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Abstract
Mass spectrometry glycoproteomics is rapidly maturing, allowing unprecedented insights into the diversity and functions of protein
glycosylation. However, quantitative glycoproteomics remains challenging. We developed GlypNirO, an automated software
pipeline which integrates the complementary outputs of Byonic and Proteome Discoverer to allow high-throughput automated
quantitative glycoproteomic data analysis. The output of GlypNirO is clearly structured, allowing manual interrogation, and is also
appropriate for input into diverse statistical workflows. We used GlypNirO to analyse a published plasma glycoproteome dataset
and identified changes in site-specific N- and O-glycosylation occupancy and structure associated with hepatocellular carcinoma as
putative biomarkers of disease.
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Introduction
Glycosylation is a key post-translational modification critical
for protein folding and function in eukaryotes [1-3]. Diverse
types of glycosylation are known, all involving modification of
specific amino acid residues with complex carbohydrate struc-
tures. N-Linked glycosylation of asparaginies and O-linked
glycosylation of serines and threonines are the most widely en-
countered and well studied in eukaryotes. A key feature of

glycosylation critical to its biological functions and important
for its analysis is its high degree of heterogeneity [4]. This
heterogeneity can take the form of variable occupancy, also
known as macroheterogeneity – the presence or absence of
modification at a particular site in a protein, due to inefficient
transfer of the initial glycan structure [5]. In addition, the non-
template-driven synthesis of glycan structures means that there
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can be multiple different glycan structures attached at the same
site in a pool of mature glycoproteins [6]. This structural hetero-
geneity is also known as microheterogeneity. This hetero-
geneity in glycan structure and occupancy can be influenced by
many genetic and environmental factors. As such, protein
glycosylation is often regulated in response to physiological or
pathological conditions [7]. Accurately profiling the site-specif-
ic occupancy and structural heterogeneity of glycosylation
across glycoproteomes can therefore provide insight into the
biology of healthy and diseased states [8].

The current state-of-the art technology for the characterisation,
identification, and quantification of the glycome or glycopro-
teome is liquid chromatography coupled to tandem mass spec-
trometry (LC–MS/MS) [9]. Popular and powerful glycopro-
teomic workflows typically involve standard proteomic sample
preparation and protease digestion, coupled with depletion of
abundant proteins or enrichment of glycopeptides to enable
their measurement. There have also been several advances in
glycopeptide quantification strategies including chemical
labelling, label-free and data-independent acquisition methods
[10]. Progress in MS technology in particular has enabled deep
and sensitive measurement of highly complex glycoproteomes,
generating large amounts of high quality data [11]. With that
comes the need for robust and automated workflows for extract-
ing meaningful results. Numerous software packages have been
developed for analysis of outputs from MS technology to auto-
mate the process of transformation of raw MS data into ion in-
tensities and matching them with appropriate glycan and
peptide sequence databases for glycopeptide identification
(reviewed in [12-16]). However, there are few efficient, robust,
and automated workflows for glycopeptide quantification.
There are several freely available software programs for quanti-
tative label-free glycoproteomics using MS1 or data-dependent
acquisition. These include LaCyTools [17], MassyTools [18],
and GlycoSpectrumScan [19], which use a predefined list of
analytes and masses to interrogate MS1 data, and I-GPA [20],
GlycopeptideGraphMS [21], GlycoFragwork [22], and GlycRe-
Soft [23], which integrate identification and abundance/intensi-
ty information for glycopeptides (a recent review is provided in
[10]). Importantly, the complexity of glycan heterogeneity
requires that downstream analysis often involves manual pro-
cessing in addition to standard informatics workflows.

Here, we developed and used GlypNirO, an automated bioinfor-
matic workflow for label-free quantitative N- and O-glycopro-
teomics that focuses on improving robustness and throughput.
Our workflow uses a collection of scripts built on an in-house
sequence string handling library and the scientific Python data
handling package pandas [24], and integrates outputs of two
commonly used software packages in glycoproteomic MS data

analysis, Proteome Discoverer (Thermo Fisher) and Byonic
(Protein Metrics), to extract occupancy and glycoform abun-
dancy of all identified glycopeptides from LC–MS/MS datasets.
We applied the workflow to a published dataset comparing the
plasma glycoproteomes of liver cancer patients (heptatocellular
carcinoma, HCC) and healthy controls [20]. Our analysis
revealed differences in occupancy and glycan compositions of
several proteins as potential HCC tumor biomarkers.

