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SUMMARY

Two common statistical problems in pooling survival data from several studies are addressed. The 

first problem is that the data are doubly censored in that the origin is interval censored and the 

endpoint event may be right censored. Two approaches to incorporate the uncertainty of interval-

censored origins are developed, and then compared with more usual analyses using imputation of a 

single fixed value for each origin. The second problem is that the data are collected from multiple 

studies and it is likely that heterogeneity exists among the study populations. A random-effects 

hierarchical Cox proportional hazards model is therefore used.

The scientific problem motivating this work is a pooled survival analysis of data sets from three 

studies to examine the effect of GB virus type C (GBV-C) coinfection on survival of HIV-infected 

individuals. The time of HIV infection is the origin and for each subject this time is unknown, but 

is known to lie later than the last time at which the subject was known to be HIV negative, and 

earlier than the first time the subject was known to be HIV positive. The use of an approximate 

Bayesian approach using the partial likelihood as the likelihood is recommended because it more 

appropriately incorporates the uncertainty of interval-censored HIV infection times.
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1. INTRODUCTION

Infection with GB virus type C (GBV-C) in humans is common, but no association between 

the virus and any known disease state has been demonstrated [1–3]. Individuals infected 

with human immunodeficiency virus (HIV) are commonly coinfected with GBV-C, since 

GBV-C shares the same modes of transmission as HIV. The prevalence of coinfection with 

GBV-C in HIV-infected individuals ranges from 14 to 43 per cent [4]. Several recent studies 

of data from an early period in the epidemic, before the availability of effective therapy, 

suggest that coinfection with GBV-C is associated with prolonged survival among HIV-

infected people [5–8]; other studies have concluded that there is no association [9, 10]. A 

meta-analysis of summary statistics is performed by Zhang et al. [11] which indicates that 

persistent GBV-C coinfection is associated with prolonged survival when GBV-C is 

measured 5–6 years after seroconversion. To further investigate this conclusion, which 

remains controversial [12, 13], individual level data from separate studies are modeled here.

Original data sets from three published studies [6–8] are obtained. These data sets are 

doubly censored. First, the origin (HIV infection time) Y is interval censored in that it is 

known to lie in an interval Y ∈ [L, U]. Second, the endpoint (death) time E is possibly right 

censored. Denote survival time T = E − Y. The dependence of T on covariates and, in 

particular, on the indicator of GBV-C infection is of interest. In this paper, approaches are 

developed for the pooled survival analysis of doubly censored data from multiple studies and 

applied to the pooled data from the three studies.

A random-effects model for the indicator of GBV-C coinfection incorporates the 

heterogeneity of patient characteristics between the studies. The most popular modeling 

method in survival analysis, the Cox proportional hazards model [14], avoids making any 

assumptions about the baseline hazard function λ0(t). Several authors have considered Cox 

survival models with random effects [15–19]. Our approach builds on that of Sargent [20] 

and Gustafson [21] and treats the Cox partial likelihood [22] as the likelihood.

The remainder of this paper is organized as follows. Section 2 gives an introduction to the 

hierarchical Cox proportional hazards model. Section 3 presents different approaches to 

incorporating the interval censoring. In Section 4, these approaches are applied to the case 

study, and the results are summarized and compared. Section 5 concludes with a discussion.

2. HIERARCHICAL COX PROPORTIONAL HAZARDS MODEL

The standard Cox regression represents the relationship between the covariates of interest 

and the hazard of event at time t through a proportional hazards model:

λ t; xi = λ0(t)exp xiβ

where λ(t; xi) is the hazard function, xi is a 1 × p covariate vector for individual i, and β is a 

p × 1 vector of coefficients corresponding to fixed effects.
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2.1. The hierarchical model

