
Homobenzylic Oxygenation Enabled by Dual Organic 
Photoredox and Cobalt Catalysis

Joshua B. McManus‡,
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 
27599-3290, United States

Jeremy D. Griffin‡,
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 
27599-3290, United States

Alexander R. White,
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 
27599-3290, United States

David A. Nicewicz
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 
27599-3290, United States

Abstract

Activation of aliphatic C(sp3)–H bonds in the presence of more activated benzylic C(sp3)–H bonds 

is often a nontrivial, if not impossible task. Herein we show that leveraging the reactivity of 

benzylic C(sp3)–H bonds to achieve reactivity at the homobenzylic position can be accomplished 

using dual organic photoredox/cobalt catalysis. Through a two-part catalytic system, alkyl arenes 

undergo dehydrogenation followed by an anti-Markovnikov Wacker-type oxidation to grant benzyl 

ketone products. This formal homobenzylic oxidation is accomplished with high atom economy 

without the use of directing groups, achieving valuable reactivity that traditionally would require 

multiple chemical transformations.

Selective chemical modification of unactivated aliphatic C–H bonds represents a tremendous 

challenge in organic chemistry.1 Nature routinely utilizes biosynthetic enzymes to 

selectively oxygenate specific C–H bonds with high substrate fidelity.2 While such 

selectivity is highly coveted, chemists have struggled to mimic nature’s adept ability for site-

selective oxidation of hydrocarbon scaffolds.
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Common strategies for effecting selective C–H functionalization target benzylic or allylic 

C–H bonds, which have low bond-dissociation energies.3,4 These methods rely on 

stoichiometric specialty oxidants like IBX (Figure 1A).5,6 More recently, catalytic methods 

utilizing transition metals, electro-chemistry, and photoredox chemistry have been 

developed.3,7–10 While there are well-established methods for functionalizing activated 

positions, manipulation of remote C–H bonds remains a challenge.

Conversion of unactivated aliphatic methylenes to ketone-bearing carbons represents a 

valuable synthetic transformation. Not only does this reactivity paradigm grant access to 

diverse oxygenated derivatives, but the versatility of ketones allows for streamlined 

diversification of the resulting products. Curci and co-workers have demonstrated 

methylene-to-ketone oxidation using super-stoichiometric amounts of highly reactive 

dioxirane oxidants;11 however, selectivity is problematic.12

Recent work has shown that remote electronics can promote selective C–H functionalization 

at 2° positions, but only in the absence of reactive benzylic, allylic, or 3° C–H bonds.13–18 

While these methods represent the state-of-the-art for achieving oxidation of unactivated 

C(sp3)–H bonds, they largely give modest site-selectivity when multiple similar C–H bonds 

are present. Differentiation of C–H bonds that are in similar electronic and steric 

environments requires the use of directing groups that coordinate to transition metals, 

facilitating reactions with adjacent C–H bonds.19,20

Inspired by the dual transition metal/photoredox-catalyzed dehydrogenation protocol 

developed by Kanai and co-workers,21,22 we envisioned a selective reaction manifold for 

methylene oxygenation at the homobenzylic position of saturated alkyl arenes. This strategy 

would rely on a formal dehydrogenation via the intermediacy of a photoredox-generated 

benzylic radical (1•) to produce a styrene (3) in situ (Figure 1C). Hydration followed by a 

second dehydrogenation would invoke a net anti-Markovnikov Wacker-type oxidation to 

produce a ketone. The feasibility of this sequence has been demonstrated by Lei and co-

workers,23 and is dependent on the photoredox-catalyzed anti-Markovnikov addition of 

nucleophiles to alkene radical cations, a topic that has been rigorously studied by our group.
24,25 By the virtue of this mechanism, we were able to achieve an entirely selective oxidation 

at the homobenzylic position of alkyl arenes. While many C–H functionalization reactions 

exploit the inherent reactivity of labile benzylic hydrogen atoms, this unique transformation 

leverages this property to achieve a selective remote oxidation.

