α rather than the nationally computed α.

.01% indicates positive numbers that round down to 0.00%.

.3. Results: Range of estimates and robustness checks

Our dates for T0 and T1 are chosen such that they capture the onset of the infection for the United States. As Table 3
hows, our α estimate is reasonably stable along choices of T1, and very stable among choices of T0 all throughout February.
e estimate a range of 4%− 14% reporting rates when there is a lag of 8 days and a range of 1.5%− 10% for the average

eporting rate across the U.S. with a reporting lag of 5 days. Using only China as the epicenter, we observe similar patterns
n α. For early March we note a relatively stable α over T1. For very early choices for T1, our Iceland estimates of confirmed
re very small, and this could create very noisy estimates of α (the first case in Iceland was confirmed February 28). As
e increase T1, we see an increase in α. This may be due to increases in the availability of test kits, which lead to higher
eporting rates. However, this result may in part be due to unobserved/unaccounted travel, particularly within the United
tates, along with the fact that we do not have data on March travel into the U.S. Both of these factors would lead to
nder-reporting of travel for late March, and cause estimates of α to be upward biased. Moreover, as we progress later
nto March, social distancing/health policy measures across Iceland and U.S. began to be applied, leading to differential
hanges in the transmission rate.
Throughout the analysis above, we have excluded King County, Washington which contains Seattle. Table A.2 displays

ur estimates including this county, which heavily skews the data. We believe this may be due to significant community
nfections occurring in the county during our time period, as the city was infected much earlier than other cities.

Correct estimation of the reporting lag parameter is essential, as our estimates of α are sensitive to this. We consider
ur estimates robustness to reporting lags in Table A.3. Our estimates of α appear reasonably robust to a range of lengths
f the lag, with an increase as the lag becomes longer.
We note that large lags (k > 10) pose a problem for estimation in our model. For estimation purposes, we maintain

1 −k to be a constant date as we consider changes in the lag parameter. This means that for large lags, we must consider
1 dates deep into March. However, the further we get into March, the more interstate travel and carrying of infections
etween cities and states matters, which may lead to overstating α.

.4. Heterogeneity in β

The above argument is predicated on β being constant for both Iceland as well as the United States. However, along
ith potential differences in normal social interaction patterns leading to virus transmission, Icelandic and the U.S. policies

or handling the spread of the virus may have diverged significantly. This means that our assumption of β being the same
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ean fraction of unreported infections with different cutoffs.
(a) 8 day reporting lag

T0 date

Feb 1 Feb 5 Feb 10 Feb 15 Feb 20 Feb 25 Feb 29

T 1
da

te

Mar 9 13.71% 13.75% 13.73% 13.54% 13.35% 13.05% 12.48%
Mar 10 9.35% 9.38% 9.37% 9.24% 9.11% 8.92% 8.61%
Mar 11 8.76% 8.79% 8.78% 8.66% 8.55% 8.40% 8.17%
Mar 12 3.83% 3.85% 3.84% 3.78% 3.72% 3.64% 3.53%
Mar 13 4.44% 4.46% 4.46% 4.38% 4.31% 4.24% 4.13%
Mar 14 5.58% 5.61% 5.60% 5.51% 5.43% 5.34% 5.22%
Mar 15 4.94% 4.97% 4.96% 4.88% 4.81% 4.74% 4.64%
Mar 16 7.96% 8.00% 7.99% 7.86% 7.76% 7.65% 7.52%
Mar 17 11.71% 11.78% 11.76% 11.57% 11.43% 11.29% 11.11%
Mar 18 20.63% 20.74% 20.72% 20.40% 20.17% 19.94% 19.66%
Mar 19 44.76% 44.93% 44.90% 44.42% 44.07% 43.74% 43.33%