Suppose there are q covariates to be modeled as random effects in addition to p covariates 

with fixed effects. For each of the q random covariates, there are rl levels (e.g. trials, centers, 

studies), for l =1, … , q, with parameter vector γl = γl1, …, γlrl
T corresponding to the lth 

random covariate. Let wil be a scalar indicating the ith subject’s value of the lth random-

effect covariate. Let zil = zil1, …, zilrl , with zilj = Iiljwil, where Iilj = 1 if subject i falls in the 

jth level of the lth random covariate, 0 otherwise. Define γ = γ1
T , …, γqT

T
 and zi = (zi1, … , 

ziq). Using this notation, the Cox model with random effects, a reparameterized frailty 

model [20], can be written as λ(t; xi, zi) = λ0(t) exp(xiβ + ziγ). Let D denote a right-

censored data set, D = {(ti, δi, xi, zi) : i = 1, 2, … , n}, where ti is subject i’s survival time, δi 

is the indicator for censoring, with δi = 0 if censored and δi = 1 otherwise, and n is the 

number of observations. Let ℜti be the set of subjects at risk at time ti. If there are no ties, 

the partial likelihood incorporating random effects is given by

ℒ(β, γ ∣ D) ∝ ∏
i = 1

n exp xiβ + ziγ
∑j ∈ ℜti exp xjβ + zjγ

δi
(1)

The partial likelihood in (1) serves as the first stage of the hierarchical model and can be 

treated as a likelihood for computing a posterior density. Kalbfleisch [23] demonstrates that 

treating the partial likelihood as a likelihood leads to a limiting marginal posterior 

distribution of the regression parameters, assuming an independent increments gamma 

process prior distribution for the baseline cumulative hazard and independently a uniform 

distribution on the regression parameters. This result is shown with a different proof in Sinha 

et al. [24], which extends the results to situations with time-dependent covariates, time-

varying regression parameters, and grouped survival data, and presents a Bayesian 

justification of a modified partial likelihood for handling ties. See also Chapter 4 of [25]. 

Chen et al. [26] carry out an in-depth theoretical investigation of Bayesian inference for the 

Cox regression model and discuss posterior propriety and computation based on Cox’s 

partial likelihood. Sargent [20] and Gustafson [21] present methods for Bayesian analysis of 

multivariate survival data using (1).

The level-specific parameters γlj are modeled as draws from a distribution gl with mean μl 

and variance νl. Let g denote the joint density for γ, and assume γlj’s are independent of 

each other given μl and νl, for l = 1, … , q and j = 1, … , rl. Then

g(γ ∣ μ, v) = ∏
l = 1

q
∏
j = 1

rl
gl γlj ∣ μl, vl (2)

where μ = (μ1, … , μq)T and ν = (ν1, … , νq)T.

For the final stage of the hierarchical model, prior distributions need to be specified. A 

proper prior distribution for the variance component is typically essential for a proper 
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posterior distribution and computational stability. Let f (μ, ν|ω) represent this prior 

distribution, where ω is the vector of hyperparameters and is taken to be known. Also let β 
have, independent of γ, a uniform prior distribution.

An approximate posterior distribution for the model parameters is then be assumed to be

π(β, γ, μ, v ∣ D, ω) ∝ ℒ(β, γ ∣ D)g(γ ∣ μ, v)f(μ, v ∣ ω) (3)

where D are right-censored data.

2.2. Estimation of parameters using MCMC methods

The approximate posterior distribution (3) can be estimated with Markov chain Monte Carlo 

(MCMC) methods. The Metropolis–Hastings algorithm [27, 28] is a general term for a 

family of MCMC methods that are useful for drawing samples from Bayesian posterior 

distributions. Let θ denote the set of parameters involved in the hierarchical model. The 

parameter vector θ is divided into components corresponding to the hierarchy and the 

single-component Metropolis–Hastings algorithm is used [29].

