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Combined Utility of 25 Disease and Risk Factor
Polygenic Risk Scores
for Stratifying Risk of All-Cause Mortality

Allison Meisner,1 Prosenjit Kundu,1 Yan Dora Zhang,1,2 Lauren V. Lan,1 Sungwon Kim,1

Disha Ghandwani,1,3 Parichoy Pal Choudhury,4 Sonja I. Berndt,4 Neal D. Freedman,4

Montserrat Garcia-Closas,4 and Nilanjan Chatterjee1,5,*

While genome-wide association studies have identified susceptibility variants for numerous traits, their combined utility for predicting

broad measures of health, such as mortality, remains poorly understood. We used data from the UK Biobank to combine polygenic risk

scores (PRS) for 13 diseases and 12 mortality risk factors into sex-specific composite PRS (cPRS). These cPRS were moderately associated

with all-cause mortality in independent data within the UK Biobank: the estimated hazard ratios per standard deviation were 1.10 (95%

confidence interval: 1.05, 1.16) and 1.15 (1.10, 1.19) for women and men, respectively. Differences in life expectancy between the top

and bottom 5% of the cPRS were estimated to be 4.79 (1.76, 7.81) years and 6.75 (4.16, 9.35) years for women and men, respectively.

These associations were substantially attenuated after adjusting for non-genetic mortality risk factors measured at study entry (i.e., mid-

dle age for most participants). The cPRS may be useful in counseling younger individuals at higher genetic risk of mortality on modifi-

cation of non-genetic factors.
Introduction

Genome-wide association studies (GWASs) with increas-

ingly large sample sizes have led to the discovery of thou-

sands of genetic variants associated with individual traits,

including complex diseases and risk factors for disease.1

Analyses of polygenicity of a variety of traits2,3 have

further indicated that many individual traits are likely to

be associated with thousands to tens of thousands of ge-

netic variants, each with very small effect. Thus, much

attention has been paid to the utility of polygenic risk

scores (PRS), which represent the genetic burden of a given

trait, for developing strategies for risk-based intervention

through lifestyle modification,4–8 screening,5,7–12 and

medication.5,7,13,14 A PRS for a given trait is typically

defined as a weighted sum of a set of germline single-nucle-

otide polymorphisms (SNPs), where the weight for each

SNP corresponds to an estimate of the strength of associa-

tion between the SNP and the trait.7 Recent studies indi-

cate that while PRS tend to have modest predictive capac-

ity overall, they have the potential to offer substantial

stratification of a population into distinct levels of risk

for some common diseases such as coronary artery disease

(CAD) and breast cancer.4,15

There is ongoing debate regarding the utility of PRS in

clinical practice.16–18 PRS can be more robust and cost-

efficient tools for risk stratification than other biomarkers

and risk factors. In particular, PRS do not change over

time and thus need to be measured only once. Addition-

ally, the risk associated with PRS for different traits ap-

pears in many cases to be fairly consistent over an indi-
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vidual’s life course15,19 and time-varying lifestyle and

clinical factors tend to act in a multiplicative way on

baseline genetic risk.4,6,20,21 Further, if genome-wide ge-

notype and/or sequencing data are available on an indi-

vidual, the same data can be used to evaluate the PRS

for a large number of traits simultaneously. Thus, beyond

the use of PRS for prevention of specific diseases, it is

important to evaluate their utility for broad health out-

comes, particularly if PRS are to be utilized in routine

health care.

The broad health impact of public health or clinical in-

terventions is often measured in terms of their impact on

all-cause mortality or lifespan.22–25 While a small number

of genetic variants associated with lifespan have been iden-

tified,26–28 no study to date has systematically evaluated

the ability of emerging PRS for life-threatening diseases

and mortality risk factors to predict mortality. We used

data from the UK Biobank, a large prospective cohort

study, to assess the combined utility of PRS associated

with 13 common diseases and 12 established risk factors

for mortality. We used training data to combine the trait-

specific PRS into sex-specific composite PRS (cPRS) that

are predictive of all-cause mortality. We then evaluated

the association of these cPRS with all-cause mortality and

their ability to stratify mortality risk in independent test

data. We also assessed the degree to which mortality risk

associated with the cPRS was accounted for by mortality

risk factors measured at the time of entry into the study,

i.e., middle age for most participants. Finally, we examined

the potential clinical use of the cPRS, namely, counseling

younger individuals at higher genetic risk of mortality on
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modification of non-genetic risk factors such as body mass

index (BMI) and smoking status.
Subjects and Methods

Causes of Death and Mortality Risk Factors
We used the Centers for Disease Control (CDC) Wide-ranging