Results and Discussion
GlypNirO
Byonic is powerful software that allows identification of glyco-
peptides and peptides from complex glyco/proteomic
LC–MS/MS datasets but does not perform quantification.
Proteome Discoverer allows robust and facile measurement of
peptide abundances using MS1 peptide area under the curve
(AUC) information. We developed GlypNirO to integrate the
outputs from Byonic and Proteome Discoverer to improve the
efficiency, ease, and robustness of quantitative glycoproteomic
data analysis. GlypNirO takes Byonic and Proteome Discover
output files, and user-defined sample information and process-
ing parameters, performs a series of automated data integration
and computational steps, and provides informative and intuitive
output files with site or peptide-specific glycoform abundance
data. Glyco/peptide identifications from Byonic are linked with
AUC data from Proteome Discoverer by matching the experi-
mental scan number. The sites of glycosylation within each
peptide assigned by Byonic are identified and clearly labelled.
While identification of glycopeptides based on peptide se-
quence and glycan monosaccharide composition is compara-
tively reliable with modern LC–MS/MS and data analytics, it is
much more difficult to unambiguously assign the precise site of
modification within a glycopeptide. GlypNirO therefore
provides two options for analysis: site-specific or peptide-spe-
cific. If the user trusts Byonic’s site-specific assignment, then
all peptide variants that contain that site are included in calcula-
tions of its occupancy and glycoform distribution. If the user
prefers to perform a peptide-specific analysis, then each prote-
olytically unique peptide form is treated separately. GlypNirO
then calculates the occupancy and proportion of each glyco-
form at each site/peptide, and provides output files with the pro-
tein name, site and/or peptide information, and occupancy and
glycoform abundance. Full details are provided in the Experi-
mental section.

To provide a proof-of-concept use of GlypNirO, we performed
an exploratory reanalysis of a previously published dataset [20]
obtained from the ProteomeXchange Consortium via the
MassIVE repository (PXD003369, MSV000079426). This
study performed glycoproteomic LC–MS/MS analysis of whole
plasma or plasma depleted of six abundant proteins from liver
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Figure 1: Evaluation of GlypNirO site-specific N-glycosylation profiling. Site-specific relative glycoform abundance in HCC and healthy controls at
(a) immunoglobulin heavy constant gamma 1 (IgG1) N180, and (b) alpha-1-antichymotrypsin N106 and N271.

cancer (hepatocellular carcinoma (HCC)) patients and healthy
controls. We identified glycopeptides and peptides in the
datafiles from these samples using Byonic, searching sepa-
rately for O- and N-glycopeptides (Supporting Information
File 1, Tables S1–S24), and processed the files with Proteome
Discoverer (Supporting Information File 1, Tables S25–S36).
We then used GlypNirO to process these results files. This anal-
ysis was able to identify and measure 851 N-glycopeptides
(site-specific) from 150 proteins and 301 O-glycopeptides
(peptide level) from 89 proteins (Supporting Information File 1,
Tables S37–S40).

Several changes in site-specific glycosylation associated with
HCC had been previously identified [20]. We benchmarked the
performance of our workflow using GlypNirO with these previ-
ously reported changes. Consistent with previous analysis, we
found that agalactosylated N-glycans on IgG were increased in
abundance in HCC (Figure 1a), and the relative abundance of
the HexNAc(5)Hex(6)NeuAc(3) composition at multiple sites
on alpha-1-antichymotrypsin was decreased in HCC
(Figure 1b).

N-Glycoproteome analysis
To extend our analysis, we next investigated the full suite of
N-glycosylation sites that we were able to identify and measure
with GlypNirO. Comparing the site-specific glycoform relative
abundance and occupancy, we identified 111 unique glycopep-
tides with increased and 128 with decreased abundance in HCC
compared with healthy controls in depleted plasma, and 93 in-
creased and 67 decreased in HCC in non-depleted plasma
(P < 0.05, Figure 2a and 2b). This analysis with GlypNirO of
site-specific relative glycoform abundance confirmed that HCC
was associated not only with changes in glycoprotein
abundance in plasma, but with changes in the proportions of
different glycan structures at specific sites in diverse glyco-
proteins.

Examining the data in more detail identified several sites with
multiple glycoforms with statistically significant changes in
abundance. Specifically, HCC patients had decreased abun-
dance of disialylated N-glycans at alpha-1-antitrypsin N271 and
haptoglobin N184 (Figure 3a and 3b), with increased abun-
dance of non-sialylated N-glycans at fibrinogen N78
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Figure 2: N-Glycoproteome profiling with GlypNirO. Volcano plots of
site-specific N-glycoform relative abundance in HCC patients versus
healthy controls in (a) depleted, and (b) non-depleted plasma.

(Figure 3c), and decreased abundance of trisialylated N-glycans
at alpha-2-HS-glycoprotein N176 (Figure 3d). Together, this
suggests an overall decrease in sialylation of N-glycans across
the plasma glycoproteome in HCC.