3. ANALYSIS OF DOUBLY CENSORED DATA

Denote doubly censored data by C = {([li, ui], ei, δi, xi, zi) : i = 1, 2, … , n}, where [li, ui] is 

the interval within which origin yi falls and ei is the endpoint time which is possibly right 

censored. Further, define a function D(·, ·) mapping a doubly censored data set C and a set 

of origin times y = (y1, y2, … , yn)T to a right-censored data set; specifically, D(C, y) = {(ti, 
δi, xi, zi) : i = 1, 2, … , n}, where ti = ei − yi. A common approach in medical applications 

[8, 30, 31] is that midpoints of censoring intervals are used to impute interval-censored 

origins, yi = li + ui /2, and are then used to compute t i = ei − yi in analysis assuming that 

they are right-censored data. In this case, D(C, y) = t i, δi, xi, zi : i = 1, 2, …, n , where 

y = y1, y2, …, yn
T. Law and Brookmeyer [32] demonstrates that in HIV studies the Kaplan–

Meier estimate based on this method is notably biased when origin intervals are longer than 

two years.

Three alternative methods are proposed below, which can be implemented using MCMC. If 

the partial likelihood is used as a likelihood in estimating the posterior distribution using 

MCMC, the assumption has to be made that this is valid under interval censoring of the 

origin: an assumption which has not been proved, but that seems reasonable given the results 

in [23, 24, 26].

3.1. MCMC for imputed data (MCMCid) approach

As a potential improvement to using the midpoint of a censoring interval, the MCMCid is 

proposed here, which samples a value of each interval-censored origin from an estimated 

distribution of origins. Let G denote the distribution function of origins y. The estimate of G, 

G, can be obtained either parametrically using the maximum likelihood estimation based on 

a known distribution (e.g. Weibull, log normal) or non-parametrically using Turnbull’s self-

consistency algorithm [33]. To perform an analysis for doubly censored survival data using 
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MCMCid, for each subject i, i = 1, … , n, a value of yi, denoted yi, is randomly sampled 

from G, conditional on the interval [li, ui] within which yi falls. The doubly censored data set 

C and imputed origins y = y1, y2, …, yn
T are then mapped to a right-censored data set 

D(C, y) = t i, δi, xi, zi : i = 1, 2, …, n , where t i = ei − yi. The hierarchical Cox proportional 

hazards model can then be fit to the right-censored data D(C, y) using MCMC methods.

The MCMCid approach is straightforward to implement and understand, but underestimates 

the variability of parameter estimates because the uncertainty of imputed origins y is not 

incorporated.

3.2. Imputation-embedded MCMC (ieMCMC) approach

The imputation-embedded MCMC (ieMCMC) approach is developed as an alternative. For 

each MCMC iteration step m, m = 1, … , M (e.g. M = 20 000), origins ym = y1
m, …, ynm

T
 are 

randomly sampled based on their distribution G, conditional on the intervals {[li, ui] : i = 1, 

2, … , n} within which they fall. A right-censored data set, 

D C, ym = tim, δi, xi, zi : i = 1, 2, …, n , where tim = ei − yim, is generated at each iteration step 

m. In the ieMCMC approach, the origins ym vary at each MCMC sampler iteration with a 

distribution based on G, but the estimate G is still fixed. The uncertainty in estimating G by 

G is therefore not taken into account, although the uncertainty in ym conditional on G is 

considered.

3.3. Bayesian partial likelihood (Bayesian-PL) approach

Finally, an approach is proposed with a parametric assumption on origins, which is more 

complete. Denote h(y|ξ) as the probability density function of the origins, with parameter 

vector ξ. Let p(ξ|ϖ) represent the prior distribution for ξ, where ϖ is the vector of 

hyperparameters governing p(·). For a doubly censored data set C = {([li, ui], ei, δi, xi1, zi) : i 
= 1, 2, , … , n}, define Iyi as the indicator function which is equal to 1 if yi is in [li, ui] and 0 

otherwise. The approximate posterior distribution, based on using the partial likelihood as 

the likelihood, for all model parameters including the interval-censored unknown origins y 
can be expressed as