ONline Data for Epidemiologic Research (WONDER) database to

identify the top causes of death (organized by the International

Classification of Diseases [ICD]-10 113 Causes List) in terms of

the number of deaths among non-Hispanic whites in the United

States over the age of 40 in 2017, separately for men and women

(see Web Resources). We then determined the top 10 causes of

death with some genetic basis, i.e., causes for which there is evi-

dence of an association between one or more genetic variants

and disease risk (Table S1). These causes accounted for 70.3%

and 71.8% of deaths among women and men, respectively, in

the CDC data.

Several of these causes were very general categories of disease

(e.g., ‘‘diseases of heart’’), making it difficult to identify relevant

trait-specific GWASs. Thus, we identified the specific cause within

these categories associated with the highest number of deaths

(with the exception of ‘‘malignant neoplasms;’’ here, we identified

the top four cancers for each sex in terms of the number of deaths).

The final list of diseases was: CAD, COPD, Alzheimer disease,

stroke, type 2 diabetes, CKD, hypertension, alcoholic liver

cirrhosis, Parkinson disease, pancreatic cancer, colorectal cancer,

lung cancer, breast cancer (women only), and prostate cancer

(men only) (Table S1). These causes of death captured 44.4% and

44.9% of deaths among women and men, respectively, in the

CDC data. The difference between these figures and those cited

above (70.3% and 71.8% for women and men, respectively) are

driven largely by deaths from non-CAD diseases of the heart and

deaths from malignant neoplasms not included in our list of can-

cers. As our analysis involves UK Biobank data, we also used Office

of National Statistics mortality data (see Web Resources) to deter-

mine the top causes of death in the UK; these were nearly identical

to those identified using the CDC data (Table S1).

Based on government statistics from the UK,29 we further iden-

tified major mortality risk factors that are known to have some ge-

netic component.30,31 We included smoking status, alcohol con-

sumption, SBP, BMI, total cholesterol, fasting plasma glucose,

and eGFR. Beyond the risk factors highlighted by the UK govern-

ment statistics, we included LDL cholesterol, HDL cholesterol, tri-

glycerides, DBP, and sleep duration. In particular, sleep duration

was included on the basis of several studies showing clear links be-

tween sleep duration and all-cause mortality.32–34
Extraction of SNP Information from the GWAS Catalog

and Publicly Available GWASs
To generate a PRS for each disease included in the top causes of

death, we used results published in the NHGRI-EBI GWAS Cata-

log35 to identify SNPs associated with the disease. We downloaded

the GWAS Catalog results on March 15, 2019, and selected auto-

somal genome-wide significant SNPs (p value % 5 3 10�8). For

each disease, we identified one or more search terms based on

the trait names used by the GWAS Catalog, and we selected the

SNPs corresponding to these search terms. We then checked

several fields of the GWAS Catalog, such as the source of the

data, the study title, and the description of the trait studied, to
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ensure that we retained relevant SNPs; in particular, we sought

to include results from analyses of Europeans (or multi-ethnic

populations including Europeans) and to exclude studies of pleio-

tropic or composite outcomes, studies not of disease susceptibility,

studies of children or pregnant women, studies of a secondary

condition in individuals with a primary condition (e.g., myocar-

dial infarction in individuals with coronary heart disease), studies

of haplotypes or multi-SNP analyses, and studies of subpopula-

tions (e.g., carriers of a specific genetic mutation; the only excep-

tions to this were studies of cirrhosis among alcohol drinkers and

studies of COPD among smokers) or SNP-environment interac-

tions. Importantly, these exclusions mean we included only

GWASs of disease status, rather than GWASs of particular out-

comes among individuals with a given disease, e.g., disease-associ-

atedmortality. In the resulting list of SNPs, there were several cases

where the same SNP appeared multiple times for the same disease

trait. In these situations, we kept the result from the largest study

(in terms of the number of cases). The same SNP may appear for

multiple traits.