O-Glycoproteome analysis
The plasma O-glycoproteome is perhaps somewhat neglected
[25], despite the importance of O-glycosylation to diverse
aspects of fundamental biology, health, and disease. We there-
fore investigated all O-glycosylation sites that we were able to
identify and measure with GlypNirO. Because there are often
multiple potential sites of O-glycosylation within a tryptic
peptide and site-specific assignment is challenging with CID or
HCD fragmentation information, we used peptide-centric analy-
sis of the plasma O-glycoproteome. Comparing peptide-specif-
ic glycoform relative abundance and occupancy, we identified
41 unique O-glycopeptides with increased and 27 with
decreased abundance in HCC compared with healthy controls
in depleted plasma, and 17 increased and 26 decreased in
HCC in non-depleted plasma (P < 0.05, Figure 4a and 4b).
As the dataset we analysed measured enriched glycopeptides, it
is likely that unglycosylated peptides forms are underrepre-
sented.

We could identify both changes in peptide-specific O-glycan
compositions and in O-glycan occupancy. HCC patients had in-
creased glycan occupancy and decreased abundance of mono-
sialylated O-glycan on fibrinogen alpha chain G272GSTSYGT-
GSETESPR (Figure 5a). HCC patients showed a relative

decrease in disialylated and an increase in monosialylated
O-glycan abundance on both plasma protease C1 inhibitor
V 4 5 A A T V I S K  a n d  h i s t i d i n e - r i c h  g l y c o p r o t e i n
S271STTKPPFKPHGSR (Figure 5b and 5c). Together, and
consistent with our N-glycoproteome analyses, this suggests
that HCC is associated with an overall decrease in sialylation of
N- and O-glycans across the plasma glycoproteome.

Conclusion
GlypNirO is an automated software pipeline that integrates
glyco/peptide identification from Byonic and quantification
from Proteome Discoverer, and provides output that is appro-
priate for both manual inspection and further statistical
analyses. We note that all glycopeptide identification and quan-
tification workflows will include false positive and negative
results, and users should ensure data is appropriately searched
and curated before processing with GlypNirO. Additionally,
modern LC–MS/MS glycoproteomics cannot fully structurally
characterise glycans and often struggles to confidently assign
the precise sites of modification; ambiguities which may
confound quantification workflows. Our proof-of-principle
analysis of a plasma glycoproteome dataset demonstrated that
GlypNirO can be used to detect changes in site-specific glyco-
sylation occupancy and structure of N- and O-glycosylation in
complex glycoproteomes. Specifically, we found that HCC was
associated with decreased sialylation of both N- and O-glycans
at specific sites on selected plasma glycoproteins. GlypNirO
will be a useful tool for enabling robust high-throughput quanti-
tative glycoproteomics.

Experimental
Byonic and Proteome Discoverer analysis
We identified glycopeptides and peptides using Byonic (Pro-
tein Metrics, v. 3.8.13) searching all DDA files (n = 12) down-
loaded from a previously published dataset [20] obtained from
the ProteomeXchange Consortium via the MassIVE repository
(PXD003369, MSV000079426). Two searches were conducted
on each file, one N-linked and one O-linked. A human protein
database was used (UniProt UP000005640, downloaded April
20, 2018 with 20,303 reviewed proteins) [26]. Cleavage speci-
ficity was set as C-terminal to Arg/Lys with a maximum of one
missed cleavage. The precursor mass tolerance was 10 ppm and
fragment ion mass tolerances for CID and HCD were 0.5 Da
and 20 ppm, respectively. Carbamidomethylation of cysteines
was set as a fixed modification, and dynamic modifications
included deamidation of asparagine, monooxidised methionine,
and the formation of pyroglutamate at N-terminal glutamic acid
and glutamine. All variable modifications were set as “Common
1” allowing each modification to be present once on a peptide.
For N-linked searches (N-X-S/T) a database of 164 N-glycans
was used (Supporting Information File 1, Table S41) and for the
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Figure 3: Site-specific N-glycopeptide profiling with GlypNirO. Site-specific relative glycoform abundance in HCC patients and healthy controls at
(a) alpha-1-antitrypsin N271, (b) haptoglobin N184, (c) fibrinogen gamma chain N78, and (d) alpha-2-HS-glycoprotein N176. N = 3; values show
mean; error bars show standard error of the mean; *, P < 0.05.
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Figure 4: O-Glycoproteome profiling with GlypNirO. Volcano plots of
site-specific O-glycoform relative abundance in HCC patients versus
healthy controls in (a) depleted, and (b) non-depleted plasma.