π(β, γ, μ, v, ξ, y ∣ C, ω, ϖ) ∝ ℒ(β, γ ∣ D(C, y))g(γ ∣ μ, v)

× ∏
i

ℎ yi ∣ ξ Iyi
H μi ∣ ξ − H li ∣ ξ f(μ, v ∣ ω)p(ξ ∣ ϖ) (4)

where H(·|ξ) is the cumulative density function of y. At each iteration of the MCMC 

sampler, the origins y are drawn from their full conditional distribution, given all other 

model quantities. The resulting analysis provides an updated estimate of the distribution of 

origins, as well as correctly captures the effect of the uncertainty in origins on the estimation 

of the parameters of primary interest. Because (4) is an approximation of the posterior 

distribution, in what follows we refer to this as the Bayesian-PL method.
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4. CASE STUDY

The pooled data set consists of doubly censored data sets from three studies [6–8], and each 

study corresponds to a different population. In studies [6, 7], GBV-C is measured at entry 

into the study, which is presumed to be late in HIV disease based on the cohorts’ overall 

CD4+ cell count. In study [8], GBV-C infection is measured at 5–6 years after documented 

seroconversion to HIV infection. The ‘late’ data set of the Williams study [8] is used, from 

the Multicenter AIDS Cohort Study (MACS), which has a documented HIV seroconversion 

window of approximately 6 months on average. In the MACS study, HIV infection is based 

on the retrospective testing of stored blood samples obtained on a regular basis, and HIV 

tests are negative before seroconversion and positive after that. In the other two studies, the 

date of subject’s first-known HIV positive test is used as the right limit of the interval within 

which seroconversion is assumed to occur, and 1 January 1978 (or date of birth for subjects 

born after 1 January 1978) is taken to be the left limit of the interval. 1 January 1978 is 

chosen because an analysis of stored blood samples from a study in San Francisco indicates 

an extremely low prevalence of HIV infection before this date in a population at risk for HIV 

[34].

For subjects in all the three studies, the covariate CD4+ cell count is the measurement at the 

time of the first-known HIV-positive test. The covariate indicating GBV-C infection in [6, 7] 

is the only GBV-C measurement available for the subjects in these studies. In [8] two GBV-

C test results are available, one at 12–18 months after seroconversion and the other at 5–6 

years after seroconversion. The measurement 5–6 years after seroconversion is deemed to be 

most similar to the measurement in the other two studies and the measurement that could 

best address the question of whether persistent GBV-C infection is associated with 

prolonged survival. Although the duration of GBV-C infection is not well characterized, 

GBV-C is shown to persist in approximately 80 per cent of HIV-infected individuals tested at 

both time points in [8], and acquisition of GBV-C following HIV infection is rare (see [8] 

and the discussion in Section 5).

The sample sizes of [6–8] are 362, 197, and 138, respectively. A summary of these three 

studies can be found in [11]. All studies follow subjects through the time period before the 

advent of highly effective therapy for HIV in 1996.

Fitting the regular Cox model to the three imputed data sets separately, the estimated log 

hazard ratio of GBV-C coinfection, controlling for baseline log(CD4+ count in cells/mL) 

and age at HIV infection, is −1.23,−1.62, and −0.97 for [6–8], respectively. For both Xiang 

and Tillmann studies [6, 7], HIV infection time is heavily interval censored, with a mean 

interval width of about 10 years. In contrast, HIV infection time in the Williams study [8] 

has much narrower intervals. The subjects in the Tillmann study are from Germany, and the 

subjects in the other two studies are from the U.S.A. The differences among the studies 

could be due to several reasons, including the fact that GBV-C testing is not standardized 

and each study used a different primer for a qualitative test. A recent study [35] indicates 

that the sensitivity and specificity of each test vary and that the sensitivity of one particular 

test depends on GBV-C RNA levels. This motivates the need for an analysis that has the 

ability to account for the possibly differing effects of GBV-C infection within each 
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population. The primary endpoint for this pooled analysis is the overall survival. All 695 

eligible patients are included in the analysis.