Reaction development focused on the transformation of propylbenzene (1a) to phenyl-2-

propanone (2a) (Table 1).26 To invoke the desired transformation, we devised initial reaction 

conditions consisting of a hydrogen evolving cobaloxime catalyst and an acridinium 

photooxidant. Upon irradiation with blue LEDs, quenching of the acridinium excited state 

by LiNO3 generates a nitrate radical capable of abstracting a benzylic hydrogen atom,27 

initiating the reaction. We investigated cobaloxime complexes judiciously, as they are known 

to be effective hydrogen-evolving catalysts,28–30 especially in the presence of organic acids 

generated by acridinium photooxidants.21,23 Of the Co catalysts that were explored, the 

difluoroborate-bridged [CoII] species outperformed [CoIII]A–C (Table 1, entries 1–4), 

although it was only marginally superior to [CoIII]A. It was later determined that yields 
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could be dramatically improved by including a catalytic amount of HNO3, which is 

suspected to promote turnover of the cobaloxime (Table 1, entry 5).29,30

Reaction progress kinetic analysis (RPKA) has been employed as a tool for studying 

reaction kinetics. It can be used to gain mechanistic insight and guide the optimization of 

reactions without the need for multiple pseudo-first-order experiments.31 Under RPKA 

conditions (Table 1, entry 5) (initial concentration = 95 mM 1a) a brief induction period 

(~20 min) was observed; the reaction then proceeds at a relatively high rate reaching ~15% 

conversion after 3 h (red trace, Figure 2). However, the reaction quickly tails off and only 

reaches ~40% after 20 h. These results suggest that conversion may be thwarted by either 

product inhibition or catalyst decomposition. To probe these possibilities, a same-excess 

experiment was performed by initiating the reaction at a lower concentration of 1a while 

maintaining all other stoichiometric reagents at the same relative concentrations (Figure 2).
26 Though LiNO3 is used in stoichiometric quantities, it was treated as a catalyst as its 

effective concentration should remain constant. Because this experiment was designed to 

simulate the reaction at approximately 30% conversion, product 2a was added in an attempt 

to rule out product inhibition.

The same-excess experiment revealed a similar reaction profile to that of the standard 

conditions (Table 1, entry 5); however, when the time axis is offset such that t0 of the same-

excess trial is aligned with the standard experiment where concentrations of 1a are equal (65 

mM), the curves are mismatched (time offset, Figure 2B). Ideally, catalyst concentrations 

should remain constant throughout; a mismatch indicates that catalyst degradation is 

probable. The concentration of 2a should also be equivalent in both reactions at that time 

point, therefore product inhibition can be ruled out as a cause for diminished consumption of 

1a under standard conditions.

Further optimization included a more extensive survey of acid additives.26 Dichloroacetic 

acid (DCA) was identified as a superior additive, giving a significant boost in reproducibiliy, 

though only delivering modest improvements in yield relative to HNO3 (Table 1, entry 6). 

However, increasing the cobaloxime catalyst loading from 5% to 10% furnished 

reproducibly good yields (Table 1, entries 7 and 8). We believe the implementation of DCA, 

by acting as a buffer for in situ-generated HNO3, is beneficial for mitigating acid-induced 

decomposition of the cobaloxime catalyst. These findings are congruent with the results of 

the same-excess experiment.

Similarly, we recognized that the benzylic protons present on the mesityl group of our most 

commonly utilized acridinium photocatalyst, Mes-Acr+, represented a liability for catalyst 

decomposition. Unsurprisingly, replacement of the most sterically accessible methyl group 

with a fluorine atom resulted in increased robustness with a variety of other alkyl arenes. As 

such, the modified catalyst, XylF-Acr+ (Chart 1), was implemented to explore the remainder 

of the substrate scope.