For our analysis, it was important to extract the effect allele, ef-

fect size, and effect allele frequency for each SNP. The effect allele

and effect size were used to construct the PRS in the UK Biobank,

and the effect allele and effect allele frequency were used to check

whether the SNP in the UK Biobank was the same as the SNP re-

ported on the GWAS Catalog. For many SNPs on the list we

created, some or all of this information was missing in the

GWAS Catalog.We sought to fill in this information by consulting

the original paper and its supplemental materials, as well as the

Ensembl database.36 In situations where we were not able to

discern the effect allele, the effect allele frequency, or the effect

size of a particular SNP, the SNP was removed from our list.

We applied the same approach for identifying SNPs for each

cause of death except for stroke. This is because there are several

types of stroke and different studies included in the GWAS Catalog

employed definitions of stroke with varying specificity. Thus, we

used a recently published stroke PRS37 instead of using the results

available from the GWAS Catalog.

Our approach to identifying SNPs for inclusion in the mortality

risk factor PRS differed from the approach described above. In

particular, we found that the risk factor phenotypes were typically

defined and/or analyzed differently across studies. For instance,

smoking behavior could be defined as ever-use of cigarettes (never

versus former/current) ormore granularly, incorporating cigarettes

per day and duration among ever smokers. As another example,

body mass index could be analyzed as a raw measurement, or it

could first be rank-transformed. In light of these complications,

instead of using the results included in the GWAS Catalog, we

used the results from the most recent, largest trait-specific GWAS

for which summary data were available (see Neale Lab in Web Re-

sources).38–43 As above, we selected autosomal genome-wide sig-

nificant SNPs (p % 5 3 10�8) and removed SNPs for which the ef-

fect allele, effect size, or effect allele frequency were unavailable. In

addition, as variant identifiers (RS IDs) were the primary way of

querying the UK Biobank genotype data (described below), SNPs

without RS IDs were removed (this was not an issue for the

GWAS Catalog results).
UK Biobank: Disease and Mortality Data
The UK Biobank is a large cohort study of more than 500,000 in-

dividuals in the UK.44 The study enrolled individuals aged 40–69

years between 2006 and 2010 and has followed them since
Journal of Human Genetics 107, 418–431, September 3, 2020 419



enrollment. A vast array of information has been collected from

these individuals, including genotype data, anthropometric mea-

surements, and information on lifestyle factors and personal and

family history of disease. Additionally, data from national death

and cancer registries are linked to the UK Biobank data.

We retrieved data on mortality, incident, and prevalent disease

for the top causes of death, andmortality risk factormeasurements

at baseline. The death registry data were available through

November 30, 2016, for the centers in Scotland and January 31,

2018, for the centers in England and Wales. We determined

whether an individual died of a particular disease by considering

the ICD-10 code listed as the primary cause of death (see Table

S1 for the codes used). We used several sources of data to identify

incident and prevalent cases of disease for the top causes of death.

In particular, we used cancer registry data (available through

October 31, 2015, in Scotland and March 31, 2016, in England

and Wales) to determine whether participants had or experienced

the cancers in our list of diseases before (prevalent case) or after

(incident case) study baseline on the basis of ICD-9 and ICD-10 co-

des (Table S2). For the non-cancer diseases, we used questionnaire/

interview data, hospital episode data (available throughMarch 31,

2017, in England, October 31, 2016, in Scotland, and February 29,

2016, in Wales), and death registry data to identify prevalent and

incident cases of disease (Table S2). The exception to this was inci-

dent and prevalent diabetes, which were defined based on the al-

gorithm presented in Eastwood et al.45 For SBP and DBP at base-

line, two measurements were made for each; when both of these

were non-missing, the average was used. Self-reported intake of

different forms of alcohol was converted into grams of alcohol

per day (Table S3).