(b) 5 day reporting lag

T0 date

Feb 1 Feb 5 Feb 10 Feb 15 Feb 20 Feb 25 Feb 29

T 1
da

te

Mar 6 9.64% 9.65% 9.67% 9.61% 9.53% 9.40% 9.05%
Mar 7 5.22% 5.23% 5.24% 5.20% 5.16% 5.09% 4.94%
Mar 8 3.05% 3.05% 3.06% 3.03% 3.01% 2.98% 2.90%
Mar 9 1.59% 1.59% 1.60% 1.59% 1.58% 1.56% 1.53%
Mar 10 1.66% 1.66% 1.67% 1.66% 1.65% 1.63% 1.60%
Mar 11 2.26% 2.26% 2.27% 2.25% 2.24% 2.22% 2.19%
Mar 12 2.01% 2.02% 2.02% 2.01% 1.99% 1.97% 1.94%
Mar 13 3.05% 3.06% 3.07% 3.04% 3.02% 2.99% 2.95%
Mar 14 4.18% 4.19% 4.21% 4.17% 4.14% 4.11% 4.06%
Mar 15 3.62% 3.63% 3.64% 3.61% 3.59% 3.56% 3.52%
Mar 16 4.73% 4.74% 4.76% 4.72% 4.69% 4.66% 4.62%
Mar 17 6.67% 6.68% 6.71% 6.66% 6.62% 6.58% 6.52%
Mar 18 10.75% 10.77% 10.81% 10.73% 10.67% 10.61% 10.53%
Mar 19 24.61% 24.63% 24.70% 24.58% 24.48% 24.40% 24.28%

This table displays α value for different dates for both T0 and T1 . We vary T0 across the month of February, and T1 across early March. Very early
arch and February dates for T1 are not available since Iceland confirmed infections only begin February 28. Travel data is assumed uniform across
ays throughout and is not weighted as T0 or T1 change. We include Italy, Spain, Germany, and the United Kingdom as epicenters as well as China.

cross the U.S. and Iceland may not hold. Evidence from Kucharski et al. (2020) suggests that β is very sensitive to changes
n policy, leading to this upward bias in α.

In Appendix A.4, we attempt to relax that assumption. In our model, β cannot be directly estimated from the growth
f the infected trajectory due to the majority of infected at the start arriving from travel. The details for our estimation
rocedure are given in Appendix. A major problem with this approach is that it requires variation in travel over time which
e do not measure well. In essence, we use the evolution of the infected in each country over time to learn about how

nfectious travelers are once they have arrived. With constant daily travel, this variation is poor and makes identification
f β difficult.
As a coarse estimate, we find that the difference in β is about .06. The estimate of α resulting from this procedure

ields a value of .007, suggesting that our estimates using the assumption of same β may be upward biased. However,
e note our monthly travel data does not allow for variation in travel over time, making it difficult to estimate β in a
obust manner, so any bias in measuring travel leads to bias in α. We thus note that our main estimates of α may be
pward biased, suggesting that there may be more total infections than we have estimated. However, better travel data
howing adequate variation in time is required for reliable estimation of separate βs in our model.

.5. Infection fatality rate

Given our estimated reporting rate over the time period of interest, we can compute the implied infection fatality rate
IFR). Let Dt be the number of deaths observed on day t . Let It be the number of cumulative total infections on day t . Let
be the period from illness onset to death, i.e. the fatality lag. Let f (p) be the density of p over [0, P] with mean p̄.
We consider two alternative definitions of IFR:

1. Cumulative Infection Fatality Rate (cIFR): The cIFR at t is the fraction of cumulative deaths adjusted by mean fatality
lag and cumulative total infections as of t .

2. Cohort-matching infection Fatality Rate (mIFR): For each cohort of new infections at time t , the mIFR is the ratio
of all deaths attributed to cohorts until t and the size of each infected cohort until t . This method accounts for a
random fatality-lag rather than a fixed interval.
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More specifically, we define

cIFRt =

∑t+p̄
s=0 Ds

It
(24)

mIFRt =

∑t
s=0

∫ P
0 Ds+pf (p)dp∑t

s=0 Is − Is−1
(25)

We follow Linton et al. (2020) when estimating the distribution of the fatality lag and fit a log-normal distribution. I−1
s the infected on the day before T0, and may be zero.

We estimate cIFR and mIFR for each U.S. county in our data set, computing death rates at March 13. County-level
esults are shown in Table 2; we have estimated the cIFR and mIFR using both county-specific α estimates, and the
ational estimate of 4.27%. We estimate that the median cohort-matching infection fatality rate (mIFR) is 0.28% across
.S. counties, and cIFR of 0.28%.
Fig. 2 shows the results for each U.S. county. Wayne MI, where Detroit is located, has low estimated number of

nfections potentially due to low travel inflow and therefore a high estimated mIFR.
How do these estimates compare to estimates of the IFR in the literature? Russell et al. (2020) estimate a comparable

efinition to cIFR as 1.2%19 with complete testing data on the Diamond Princess cruise ship, using a population that is
eighted towards the elderly. Since elderly have a substantially higher case-fatality rate, this suggests the real cIFR may
e lower than 1.2%.
Using their estimates of the true infection rate from their representative antibody testing study, Bendavid et al. (2020),