Let xi1, xi2, and wi denote log(CD4+ count in cells/mL), age at HIV infection, and GBV-C 

coinfection status for subject i, respectively. Let Iij = 1 if subject i is from study j, 0 

otherwise, with j = 1, 2, 3 corresponding to the three studies [6–8]. Define zi = (zi1, zi2, zi3), 

where zij = Iijwi. Let β = (β1, β2)T denote the fixed effects of covariates xi1 and xi2. Let γ = 

(γ1, γ2, γ3)T denote the random effects of covariates zi = (zi1, zi2, zi3), with constraint γj 

∼N(μ, σ2), where μ is the population effect of GBV-C infection and σ2 the population 

variance. Specifically, the hazard function for individual i at time tk is given by

λ tk; xi1, xi2, zi = λ0 tk exp xi1β1 + xi2β2 + ziγ (5)

Note that age at HIV infection xi2 is a known deterministic function of infection time yi. 

Fixed effects, rather than random effects, are used for age and CD4+ cell count as the effects 

from each data set of the three studies are very similar. This is unlike the effect of GBV-C in 

each study, which shows more variation.

In what follows, approximate posterior density, approximate posterior mean, and 

corresponding approximate highest posterior density region (HDR) are calculated using the 

approximation based on the partial likelihood. These will be referred to as posterior density, 

mean, and HDR for simplicity, without explicitly qualifying that they are approximations.

4.1. Prior distributions

Other than the three studies for which we have individual-level data, there are four additional 

studies [5, 9, 10, 36] providing only summary statistics (hazard ratio and corresponding 95 

per cent confidence interval). A meta-analysis of summary statistics for these four studies is 

done, similarly to the meta-analysis of all summary statistics in [11]. The estimated 

combined effect of GBV-C in these four studies is −0.41, with an estimated standard error of 

0.42. This result helps to postulate the prior distribution for μ. To be conservative, the 

standard error is multiplied by 2, so that μ is normally distributed as N[−0.41, (0.42 × 2)2].

A proper prior distribution for σ2 is used for the sake of computational stability of the 

MCMC methods and to generate a proper approximate posterior distribution. A gamma 

distribution on τ = σ−2 is used for τ with mean 50 and variance 10 000, denoted as Γ(0.25, 

0.005). This distribution is specified by considering what values for the random effects are 

reasonable. For example, an assumption representing moderate heterogeneity between the 

studies would be that γj (j = 1, 2, 3) vary around μ by ±0.10. Using 0.10 as an estimate of 

the standard error σ leads to a prior estimate of τ = 100. A prior belief that presents 

substantial heterogeneity might be that the γj vary around μ by ±1.0. Using 1.0 as the prior 

standard error of γj leads to a prior estimate of τ = 1. The prior distribution Γ(0.25, 0.005), 

with mean 50 and standard error 100, gives reasonable weight to these extremes. A flat prior 

distribution is used for β.
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4.2. Joint posterior distributions

A parametric model for the distribution of y is implemented in the example instead of the 

non-parametric method. Reasons for this choice include that the non-parametric maximum 

likelihood estimator G given by Turnbull [133] is only unique up to an equivalence class and 

also has discrete components. The parametric model gives a smoother distribution for the 

times of infection, which is thought to more realistically model the reality of the spread of 

HIV infection. In addition, for the pooled data set, Turnbull’s estimate of the survival 

function is not very different from the maximum likelihood estimate based on assuming a 

Weibull distribution (see Figure 1 of a technical report [37]).