In all analyses, unless otherwise specified, we adjusted for the

first ten genetic principal components, which were provided by

the UK Biobank, in order to account for population stratification.

In addition, all survival models accounted for left truncation by

starting the follow-up interval at study entry. Throughout, we

restricted our attention to unrelated participants (third degree rel-

atives or closer were removed) of white British ancestry, in order to

minimize the influence of population stratification and avoid is-

sues related to clustering of individuals in families. We further

removed individuals who had withdrawn their consent to partic-

ipate. Unrelated participants were identified as those who were

used by the UK Biobank to compute the principal components

and ancestry was determined by the UK Biobank based on self-

report and principal component analysis. The UK Biobank was

approved by the North West Multi-centre Research Ethics Com-

mittee. This research was conducted using the UK Biobank

Resource under Application Number 17712.
Evaluating PRS in the UK Biobank
Imputed genotype data (in the form of allele dosage, i.e., between

0 and 2) for the SNPs identified above were extracted from the UK

Biobank, matching on RS ID if possible and on chromosome and

position otherwise. Non-bi-allelic SNPs and ambiguous palin-

dromic SNPs (A/T or C/G SNPs with allele frequencies between

0.4 and 0.6) were removed. To ensure the SNPs from the UK Bio-

bank were the same as those on our curated list of trait-associated

SNPs, the alleles and allele frequencies were compared (allowing

for the possibility of strand flips). SNPs that did not match the

UK Biobank data, i.e., SNPs for which the reported allele frequency

and the allele frequency in the UK Biobank differed by more than

0.15, were removed. Finally, SNPs in linkage disequilibrium (LD)
420 The American Journal of Human Genetics 107, 418–431, Septem
were removed via LD clumping, implemented using PLINK with

an r2 cutoff of 0.1 and based on the reported p values (from the

GWAS Catalog or the publicly available summary statistics) and

the 1000 Genomes European reference panel.46,47 This was done

separately for each disease and risk factor, yielding a list of inde-

pendent SNPs for each trait. The one exception was stroke: the

SNP list was not pruned because the estimated association coeffi-

cients provided were based on a joint SNP model. The number

of SNPs included in each PRS varied widely, between two SNPs

for cirrhosis and 1,458 for BMI (Table S4). In total, our analysis

included 3,941 unique SNPs.

Next, a PRS for each trait was constructed for each participant by

weighting the SNP dosage by the reported log odds ratio (for bi-

nary traits) or linear regression coefficient (for continuous traits):

PRSi;j ¼
Xmj

k¼1

gi;kbk;j;

where PRSi,j is the PRS value for the ith individual and the jth trait,

mj is the number of SNPs included in the PRS for the jth trait, gi,k is

the genotype dosage for the ith individual and the kth SNP, and bk;j

is the log odds ratio or linear regression coefficient for the kth SNP

and the jth trait.
Statistical Analysis
All analyses were sex-specific and the PRS were standardized to

have unit variance. We first evaluated the association between

each derived PRS and the corresponding trait (i.e., prevalent dis-

ease and incident disease for the disease trait, and measurement

at baseline for the mortality risk factors). For the disease traits,

we evaluated the association with incident and prevalent disease

status separately. To evaluate the relationship between each dis-

ease PRS and prevalent disease, we fit a logistic regression model

for each disease.We used Poissonmodels with robust variance esti-

mation48 to evaluate the association between each disease PRS and

incident disease among individuals without prevalent disease. For

the mortality risk factors, we used linear regression with robust

variance estimation to model the relationship between each mor-

tality risk factor PRS and the risk factor measurement at baseline.

The one exception was smoking status; since the smoking status

PRS was developed based on a GWAS of ever-use of cigarettes,

we defined the smoking status risk factor as ever-use of cigarettes.