ompute a cumulative infection fatality rate with projected death accounting for 3 week fatality lag, and obtain an
.12–0.2% infection fatality rate. Accounting for lags, our cumulative infection fatality rates for San Francisco county are
.17–0.20%, which lies at the upper bound of their estimates.
Streeck et al. (2020) estimate an IFR of 0.36%[0.29%, 0.45%] with a randomized testing study in a German town. Our

stimates of the median mIFR 0.28% and cIFR 0.28% with national reporting rate approximately fall in the 95% CI of their
stimates. With county-specific reporting rate, our estimated median mIFR 0.28% and cIFR 0.31% are even closer to their
stimates.
While our estimates of the IFR are substantially lower than reported case fatality rates, we note that there is still

ubstantial variation in our estimated IFRs across counties in the early stages of the epidemic. This means that results
rom a single county, regardless of the quality of the methodology, may not be indicative of the IFR elsewhere. Along
ith many other factors, the variation in demographic composition, and the variation in the quality and capacity of the
ealth care sector, can lead to drastically different infection fatality rates across the country.

. Conclusion

In this paper, we lay out an analytically tractable model of early-period disease transmission across a known epicenter
nd target cities. Using this model, we provide analytical arguments to demonstrate identification of reporting rates in
arget cities away from the epicenter. Our preferred estimation strategy utilizes variation of travel patterns from epicenter
o destination cities and available randomized testing results from elsewhere in the world. The empirical implementation
f our model generates a range of estimates for the percentage of infections that have been reported. Using international
ravel data to the U.S. and randomized testing data from Iceland, for a February to early March window, we estimate an
verage reporting rate in the U.S. of 4.3%. This estimate leads to an estimated median infection fatality rate of .28− .31%
cross U.S. counties. Our estimates suggest that a large number of infections in the U.S. have not been reported in this
arly period.
We are not offering or endorsing any policy recommendations based on our estimates. Nor do we suggest that any of

ur analysis should be taken as a substitute for well designed randomized/universal testing programs, which will provide
he most reliable estimates of the true infection rate in the population. However, we believe our method can be useful
owards providing estimates of unreported infections when results of randomized testing studies are not available for a
iven location of interest.
Another aim in this paper has been to obtain tractable analytic results showing how to identify the reporting rate

rom available data. Our model is a substantially stripped down version of epidemiological models considered by Li et al.
2020b), Wu et al. (2020), Flaxman et al. (2020). These more complex models may allow additional sources of variation
n the data to pin down the key parameters of interest. Importantly, we do want to emphasize that our identification and
stimation results rely quite sensitively on model assumptions and the (un)availability of high quality data on travel. We
ope future research can improve on these important limitations.

19 Emery et al. (2020) note 50% of infections on the ship went undetected, so the cIFR may be closer to .6%.
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Fig. 1. Estimated reported infections by county.
This plot shows the ratio of confirmed cases to estimated infected in each county on T1 = March 10 for 5 day lag, and 13 for 8 day lag. T0 is
ebruary 23rd. We use the full European entry. Estimated infected are given by the reported on T1 + Lag and divided by α.

cknowledgments

We thank the Becker Friedman Institute, United States of America for financial support. We also thank Fernando
lvarez, Susan Athey, Patrick Bayer, Jaroslav Borovicka, Rana Choi, Liran Einav, Jeremy Fox, Mikhail Golosov, Austan
119



A. Hortaçsu, J. Liu and T. Schwieg Journal of Econometrics 220 (2021) 106–129

T
S

a

a

Fig. 2. Reported deaths per estimated infections by county.
This plot shows the ratio of cohort-matched confirmed deaths to estimated infected in each county on Mar 13th, taking into account an 8 day lag
in reporting. We use the full European Entry. We estimate fatality-lag time as a log-normal distribution with mean 14.5 and standard deviation 6.7.
Estimated infected are computed for each daily cohort using the National-α of 4.27%. We omit New York City for visual clarity.

able A.1
ummary statistics of fraction of reported infections by county.
Version Min. 1st Qu. Median Mean 3rd Qu. Max.

China Travel Only 0.001404 0.027434 0.037345 0.060896 0.100897 0.203500
China and Italian Travel 0.001254 0.025142 0.034784 0.055746 0.094906 0.183048
China and EU Travel 0.001286 0.025915 0.036020 0.057454 0.097979 0.187902

Summary statistics reported on the distribution of α for each county in the data. α is estimated for T0 Feb 23, T1 Mar 13, and a lag of eight days.
EU travel includes traveler data from Italy, Spain, UK, and Germany.