4.2.1. MCMCid and ieMCMC approaches—The distribution function G of HIV 

infection times y is assumed to be a Weibull(α, λ). Conditional on the maximum likelihood 

estimates (α, λ) and intervals for infection times, infection times y are randomly sampled. Let 

C denote the doubly censored data C = {([li, ui], ei, δi, xi1, zi) : i = 1, 2, … , n}. Following 

the prior distributions in Section 4.1, the joint approximate posterior density of all 

parameters for the MCMCid approach is given by

π(β, γ, μ, τ ∣ D(C, y)) ∝ ℒ(β, γ ∣ D(C, y)) ∏
j = 1

3
τ1/2exp − γj − μ 2τ

2

× exp − μ − μ0
2

2σ0
2 τa0 − 1exp − τ

b0

(6)

where D(C, y) = t i, δi, xi1, xi2, zi : i = 1, 2, …, n , t i = ei − yi, xi2 is a function of yi, and (a0, 

b0, μ0, σ0) = (0.25, 0.005, −0.41, 0.42 × 2).

The joint posterior density of all parameters for the ieMCMC approach is the same as (6), 

except that D(C, y) is replaced by D(C, ym), where 

D C, ym = tim, δi, xi1, xi2
m, zi : i = 1, 2, …, n , tim = ei − yim and xi2

m is a function of yim. In the 

ieMCMC approach, D(C, ym) changes at each MCMC iteration m, while D(C, y) is fixed 

during the process of the MCMCid approach.

For both MCMCid and ieMCMC approaches, given data and other parameters in the model, 

the full conditional posterior distribution for τ has a gamma distribution 

π(τ ∣ ⋅ ) ∝ Γ a0 + 3
2 , b0 + ∑j = 1

3 γj − μ 2/2 , and the full conditional posterior distribution for μ 

has a normal distribution π(μ ∣ ⋅ ) ∝ N λμ0 + (1 − λ)γ, (1 − λ)(3τ)−1 , where 

λ = (3τ)−1/ (3τ)−1 + σ0
2  and γ = ∑j = 1

3 γj/3.

It is straightforward to perform the Gibbs sampling on μ and τ, but there is no direct way to 

draw from parameters β and γ, and the single-component Metropolis–Hastings algorithm 

[29] for the sampling of these two parameter components is used.

4.2.2. Bayesian-PL approach—The distribution of y is also assumed to be a 

Weibull(α, λ), and the prior distributions for α and λ are specified independently as log 
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normal distributions: LogNorm μα, σα2  and LogNorm μλ, σλ
2 , respectively. For yi ∈ [li, ui], i 

= 1, … , n, the joint approximate posterior density of all parameters for the Bayesian-PL 

approach is then given by

π(β, γ, μ, τ, α, λ, y ∣ C) ∝ ℒ(β, γ ∣ D(C, y)) ∏
j = 1

3
τ1/2exp − γj − μ 2τ

2

× exp − μ − μ0
2

2σ0
2 τa0 − 1exp − τ

b0

× ∏
i = 1

n
αλ−αyiα − 1exp − yi

λ
α

exp − li
λ

α
− exp − ui

λ
α −1

× α−1exp − log(α) − μα
2

2σα2
λ−1exp − log(λ) − μλ

2

2σλ
2

(7)

where (μα, σα, μλ, σλ) = (1.31, 0.4, 3.51, 0.5).

4.3. Results of primary analysis

All methods are implemented in R [38], using the Metropolis-within-Gibbs algorithm. The 

posterior full conditional distributions of μ and τ are normal and gamma, respectively, so 

these parameters were drawn using Gibbs sampling. The approximate posterior full 

conditional distributions for parameters using the single-component Metropolis–Hastings 

algorithm [29] in the Bayesian-PL approach are given in the Appendix of the technical 

report [37]. Code is available from the first author. The WinBUGS software package [39] 

could not be used easily because of the doubly censored data complicated by an interval-

censored covariate. Three independent chains are generated for each of the three approaches 

(MCMCid, ieMCMC, and Bayesian-PL approach). Each chain consists of 14 000 iterations 

after a series of 6000 burn-in iterations. The Brooks and Gelman convergence diagnostic 

[40] indicates that there is no evidence against the convergence of sampler for each 

parameter in all approaches.