As this is a binary variable, we used logistic regression tomodel the

relationship between the smoking status PRS and ever-use of ciga-

rettes. Since eGFR was not directly available in the UK Biobank, we

calculated eGFR at baseline using theModification of Diet in Renal

Disease (MDRD) Study Equation;49 this mirrors the definition of

eGFR used in the GWAS upon which our eGFR PRS was based.42

All models included adjustment for age at entry, in addition to

the first ten principal components.

We also investigated cause-specific mortality for the diseases

included in our top causes of death. We used Cox proportional

hazards models to study the relationship between each disease

PRS and age at death from that disease. Deaths from other causes

were treated as censoring events. We performed these analyses in

the full cohort and also among individuals with and without the

disease corresponding to the cause of death beingmodeled at base-

line. We also evaluated the relationship between each mortality

risk factor PRS and mortality due to each of the causes of death.

For all of the analyses related to cause-specific mortality, when

there were not enough deaths to yield stable estimates, estimates

are not provided.
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Table 1. Descriptive Statistics

Full Cohort Training Data Test Data

Women Men Women Men Women Men

Sample size 181,027 156,111 120,719 104,037 60,308 52,074

Age at study entry (years; mean [SD]) 57.2 (7.9) 57.6 (8.1) 57.2 (7.9) 57.6 (8.1) 57.2 (7.9) 57.6 (8.1)

Follow-up (years; mean [SD]) 8.8 (1.1) 8.7 (1.3) 8.8 (1.1) 8.7 (1.3) 8.8 (1.0) 8.7 (1.3)

Number of deaths 5,250 8,360 3,530 5,576 1,720 2,784

SD, standard deviation. Descriptive statistics for the full cohort used for the analysis (after removing individuals who were related, were not of British ancestry, or
had withdrawn their consent to participate), the training data (2/3 of the full cohort), and the test data (1/3 of the full cohort).
Our main analysis involved studying the joint relationship be-

tween the 25 PRS and all-cause mortality. First, we split the data

into training (2/3) and test (1/3) sets. Then, in the training data,

all PRS (with the exception of prostate cancer and breast cancer

for the female- and male-specific models, respectively) were

included in Cox proportional hazards models of age at death:

lðtjPRS1;.; PRS25;ZÞ¼ l0ðtÞexp
�
q1PRS1 þ.þ q25PRS25 þbTZ

�
:

In this formula, l tjPRS1;.; PRS25;Zð Þ denotes the hazard at age t

given ðPRS1;.; PRS25;ZÞ, l0ðtÞ denotes the baseline hazard at age t,

and Z is a vector of the first ten principal components. Eachmodel

yielded a weighted combination of the individual PRS where the

weights were the estimated log hazard ratios (HRs) from the Cox

model, bq1PRS1 þ.þ bq25PRS25; we refer to these sex-specific

weighted combinations as the ‘‘composite PRS’’ (cPRS). These

cPRS were then applied to the test data. In particular, we used a

Cox model to evaluate the HR for all-cause mortality per standard

deviation of the cPRS. In addition, we estimated the HR comparing

individuals in the top 5% of the cPRS distribution to those in the

middle 20% and the HR comparing individuals in the bottom 5%

to those in the middle 20% in the test data. This was based on

quantiles estimated in the training data. To aid in the interpreta-

tion of these results, the estimated HRs were converted into

approximate years of life difference, as done in other studies of sur-

vival.26,31 In addition, we used Harrell’s C-index to quantify the

discriminatory ability of the cPRS;50 note that this evaluation

did not adjust for principal components.

We undertook a series of additional analyses. First, we evaluated

the association between the cPRS and all-cause mortality in the

‘‘healthy’’ subset of the test data, that is, the test set after removing

individuals with any of the diseases included as a top cause of

death at baseline (i.e., prevalent cases).We also re-evaluated the as-

sociation between the cPRS and all-causemortality in the test data,

adjusting for the mortality risk factors measured at baseline (that

is, BMI, smoking status, alcohol consumption, SBP, DBP, eGFR, to-

tal cholesterol, LDL cholesterol, HDL cholesterol, triglycerides,

blood glucose, and sleep duration), removing individuals in the

test data that were missing any of these measurements. All risk fac-

tors were included as continuous variables, with the exception of

smoking status, which was included as a binary variable (ever

versus never use).