Simple linear alkyl-substituted arenes, such as propyl- and heptylbenzene, were competent 

substrates in this reaction giving smooth conversion to the desired ketone products 2a and 

2b, respectively. Modest yields were observed for 2c, demonstrating that the homobenzylic 
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position can be oxidized selectively in the presence of 3° benzylic C–H bonds. Interestingly, 

introducing additional benzylic C–H bonds on the aryl ring did not have a significant effect 

on reactivity, as 2d was still formed in good yield. Arenes with useful functional handles—

such as bromide—and biphenyl moieties were also competent substrates as demonstrated by 

2e and 2f, respectively. One potentially synthetically valuable application of this 

methodology is exemplified by the direct conversion of 1g to the corresponding β-ketoester 

2g.

We propose that this reaction proceeds through the mechanism outlined in Scheme 1. Initial 

oxidation of the nitrate anion (Ep/2
ox = + 1.97V)32 occurs from the excited-state photooxidant, 

XylF-Acr+* (Ered* = + 2.13V).33 The resulting nitrate radical is a potent H-atom abstracting 

agent,27 allowing it to excise the weak C(sp3)–H bond of 1, generating HNO3 and benzylic 

radical 1•. XylF-Acr• (E1/2
ox = − 0.54V) can feasibly undergo single electron transfer (SET) 

with [CoII] (E1/2
red = − 0.51V) to regenerate XylF-Acr+, and a reduced cobalt complex (vide 

infra). [CoI]− likely undergoes protonation to form [CoIII]–H assisted by the aforementioned 

acid additive. 1• is then intercepted by [CoIII]–H, liberating H2 and 3. There are several 

mechanisms by which this could occur:34–37 One possibility is the direct protonation of 

[CoIII]–H. This would form [CoIII]+ (E1/2
red ≈ + 0.2V),28 which could potentially oxidize 1• 

(E1/2
ox ≈ + 0.37V).38 While this SET is endergonic by about +0.2 V (4.6 kcal/mol), rapid 

deprotonation of the resulting benzylic cation intermediate would render SET irreversible, 

ultimately generating styrene 3. Alternatively, two molecules of [CoIII]–H could undergo a 

bimolecular reductive elimination of H2 generating two equivalents of [CoII].29 3 would then 

be formed via the addition of 1• to [CoII], forming a putative [CoIII] alkyl intermediate 

capable of undergoing a net β-hydride elimination. 3 can then engage in a second catalytic 

cycle to form the olefin radical cation (3•+), whereupon trapping with water would afford a 

distonic radical cation (2•+). Subsequent deprotonation and a second dehydrogenation would 

furnish the desired product 2 via a sequence akin to the mechanisms proposed by Lei and 

Nicewicz.23,24

The role of the cobaloxime in this reaction is two-fold: it is responsible for (1) hydrogen 

evolution and (2) turnover of the photoredox cycle via oxidation of XylF-Acr•. The latter 

was probed using stopped-flow kinetic analysis.26 Surprisingly, given only a modest driving 

force for electron transfer, the bimolecular electron transfer between the acridine radical and 

the Co(II) complex was found to occur during the mixing time of the experiment; thus, only 

a lower limit estimate of >107 M−1 s−1 could be determined for the rate of electron transfer.
26

Stern–Volmer analysis revealed that both the nitrate anion and β-methylstyrene quench the 

excited state acridinium on the order of 109 M−1 s−1, unlike 1a, which was a poor quencher 

(Chart 2A). These observations lend credence to the proposed photoinduced electron transfer 

events outlined in Scheme 1. Interestingly, styrenes were seldom detected in the 1H NMR 

spectra of crude reaction mixtures. This is likely a result of styrene being the most efficient 

quencher of XylF-Acr+* present in the reaction mixture, with the styrenyl intermediate only 

existing transiently before rapidly oxidizing to the olefin radical cation. Furthermore, 
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subjecting 3a to the reaction conditions produced near-quantitative conversion to 2a, 

indicating that styrenes are plausible intermediates.