O-linked searches (at any S/T) a database of 49 O-glycans (Sup-
porting Information File 1, Table S42) was used. All glycan
modifications were set as “Rare 1” allowing each modification
to be present once on a peptide. A maximum of two common
modifications and one rare modification were allowed per
peptide. A protein false discovery rate cut-off of 1% was
applied along with the peptide automatic score cutoff [27]. Pre-
cursor peak areas were calculated using the Precursor Ions Area
Detector node in Proteome Discoverer (v. 2.0.0.802 Thermo
Fisher Scientific). Text output files from Proteome Discoverer
and Byonic were then used in GlypNirO (https://github.com/
bschulzlab/glypniro and Supporting Information File 3).

Output combination and preprocessing
GlypNirO was built and used in Python 3.8.3 with backward
compatibility tested up to Python 3.6. Each Byonic output file
was first iteratively prepared for linking with AUC information
from the Proteome Discoverer output. Using a regular expres-
sion pattern provided by UniProtKB, the UniProtKB accession
ID of each protein from the Protein Name column of the Byonic
output was parsed and saved into a new temporary master id
column. If a UniProtKB accession ID could not be matched, the
entire protein name was saved into the master id column.
Reverse (decoy) sequences and Common contaminant proteins
were filtered and removed from the dataset.

To combine data from different isoforms of the same protein,
the Byonic output was grouped by accession ID in the master id
column. From the Scan number column, the numeric scan num-
ber associated with a PSM was extracted into a temporary Scan

number column. Area Under the Curve (AUC) information
from the First Scan column from the Proteome Discoverer
output text file was assigned to Byonic data at each correspond-
ing scan number, in the Area column. Entries with no AUC
value and those not meeting a user-defined Byonic score cutoff
(200 here) were removed from the data set.

Using the Glycans NHFAGNa and Modification Type(s)
column, the script obtained the monosaccharide composition of
the attached glycan. In the standard Byonic output, only the ∆
mass of the modification is directly indicated on the modified
peptide sequence, with no direct indication of the identity of the
corresponding modification. The script therefore calculated the
theoretical mass of the glycan from the Glycans NHFAGNa
column, and matched this to the corresponding amino acid in
the peptide. This allowed the unambiguous assignment of each
site of glycosylation from the Byonic output. Options were pro-
vided to either include Byonic assignments of site-specificity,
or not, in calculation for the final output.

Unique PSM selection and glycoform AUC
calculation
The compiled dataset as a whole was sorted based on two levels
in descending order, first by Area and then by Score. Two
options were available for glyco/peptide grouping: site-specific
analysis, or peptide-specific analysis. For site-specific analysis,
the site-specificity of glycosylation assigned by Byonic was
trusted, and all peptide variants that contained that site were
included in calculations of its occupancy and glycoform distri-
bution. PSMs with identical unmodified peptide sequence,
glycan monosaccharide composition, calculated m/z, and site of
glycosylation were grouped. For each group, the PSM precur-
sor m/z value with the highest associated Area was selected as
the unique PSM. The Area associated with each unique PSM
was used for the calculation of the total AUC of each glyco-
form at each identified glycosylation site.

For peptide-specific analysis, the precise site of glycosylation
within a peptide as assigned by Byonic was ignored, and each
proteolytically unique peptide form was treated separately.
PSMs with identical unmodified peptide sequence, glycan
monosaccharide composition, and calculated m/z were grouped.
As with site-specific analysis, for each group, the PSM with the
highest Area was selected as its unique PSM. The Area of each
unique PSM was used for the calculation of the total AUC of
each glycoform for each unique proteolytic peptide.

Proportional data analysis and final output
In order to allow comparisons of site-specific glycoform abun-
dance and occupancy between different samples, the proportion
of each glycoform was calculated with and without inclusion of
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Figure 5: Peptide-specific O-glycosylation profiling with GlypNirO. Peptide-specific relative glycoform abundance in HCC patients and healthy controls
on (a) fibrinogen alpha chain G272GSTSYGTGSETESPR, (b) plasma protease C1 inhibitor V45AATVISK, and (c) histidine-rich glycoprotein
S271STTKPPFKPHGSR. N = 3; values show mean; error bars show standard error of the mean; *, P < 0.05.
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unglycosylated peptides. For calculation of proportion, glyco-
sylation status was assumed to not quantitatively affect detec-
tion. These results were concatenated into the final output file,
where columns are the different samples and rows are the dif-
ferent peptide and glycoforms that have been analysed. The pro-
tein name of each glycosylated protein detected in the analysis
was also included, parsed from the online UniProtKB database
using an inhouse Python library.

Statistical analyses
Significant differences in glycoform abundances between
healthy and diseased samples were evaluated using an unpaired
two-tailed t-test without corrections for multiple comparisons.
Missing values were not imputed. Spectra were manually vali-
dated for glycoforms of interest.
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Glypniro-master; automated script for processing and
combining Byonic and PD standard output.
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