Finally, we evaluated the relationship between two major

modifiable risk factors, BMI and smoking status, and absolute risk

of mortality for individuals at different levels of polygenic risk.

We estimated the mortality risk for obese individuals (BMI >

30 kg/m2) and normal weight individuals (BMI of 18.5–25 kg/m2)

based on Cox proportional hazards models with quintiles of the
The American
cPRS and BMI categories (%18.5 kg/m2, (18.5–25 kg/m2],

(25–30 km/m2],>30 kg/m2), bothmodeled as categorical variables,

fit in the test data. Estimates of risk for never smokers and ever

smokers are based on Cox proportional hazards models with quin-

tiles of the cPRS,modeled as a categorical variable, and an indicator

of ever-use of cigarettes, fit in the test data. These models did not

include adjustment for principal components.

All analyses were conducted using R, including the rms, sur-

vival, ggplot2,51 and sandwich52,53 packages (see Web Resources).

We report 95% confidence intervals throughout.
Results

UK Biobank: Disease, Mortality, and Genotype Data

After removing individuals who were related, were not of

British ancestry, or had withdrawn their consent to partic-

ipate, our dataset included 337,138 participants, including

181,027 women and 156,111 men (Tables 1 and S5). There

were 13,610 deaths (4.0%) with 5,250 among women

(2.9%) and 8,360 among men (5.4%). The diseases

included in the top causes of death accounted for 45.9%

of the deaths in women and 45.5% of the deaths in men

in the UK Biobank. Notably, very few deaths in the UK Bio-

bank were attributed to type 2 diabetes, which appears to

be due to many more deaths in the UK Biobank having

type 2 diabetes listed as a secondary cause of death as

opposed to the primary cause.

Constructing and Evaluating the Trait-Specific PRS in the

UK Biobank

As anticipated, the trait-specific PRS tended to be moder-

ately to strongly associated with the corresponding disease

or risk factor (Figure S1 and Table S6). The strongest associ-

ations for the disease traits (odds ratios or relative risks of at

least 1.5 per standard deviation [SD]) were observed for

Alzheimer disease (incident disease only), type 2 diabetes,

breast cancer in women, prevalent CAD in men, cirrhosis

in men, and prostate cancer in men.

We observed that the PRS for each disease was generally

at least moderately associated with death from that disease

(Figure 1), with the association being strongest for

Alzheimer disease (HR per SD: 1.86 [95% confidence inter-

val: 1.42, 2.42] in women; 2.01 [1.52, 2.65] in men), CAD

(1.51 [1.34, 1.69] in women; 1.48 [1.40, 1.57] in men),
Journal of Human Genetics 107, 418–431, September 3, 2020 421



Figure 1. Association of Each Disease PRS with Cause-Specific Mortality in the Full Cohort
For each disease, we evaluated the association between the disease PRS and mortality from the disease based on sex-specific Cox propor-
tional hazards models of age at death. Deaths from other causes were treated as censoring events. Some causes did not have enough
deaths to yield stable estimates, i.e., <6 deaths; in these cases, estimates are not provided. Each PRS was standardized to have unit vari-
ance so the estimates correspond to the HR per SD of the PRS. The horizontal lines indicate 95% confidence intervals. CAD, coronary
artery disease; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; SD, standard deviation; PRS, polygenic risk score.
breast cancer in women (1.51 [1.40, 1.63]), prostate cancer

inmen (1.68 [1.54, 1.84]), and cirrhosis inmen (1.49 [1.03,

2.16]). In general, the PRS were stronger predictors of

cause-specific mortality among individuals without preva-

lent disease than they were among individuals with preva-

lent disease (Figure S2); this indicates the PRS were typi-

cally more strongly associated with disease onset than

with prognosis.