Goolsbee, Philip Haile, Jakub Kastl, Magne Mogstad, Casey Mulligan, Derek Neal, Robert Shimer, Jose Scheinkman, Chad
Syverson, Raphael Thomadsen, Harald Uhlig, Theodore Vassilakis, and Alessandra Voena for their helpful comments.

Appendix

A.1. Tables

See Tables A.1–A.3.

A.2. Profile travel data

The United States National Travel and Tourism Office also provides profile travel data for each of our Epicenter
Countries. As part of this data, US Port of Entry is listed with population weights for each year. We assume stationarity
over time, and estimate travel into the United States from each Epicenter by weighting the total travel data for each
country in 2020 by the 2019 port-specific weights. While we believe there may be flaws in this data, with several large
ports appearing to have zero travel, we attempt to resolve this by dropping these ports and continuing with ports for
which we have data. However dropping these ports may downward-bias our estimates of α.

Results below are for the model specification with T1 at Mar 13 and an 8 day reporting lag. We exclude Seattle WA in
ll of our estimation below (see Table A.4 and Table A.5).
Our 8-Day lag results for the Full-European Entry are similar, however results using only the Chinese Data show
severe downward bias from before. This leads to higher total infected predictions, and slightly lower death rates,
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Table A.2
Reporting rate (α) estimates including king county.

αUS
1−αUS
αUS

5 day lag

China and Italy Travel Data
0.0200 48.9

Only Chinese Travel Data
0.0211 46.5

China, Italy, Spain, Germany, UK
0.0204 48.1

8 day lag

China and Italy Travel Data
0.0486 19.6

Only Chinese Travel Data
0.0539 17.6

China, Italy, Spain, Germany, UK
0.0500 19.0

We report estimated α by OLS without a constant for several specifications of the
model. We use T0 as Feb 23rd and T1 as Mar 10,13 for each lag respectively. For the
versions including European data, European travel to both Iceland and the United States
is considered. King County is included in this data.

Table A.3
Robustness to Lag.
Lag α

0 0.0055
1 0.0086
2 0.00927
3 0.00984
4 0.0121
5 0.0164
6 0.028
7 0.0284
8 0.0427
9 0.0675
10 0.0699
11 0.113
12 0.194

This table shows estimates of α as the reporting lag period
is varied. We use T0 as Feb 23, and T1 as March 5 +

Lag days. King County is omitted. We include Italy, Spain,
Germany, and the United Kingdom as epicenters as well as
China.

particularly using the cohort-matching technique. We note that our fit to estimated infected with this data is significantly
worse than before (see Fig. A.1).

A.3. Lags

We derive our model incorporating reporting lags in the Appendix and show how we get the estimating equations in
Section 3.3.

Recall that we denote true infected, true reported infected, and true unreported infected in time t and target city i as
Ii,t , Ri,t ,Ui,t respectively. Those for epicenter c as Ic,t , Rc,t ,Uc,t . Let k be the lagged report period. At time t city i denote
the lagged reported infected LRi,t = Ri,t−k. For epicenter c , the lagged reported infected is LRc,t = Rc,t−k.

Define reporting rate at city i as α = E
(

Ri,t−k
Ii,t−k

|Ii,t−k

)
= E

(
LRi,t
Ii,t−k

|Ii,t−k

)
and at epicenter c as αc =

Rc,t−k
Ic,t−k

=
LRc,t
Ic,t−k

. This
eans that we are considering the reporting rate of lagged reported cases on the lagged total infection.
We know that in the epicenter c , we have the following:

Ic,t = Ic,0 exp(β(t − T0)) (A.1)

Rc,t = αc Ic,t (A.2)

Uc,t = (1 − αc)Ic,t (A.3)

= (1 − α )I exp(β(t − T )) (A.4)
c c,0 0
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Fig. A.1. Estimated infected and deaths using profile travel.
The Estimated infected plot shows the ratio of confirmed cases to estimated infected in each county on T1 = March 13. T0 is February 23rd. We
se the full European Entry. Estimated infected are given by the reported on T1 + Lag and divided by α. We use an eight-day lag.
he second plot shows the ratio of cohort-matched confirmed deaths to estimated infected in each county on Mar 13th, taking into account an
day lag in reporting. We use the full European Entry. We estimate fatality-lag time as a log-normal distribution with mean 14.5 and standard
eviation 6.7. Estimated infected are computed for each daily cohort using the National-α of 4.09%. We omit New York City for visual clarity.
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Table A.4
Reporting rate (α) using profile travel data.