Having established a working mechanism for the disclosed transformation, we were curious 

about the performance of more electron-rich substrates such as tetralin (1h), as these 

compounds may compete with LiNO3 by reductively quenching XylF-Acr+* (Chart 2A). 

Owing to the extremely high acidity of the benzylic protons of arene radical cations,39 one 

could envision an alternate mechanistic pathway where radical 1• is formed through 

oxidation and deprotonation of 1, obviating the need for LiNO3 (Chart 2B). As expected, 

tetralin (1h) can be efficiently converted to 2-tetralone (2h), a challenging motif to access 

directly by traditional synthetic methods, without the use of LiNO3 (Chart 2C). These 

conditions also allowed for lower [CoII] loadings and shorter reaction times, further 

supporting our hypothesis that prolonged exposure of the cobaloxime to in situ generated 

HNO3 likely leads to catalyst decomposition. These conditions also proved to be more 

functional group tolerant than those presented in Chart 1.

When selecting the appropriate conditions for this transformation, the redox properties of 

both the photocatalyst and substrate should be considered. As a general rule of thumb, if 

electron transfer is energetically favorable, the conditions without LiNO3 should be 

employed. For example, 1a was found by cyclic voltammetry to have a Ep/2
ox  of +2.27 V and 

is therefore not likely to undergo facile SET with XylF-Acr+* (Ered* = + 2.13V) and will 

require the use of LiNO3 as a mediator. However, 1h (Ep/2
ox = + 2.03V) is poised to undergo 

thermodynamically favorable SET. Stern–Volmer analysis should be used to determine 

actual ability of a particular substrate to quench XylF-Acr+*; however, CV analysis will 

allow for a reasonable approximation.

In conclusion, we have developed a protocol for the selective oxidation of traditionally 

unreactive C–H bonds. Experiments were performed to probe the mechanism of this dual-

catalytic, two-part transformation, which guided efforts to devise separate sets of conditions 

to address differences associated with the electronic properties of individual substrates. An 

initial look into the substrate scope has revealed the potential utility of this reaction, which 

allows for the direct access of dissonant motifs from inexpensive and simple starting 

materials. Ongoing work is focused on refining this protocol for specific applications that we 

anticipate could make impacts in multiple facets of the chemical industry.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A, B) Traditional and state-of-the-art methods selective for benzylic oxidation. (C) 

Selective homobenzylic oxidation.
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Figure 2. 
Kinetic profile of 1a oxidation under the HNO3 conditions (red trace) and the same-excess 

experiment (blue trace).
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Scheme 1. 
Mechanistic Proposal for LiNO3-Mediated Homobenzylic Oxidation
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Chart 1. 
Homobenzylic Oxidation Scope
aYields determined by NMR vs an internal standard, b20 h. c44 h. dMes-Acr+ in place of 

XylF-Acr+.
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Chart 2. 
(A) Stern–Volmer Analysis of Potential Quenching Molecules, (B) Proposal for Direct 

Substrate Oxidation Mechanism, and (C) Scope for Homobenzylic Oxidation
aYields determined by NMR vs internal standard. b20 h. c44 h.
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Table 1.

Optimization of Homobenzylic Oxidation

entry [Co] source (mol %) acid yield (%)

1
a [CoIII]A (5) – 22

2
a [Com]B (5) – 11

3
a [Com]C (5) – 4

4
a [Con] (5) – 24

5b [Con] (5) HNO3 55

6
b [Con] (5) DCA 57

7b [Con] (10) HNO3 55–74

8
b [Con] (10) DCA 70

9
b,c [Con] (10) DCA trace

a
20 h reaction time.

b
44 h reaction time.

c
0 equiv LiNO3. DCA = dichloroacetic acid. Yields were determined by NMR against HMDSO as an internal standard.
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