We found that the PRS for BMI was at least moderately

associated with mortality related to CAD (primarily in

men), COPD (among women), hypertension (among

men), lung cancer (among women), pancreatic cancer

(among women), Parkinson disease (among women), and

stroke (among women) (Figures S3 and S4). The PRS for

smoking was weakly associated with mortality due to

CAD (amongmen) andmoderately associated withmortal-

ity due to COPD (primarily in men) and lung cancer. The

PRS for LDL cholesterol was strongly associated with mor-

tality related to Alzheimer disease (amongmen) and COPD

(among women) andmoderately associated with mortality

due to CAD (primarily in men). The PRS for total choles-

terol was strongly positively associated with mortality

due to Alzheimer disease (primarily in men) and COPD

(among women), moderately positively associated with

mortality related to CAD (among men), and moderately

negatively associated with mortality due to pancreatic can-

cer (among men). The PRS for triglycerides was strongly

negatively associated with mortality from stroke among
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men. The PRS for alcohol consumption was moderately

positively associated with mortality due to CAD, primarily

among men.

We found that several PRS weremodestly associated with

all-cause mortality, with some differences between men

and women (Figure 2). The PRS for BMI was modestly asso-

ciated with risk of all-cause mortality for both women (HR

per SD: 1.07 [1.04, 1.10]) and men (1.08 [1.05, 1.10]). In

addition, the PRS for smoking status, Alzheimer disease,

LDL cholesterol, and lung cancer were modestly associated

with all-cause mortality in both sexes. The PRS for breast

cancer and prostate cancer were modestly associated with

all-cause mortality in women and men, respectively.

Among men, the PRS for CAD, cirrhosis, DBP, HDL choles-

terol, SBP, stroke, total cholesterol, triglycerides, type 2 dia-

betes, and alcohol consumption were modestly associated

with all-cause mortality; notably, the PRS for HDL choles-

terol and triglycerides were both negatively associated

with all-cause mortality. In general, the estimated associa-

tions tended to be stronger in men than in women.

Constructing and Evaluating the Composite PRS in the

UK Biobank

The training data used the construct the cPRS included

224,756 participants, among them 120,719 women and

104,037 men (Table 1). There were 9,106 deaths in the

training data with 3,530 in women and 5,576 in men.

Correspondingly, the test data used to evaluate the cPRS
ber 3, 2020



Figure 2. Association of Each Trait-Specific PRS with All-Cause Mortality in the Full Cohort
We evaluated the association between each PRS and all-cause mortality based on sex-specific Cox proportional hazards models of age at
death in the full cohort. Each Coxmodel included one PRS. Each PRS was standardized to have unit variance so the estimates correspond
to the HR per SD of the PRS. The horizontal lines indicate 95% confidence intervals. BMI, bodymass index; CAD, coronary artery disease;
COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-den-
sity lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure; HR, hazard ratio; SD, standard deviation; PRS, polygenic risk
score.
included 112,382 individuals (60,308 women and 52,074

men) and 4,504 deaths (1,720 among women and 2,784

among men).

The cPRS were moderately associated with all-cause mor-

tality in the test data (HR per SD: 1.10 [1.05, 1.16] in

women, 1.15 [1.10, 1.19] in men; see Table 2 and

Figure S5). However, the cPRS were able to identify sub-

stantial fractions of the population that havemeaningfully

elevated and reduced mortality risk, particularly among

men (Table 2 and Figure 3). The estimated difference in

life expectancy between the top and bottom 5% of the

cPRS distribution was 4.79 (1.76, 7.81) years in women

and 6.75 (4.16, 9.35) years in men. The overall discrimina-

tory capacity of the cPRS, measured by Harrell’s C-index,50

was small: 0.525 in women and 0.536 in men. These are
The American
comparable to the values for several strong risk factors

for mortality, including BMI (0.532 in women, 0.530 in

men), smoking status (0.562 in women, 0.574 in men),

and alcohol consumption (0.509 in women, 0.547 in

men).

When we evaluated the cPRS in the ‘‘healthy’’ subset of

the test data, the estimated associations between the

cPRS and all-cause mortality were fairly similar to the re-

sults from the main analysis (Table S7). Separately, when

we adjusted for the mortality risk factors measured at base-

line, the association between the cPRS and all-cause mor-

tality was markedly attenuated for both sexes (Table 2).