αUS
1−αUS
αUS

5 day lag

China and Italy Travel Data
0.0108 91.3

Only Chinese Travel Data
0.0106 93.6

China, Italy, Spain, Germany, UK
0.0112 88.1

8 day lag

China and Italy Travel Data
0.0385 25.0

Only Chinese Travel Data
0.0330 29.3

China, Italy, Spain, Germany, UK
0.0409 23.4

We report estimated α by OLS without a constant for several specifications of the
model. We use T0 as Feb 23rd and T1 as Mar 10,13 for each lag respectively. For the
versions including European data, European travel to both Iceland and the United States
is considered. Hamilton OH, Allgeheny, PA; Multnomah, OR; Seminole, FL; Santa Clara,
CA; and Baltimore MD counties are all excluded for zero-travel.

able A.5
stimated county-level α and IFR using profile travel data.
County α U/R National α = 4.09% County α

U-A mIFR cIFR U-A mIFR cIFR

Broward, FL 31.13% 2.21 364 0.16% 0.25% 48 1.20% 1.90%
Clark, NV 12.69% 6.88 192 0.32% 0.32% 62 0.98% 1.01%
Cook, IL 6.54% 14.30 335 0.20% 0.21% 210 0.32% 0.33%
Dallas, TX 3.20% 30.27 290 0.33% 0.39% 371 0.26% 0.30%
Denver, CO 38.02% 1.63 158 0.13% 0.13% 17 1.23% 1.18%
Essex, NJ 0.45% 222.55 871 0.36% 0.27% 7973 0.04% 0.03%
Fulton, GA 3.27% 29.58 302 0.27% 0.50% 378 0.21% 0.40%
Harris, TX 5.97% 15.76 185 0.14% 0.12% 127 0.21% 0.18%
Honolulu HI 1.03% 96.40 342 0.02% < .01% 1364 < .01% < .01%
Los Angeles, CA 1.89% 51.89 178 0.35% 0.36% 386 0.16% 0.17%
Mecklenburg, NC 2.18% 44.89 1881 0.02% < .01% 3533 0.01% < .01%
Miami-Dade, FL 0.32% 307.31 2064 0.04% 0.05% 26053 < .01% < .01%
New York City, NY 6.69% 13.95 1194 0.63% 0.75% 731 1.03% 1.22%
Philadelphia, PA 4.04% 23.75 692 0.16% 0.24% 701 0.16% 0.24%
Ramsey, MN 10.02% 8.98 138 0.40% 0.48% 57 0.98% 1.18%
San Francisco, CA 2.23% 43.80 89 0.13% 0.19% 164 0.07% 0.11%
Suffolk, MA 6.52% 14.34 101 0.11% 0.11% 64 0.17% 0.18%
Wayne, MI 0.86% 115.87 1246 1.74% 1.85% 5960 0.36% 0.39%

Median 3.66% 26.67 318.5 0.18% 0.24% 374.5 0.21% 0.27%

We estimate each counties’ death rate on March 13 using several measures of both the infection fatality rate and estimated infected. α is the
estimated fraction of reported infections for each county accounting for an 8-day lag. U

R =
1−α
α

gives the ratio of unreported to reported infections
or that county, again accounting for the fact that observed reported infections have an 8 day lag. U-A gives the under-ascertainment rate on Mar
3 given by the total infected on Mar 13 (accounting for lag) divided by the reported infected on Mar 13. mIFR matches cohorts of infected using
log-normal fatality lag distribution to determine the death rate, and cIFR compares cumulative deaths 15 days later. All of these calculations are
ased estimating the number of total infected on March 13 by reported infected on March 21st divided by α, to account for an 8-day reporting
ag. National α is taken from Table A.4 full EU travel. County α uses each county’s individually computed α rather than the nationally computed α.

.01% indicates positive numbers that round down to 0.00%.

When only travel data is available, our Assumption 3.1 is

I inci,t

Mi,t
=

Uc,t

Nc − Rc,t
for any time t ∈ [T0, T1], region i and epicenter c (A.5)

Applying A.4 and solving for I inci,t .