Table I summarizes results from the MCMCid, ieMCMC, and Bayesian-PL approaches 

based on the hierarchical Cox proportional hazards model. The point estimates from the 

three approaches are similar for each parameter except for σ. For each parameter estimate, 

the standard error from the Bayesian-PL approach is, appropriately, the largest among three 

approaches, while the standard error from the MCMCid approach is the smallest one. 

Consequently, the 95 per cent HDR from the Bayesian-PL approach is generally wider than 

the one from the MCMCid or ieMCMC approach; the 95 per cent HDR from the MCMCid 

approach tends to be the narrowest. The differences are substantial, especially for the 

parameters of most interest: μ and σ.

Results from all three approaches indicate that GBV-C infection is associated with 

prolonged survival. From the Bayesian-PL approach, the estimated hazard ratio for GBV-C 

viremia is e−1.423, e−0.335 = e−μ = e−0.891 = 0.41, with 95 per cent probability of falling 

into the interval (e−1.423, e−0.335) = (0.24, 0.72) after adjusting for baseline log(CD4+ count 
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in cells/mL) and age at HIV infection. Baseline log(CD4+ count in cells/mL) is also 

associated with prolonged survival: estimated hazard ratio eβ1 = e−0.645 = 0.52, with 95 per 

cent probability of falling into the interval (e−0.842, e−0.444) = (0.43, 0.64).

4.4. Results of sensitivity analysis

To examine the behavior of the estimate of μ from the Bayesian-PL approach when the 

distribution for infection times y is modified, the hierarchical Cox proportional hazards 

model is fit using different distributions for y. Specifically, we use a flat distribution for y, a 

single Weibull(α, λ) for y, and a set of three Weibull distributions, one for each of the three 

studies, Weibull(αj, λj) for yj, j = 1, 2, 3. The choice of Γ(0.25, 0.005) as the prior for τ is 

also examined by using Γ(0.001, 0.001). Overall, there are 3 × 2 = 6 scenarios in the 

sensitivity analyses, with the first one corresponding to the primary analysis (see Table II 

and Figure 1). The value of μ, the estimate for the logarithm of hazard ratio of GBV-C 

infection, changes only slightly, as does the standard error and 95 per cent HDR. This 

analysis suggests that the results are insensitive to the choice of prior distribution.

5. DISCUSSION

The imputation-embedded MCMC (ieMCMC) and the Bayesian-PL approaches are 

developed to deal with doubly censored survival data and compared with an MCMC analysis 

of a right-censored data set constructed by imputing a single value for each interval-censored 

origin (MCMCid). The MCMCid approach considerably underestimates the variability of 

the estimates. The ieMCMC allows for some uncertainty of imputed origins to play a role, 

but again results in underestimation of the variability of the parameter estimates. In 

comparison, the Bayesian-PL approach treats unobservable origins y as unknown quantities 

with a parametric distribution G. Prior distributions are then assigned for the 

hyperparameters of G. Interval censoring is treated by data augmentation [41] with y drawn 

from their posterior predictive distribution. The results from the Bayesian-PL approach more 

appropriately reflect uncertainty than the MCMCid and ieMCMC approaches. This paper 

demonstrates the ability of the Bayesian-PL approach to incorporate the uncertainty of 

imputed origins in doubly censored survival data. Our sensitivity study shows that the results 

from the Bayesian-PL approach are reasonably insensitive to the specification of the 

parametric form of G (Figure 1).

Härkänen et al. [42] presented a non-parametric Bayesian intensity model for doubly 

censored data in the fully Bayesian framework, which treats unobservable origins y as 

unknown quantities with piece-wise constant hazard functions. Hazard functions are 

assigned gamma prior distributions. Komárek et al. [43] applied a modified version of this 

approach to doubly censored dental data to examine the effect of fluoride intake on the time 

to caries development in children. However, these approaches are complex to implement and 

computationally demanding.