I inci,t =
Mi,t (1 − αc)Ic,0 exp(β(t − T0)) (A.6)
Nc − Rc,t
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In city i, at time T1 we observe LRi,T1 . We have

Ii,T1−k =

∫ T1−k

T0

I inci,t exp(β(T1 − k − t))dt

LRi,T1 = αIi,T1−k + ϵi,T1

= α

∫ T1−k

T0

I inci,t exp(β(T1 − k − t))dt + ϵi,T1

= α

∫ T1−k

T0

Mi,t

Nc − Rc,t
(1 − αc)Ic,0 exp(β(t − T0)) exp(β(T1 − k − t))dt + ϵi,T1

= α(1 − αc)Ic,0 exp(β(T1 − T0 − k))
∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

= α(1 − αc)
Rc,0

αc
exp(β(T1 − T0 − k))

∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

= α
1 − αc

αc
exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

For α = αc , this equation simplifies to:

LRi,T1 = (1 − α) exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (A.7)

When both travel data and randomized testing data are available, we maintain Assumption 3.2:

I inci,t

Mi,t
= γ

Uc,t

Nc − Rc,t
for any time t ∈ [T0, T1], region i and epicenter c (A.8)

We can write it as

I inci,t = γ
Mi,t

Nc − Rc,t
(1 − αc)Ic,0 exp(β(t − T0)) (A.9)

In U.S. city i, at time T1 we observe LRi,T1 . Following the same derivation as above, we have

LRi,T1 = αγ
1 − αc

αc
exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (A.10)

A similar derivation shows that for region j in Iceland at time T1, we have

Ij,T1−k = γ
1 − αc

αc
exp(β(T1 − T0 − k))LRc,k

∫ T1−k

T0

Mj,t

Nc − Rc,t
dt (A.11)

We also consider an alternative definition of reporting rate, which is lagged reported cases as a fraction of current
total infections, i.e. α̃c =

LRc,t
Ic,t

=
Rc,t−k
Ic,t

and α̃ = E
(

LRi,t
Ii,t

|Ii,t
)

= E
(

Ri,t−k
Ii,t

|Ii,t
)
.

In epicenter, we have

Ic,t = Ic,0 exp(β(t − T0)) (A.12)

Rc,t = α̃c Ic,t+k (A.13)

Rc,t−k = α̃c Ic,t (A.14)

Rc,−k = α̃c Ic,0 (A.15)

Uc,t = Ic,t − Rc,t (A.16)

= Ic,t − α̃c Ic,t+k (A.17)

= Ic,0 exp(β(t − T0)) − α̃c Ic,0 exp(β(t + k − T0)) (A.18)

When only travel data is available, our Assumption 3.1 is

I inci,t

Mi,t
=

Uc,t

Nc − Rc,t
for any time t ∈ [T0, T1], region i and epicenter c (A.19)

Then we have

I inci,t =
Mi,t (

Ic,0 exp(β(t − T0)) − α̃c Ic,0 exp(β(t + k − T0))
)

(A.20)

Nc − Rc,t
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In target city, at time T1, it is known that E
(
LRi,T1 |Ii,T1

)
= α̃Ii,T1 . We know

Ii,T1 =

∫ T1

T0

I inci,t exp(β(T1 − t))dt

LRi,T1 = α̃Ii,T1 + ϵi,T1

= α̃

∫ T1

T0

I inci,t exp(β(T1 − t))dt + ϵi,T1

= α̃

∫ T1

T0

Mi,t

Nc − Rc,t

(
Ic,0 exp(β(t − T0)) − α̃c Ic,0 exp(β(t + k − T0))

)
exp(β(T1 − t))dt + ϵi,T1

= α̃Ic,0 exp(β(T1 − T0))
∫ T1

T0

Mi,t

Nc − Rc,t
dt − α̃α̃c Ic,0 exp(β(T1 − T0 + k))

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

= α̃
Rc,−k

α̃c
exp(β(T1 − T0))

∫ T1

T0

Mi,t

Nc − Rc,t
dt

− α̃α̃c
Rc,−k

α̃c
exp(β(T1 − T0 + k))

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

=

(
α̃

α̃c
exp(β(T1 − T0)) − α̃ exp(β(T1 − T0 + k))

)
Rc,−k

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

= α̃

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
Rc,−k

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

= α̃

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
LRc,0

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1

If α̃ = α̃c , then α is identified conditional on β and k.
When both travel data and randomized testing data are available, we maintain Assumption 3.2:

I inci,t

Mi,t
= γ

Uc,t

Nc − Rc,t
for any time t ∈ [T0, T1], region i and epicenter c (A.21)

Then we have

I inci,t = γ
Mi,t

Nc − Rc,t

(
Ic,0 exp(β(t − T0)) − α̃c Ic,0 exp(β(t + k − T0))

)
(A.22)

For U.S. city i, we have

LRi,T1 = α̃γ

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
Rc,−k

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (A.23)

= α̃γ

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
LRc,0

∫ T1

T0

Mi,t

Nc − Rc,t
dt + ϵi,T1 (A.24)

In Iceland region j time T1, we can compute Ij,T1 . We have

Ij,T1 =

∫ T1

T0

I incj,t exp(β(T1 − t))dt

=

∫ T1

T0

γ
Mj,t

Nc − Rc,t

(
Ic,0 exp(β(t − T0)) − α̃c Ic,0 exp(β(t + k − T0))

)
exp(β(T1 − t))dt

= γ (exp(β(T1 − T0)) − α̃c exp(β(T1 − T0 + k))) Ic,0

∫ T1

T0

Mj,t

Nc − Rc,t
dt

= γ (exp(β(T1 − T0)) − α̃c exp(β(T1 − T0 + k)))
Rc,−k

α̃c

∫ T1

T0

Mj,t

Nc − Rc,t
dt

= γ

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
Rc,−k

∫ T1

T0

Mi,t

Nc − Rc,t
dt

= γ

(
1

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
LRc,0

∫ T1 Mi,t dt

α̃c T0 Nc − Rc,t
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Estimating the last equation gives consistent estimate of

γ

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
LRc,0

and estimating Eq. (A.24) gives

α̃γ

(
1
α̃c

exp(β(T1 − T0)) − exp(β(T1 − T0 + k))
)
LRc,0

Taking the ratio, we are left with α̃.

A.4. Heterogeneous transmission rates

In this section, we show how our model can be modified to allow for different transmission rate β among target
cities and epicenter. Transmission rate of virus could be different across locations due to population density or other
reasons (Sajadi et al., 2020). Our identification strategy in Section 3.2 relies on the assumption that transmission rates
across Iceland and U.S. are the same. We will relax this assumption in this section. We will be able to capture differential
transmission rate through the variation in virus evolution trends across locations, controlling for travel.

Let βc be the transmission rate in epicenter, βi rate for U.S. city i and βj rate for Iceland city j. Define β̃i = βi − βc and
β̃j = βj − βc as relative transmission rates for U.S. and Iceland. Maintaining Assumption 3.2, for any U.S. city i end period
T1 we have

Ri,T1 = α

∫ T1

T0

I inci,t exp(βi(T1 − t))dt (A.25)

I inci,t = γ
(1 − αc)Ic,0 exp(βc(t − T0))

Nc − Rc,t
Mi,t (A.26)

Therefore, for U.S. city i we have:

Ri,T1 = α

∫ T1

T0

(1 − αc)γ Ic,0 exp(βc(t − T0))
Nc − Rc,t

Mi,t exp(βi(T1 − t))dt (A.27)

= α
1 − αc

αc
Rc,0γ

∫ T1

T0

exp(βc(t − T0)) exp(βi(T1 − t))
Mi,t

Nc − Rc,t
dt (A.28)

= α
1 − αc

αc
Rc,0γ exp(βiT1 − βcT0)

∫ T1

T0

exp(t(βc − βi))
Mi,t

Nc − Rc,t
dt (A.29)

Similarly, for Iceland city j we have:

Ij,T1 =
1 − αc

αc
Rc,0γ exp(βjT1 − βcT0)

∫ T1

T0

exp(t(βc − βj))
Mj,t

Nc − Rc,t
dt (A.30)

Take logs and differencing, we get

log Ri,T1 − log Ij,T1 = logα + (βi − βj)T1 + log
∫ T1

T0

exp(t(βc − βi))
Mi,t

Nc − Rc,t
dt

− log
∫ T1

T0

exp(t(βc − βj))
Mj,t

Nc − Rc,t
dt

= logα + (β̃i − β̃j)T1 + log
∫ T1

T0

exp(−tβ̃i)
Mi,t

Nc − Rc,t
dt

− log
∫ T1

T
exp(−tβ̃j)

Mj,t

Nc − Rc,t
dt
0
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t

Assume that we observe log Ri,t and log Ij,t with idiosyncratic measurement error ηi,t and ηj,t with E

(
η.,t
)

= 0. Denote
hese observations as log R̂i,t and log Îj,t . Let ui,j,t = ηi,t − ηj,t , so ui,j,t is also iid.