It should be noted that a formal justification of using the Bayesian-PL approach has not been 

provided for interval-censored origins and random effects. Given the results in [23, 24, 26] 

this assumption is not unreasonable, but additional work needs to be done.
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In the case study, a completely parametric model could have been used, in which case an 

estimate of the survival curve would be available. The primary interest in this data analysis 

is, however, the question of whether or not co-infection with GBV-C is associated with 

prolonged survival of individuals infected with HIV disease. All three studies and the other 

studies in the meta-analysis [11] use data before the advent of the highly effective therapy 

for HIV infection, and so the survival curve itself is not of current interest.

Our analysis examines the association between GBV-C infection late in HIV disease and 

survival, from the time of HIV seroconversion, of HIV-infected individuals. The data 

available are not ideal to address the association of persistent GBV-C infection with 

prolonged survival, but GBV-C infection is typically persistent in that the possibility of 

GBV-C infection clearance or acquisition of GBV-C infection after HIV infection is small 

[8, 44]. The results of both [8, 13] indicate that the loss of GBV-C infection late in the 

disease may be predictive of shorter survival after the loss. Additional testing for GBV-C of 

stored samples and additional modeling are being planned to examine the joint distribution 

of survival and GBV-C infection.

In summary, the Bayesian hierarchical Cox model has accommodated random study-specific 

effects and has therefore incorporated between-study heterogeneity. Through the 

specification of prior distributions, the prior information relevant to the parameters of 

interest has been taken into account. The methods for doubly censored survival data 

developed in this paper have enabled the analysis of these data sets and lead to the 

conclusion that the hazard of death with GBV-C infection is approximately 40 per cent of 

that without GBV-C infection, and that the hypothesis of no difference in hazard can be 

ruled out with high probability. The pooled analysis of the individual subject data therefore 

augments and supports the meta-analysis result of the summary statistics previously reported 

in [11]. Biological plausibility for a beneficial mechanism and in vitro evidence in inhibiting 

HIV replication are provided in [6, 45–49]. However, as in all observational data, the results 

of our analyses do not provide evidence that GBV-C is causally related to improved survival, 

and it is possible that GBV-C infection is not the reason that HIV-positive individuals 

coinfected with GBV-C live longer but, rather, that it serves as a biological marker of a 

different factor related to HIV disease progression. This warrants further investigation and is 

a subject of debate in the scientific literature [9, 12, 13, 49, 50].
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Figure 1. 
Estimated hazard ratio and 95 per cent HDR from the MCMCid and ieMCMC approaches 

(above the dashed line), and from sensitivity analysis with different prior distributions for τ 
and HIV infection times y using the Bayesian-PL approach (below the dashed line). The 

primary analysis is Tau1Y1.
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Table II.

Sensitivity analysis for the Bayesian-PL approach using different prior distributions for τ and y.

Analysis τ Infection times y μ (SE) 95 per cent HDR

Tau1Y1 Γ(0.25, 0.005) Weibull(α, λ) −0.891 (0.277) (−1.423, −0.335)

Tau1Y2 Γ(0.25, 0.005) Weibull(αj, λj), j = 1, 2, 3 −0.866 (0.288) (−1.398, −0.263)

Tau1Y3 Γ(0.25, 0.005) Flat prior −0.924 (0.272) (−1.417, −0.350)

Tau2Y1 Γ(0.001, 0.001) Weibull(α, λ) −0.876 (0.271) (−1.385, −0.326)

Tau2Y2 Γ(0.001, 0.001) Weibull(αj, λj), j = 1, 2, 3 −0.878 (0.283) (−1.392, −0.279)

Tau2Y3 Γ(0.001, 0.001) Flat prior −0.911 (0.250) (−1.360, −0.412)
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