log R̂i,T1 − log Îj,T1 = log Ri,T1 − log Ij,T1 + ηi,T1 − ηj,T1

= log Ri,T1 − log Ij,T1 + ui,j,T1

= logα + (β̃i − β̃j)T1

+ log
∫ T1

T0

exp(−β̃it)
Mi,t

Nc − Rc,t
dt − log

∫ T1

T0

exp(−β̃jt)
Mj,t

Nc − Rc,t
dt + ui,j,T1

With a k period lag, we have for U.S. city i:

LRi,T1 = α

∫ T1−k

T0

(1 − αc)γ Ic,0 exp(βc(t − T0))
Nc − Rc,t

Mi,t exp(βi(T1 − k − t))dt

= α
1 − αc

αc
Rc,0γ

∫ T1−k

T0

exp(βc(t − T0)) exp(βi(T1 − k − t))
Mi,t

Nc − Rc,t
dt

= α
1 − αc

αc
Rc,0γ exp(βi(T1 − k) − βcT0)

∫ T1−k

T0

exp(t(βc − βi))
Mi,t

Nc − Rc,t
dt

Similarly, for Iceland city j we have:

Ij,T1−k =
1 − αc

αc
Rc,0γ exp(βj(T1 − k) − βcT0)

∫ T1−k

T0

exp(t(βc − βj))
Mj,t

Nc − Rc,t
dt

Take logs and differencing, we get

log LRi,T1 − log Ij,T1−k = logα + (βi − βj)(T1 − k) + log
∫ T1−k

T0

exp(t(βc − βi))
Mi,t

Nc − Rc,t
dt

− log
∫ T1−k

T0

exp(t(βc − βj))
Mj,t

Nc − Rc,t
dt

= logα + (β̃i − β̃j)(T1 − k) + log
∫ T1−k

T0

exp(−tβ̃i)
Mi,t

Nc − Rc,t
dt

− log
∫ T1−k

T0

exp(−tβ̃j)
Mj,t

Nc − Rc,t
dt

Taking into account measurement error, we have

log L̂Ri,T1 − log Îj,T1−k = logα + (β̃i − β̃j)(T1 − k)

+ log
∫ T1−k

T0

exp(−β̃it)
Mi,t

Nc − Rc,t
dt − log

∫ T1−k

T0

exp(−β̃jt)
Mj,t

Nc − Rc,t
dt + ui,j,T1−k

When we consider multiple epicenters ℓ ∈ L, the estimating equation becomes:

log L̂Ri,T1 − log Îj,T1−k = logα + (β̃i − β̃j)(T1 − k)

+ log
∫ T1−k

T0

(∑
ℓ∈L

LRℓ
c,kM

ℓ
i,t

Nℓ
c − Rℓ

c,t

)
exp(−β̃it)dt

− log
∫ T1−k

T0

(∑
ℓ∈L

LRℓ
c,kM

ℓ
j,t

Nℓ
c − Rℓ

c,t

)
exp(−β̃jt)dt + ui,j,T1−k

We parameterize transmission rate as linear in urban population density, and an indicator for social distancing. We can
then estimate the equations above with nonlinear least squares pooling different end period T1. We consider European
Epicenters as well as China. Because our data only contains constant travel, terms that appear in both βi as well as βj are
very difficult to estimate. In particular, the constant term is very difficult to estimate, and not identified for very large
magnitudes. This problem occurs because with constant travel, infected arrivals vary over time only with Rc,t , which
causes very minor changes in arrivals. This makes time-variation of the same cities provide little identification in β .

To circumvent these issues, we attempted to estimate βj separately using differences in infected in Iceland over time,
however since travel is still constant for Iceland, the same identification problems were present. We estimate a difference
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n β of .06, indicating that in 10 days infections in the United States will double one more time than in Iceland. However,
e note that our α estimate is biased downwards because of travel data, and this leads to an upward bias on beta. We
onsider this to be an upper bound on the difference in β between the two countries. With further investigation and
etter travel data, we believe that this framework can be used to identify the spread of infection with different infection
ates.

This strategy is better than naively studying growth rates of infected between countries because it accounts for the
rigin of the infection: travelers from infected epicenters. While the infection is spreading within the country, it is not
solated, and there are continual arrivals from the epicenter that are also spreading the infection, failing to take into
ccount these arrivals will lead to estimates of the spread of infection being too high in the early stages of the progression
f the virus.20
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