These results indicate that a substantial fraction (40.7%

for women and 32.5% for men) of the association between

the cPRS and all-cause mortality was accounted for by
Journal of Human Genetics 107, 418–431, September 3, 2020 423



Table 2. The Results of the Main Analysis of All-Cause Mortality and the cPRS, with and without Adjustment for Mortality Risk Factors

Women Men

Without Adjustment for Mortality Risk Factors

Population in test data: N (deaths)

Total population 60,308 (1,720) 52,074 (2,784)

Top 5% of cPRS 3,060 (107) 2,454 (159)

Middle 20% of cPRS 12,005 (342) 10,387 (539)

Bottom 5% of cPRS 3,096 (69) 2,526 (89)

cPRS: HR (95% CI)

Per SD of cPRS 1.10 (1.05, 1.16) 1.15 (1.10, 1.19)

Top 5% versus middle 20% of cPRS 1.24 (1.00, 1.54) 1.27 (1.07, 1.52)

Bottom 5% versus middle 20% of cPRS 0.77 (0.59, 1.00) 0.65 (0.52, 0.81)

Top 5% versus bottom 5% of cPRS 1.61 (1.19, 2.18) 1.96 (1.52, 2.55)

cPRS: years of life lost (95% CI)

Per SD of cPRS 0.97 (0.50, 1.44) 1.36 (0.98, 1.73)

Top 5% versus middle 20% of cPRS 2.17 (0.00, 4.34) 2.42 (0.65, 4.19)

Bottom 5% versus middle 20% of cPRS �2.61 (�5.20, �0.03) �4.33 (�6.58, �2.09)

Top 5% versus bottom 5% of cPRS 4.79 (1.76, 7.81) 6.75 (4.16, 9.35)

With Adjustment for Mortality Risk Factors

Population in test data: N (deaths)

Total population 36,008 (855) 36,283 (1,730)

Top 5% of cPRS 1,799 (51) 1,689 (102)

Middle 20% of cPRS 7,143 (168) 7,240 (329)

Bottom 5% of cPRS 1,907 (37) 1,804 (60)

cPRS: HR (95% CI)

Per SD of cPRS 1.06 (0.99, 1.13) 1.10 (1.04, 1.15)

Top 5% versus middle 20% of cPRS 1.19 (0.87, 1.63) 1.25 (1.00, 1.56)

Bottom 5% versus middle 20% of cPRS 0.88 (0.62, 1.26) 0.73 (0.55, 0.96)

Top 5% versus bottom 5% of cPRS 1.35 (0.88, 2.07) 1.71 (1.24, 2.36)

cPRS: years of life lost (95% CI)

Per SD of cPRS 0.58 (�0.11, 1.26) 0.92 (0.43, 1.40)

Top 5% versus middle 20% of cPRS 1.72 (�1.43, 4.86) 2.20 (�0.03, 4.43)

Bottom 5% versus middle 20% of cPRS �1.27 (�4.85, 2.30) �3.19 (�5.95, �0.43)

Top 5% versus bottom 5% of cPRS 2.99 (�1.28, 7.26) 5.39 (2.18, 8.60)

BMI, body mass index; CI, confidence interval; cPRS, composite polygenic risk score; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate;
HDL, high-density lipoprotein; HR, hazard ratio; LDL, low-density lipoprotein; SBP, systolic blood pressure; SD, standard deviation. The cPRS were constructed
in the training data and evaluated by fitting sex-specific Cox proportional hazards models of the association between the cPRS and age at death from all causes
in the test data. Both the continuous cPRS and categorical cPRS were modeled. The estimated HRs and CIs were converted to estimated years of life lost. The
analysis adjusting for mortality risk factors included adjustment for the risk factors measured at baseline (BMI, smoking status, alcohol consumption, SBP, DBP,
eGFR, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, blood glucose, and sleep duration); individuals missing any of these measurements
were excluded.
these risk factors, which are (to varying degrees) heritable

traits. After controlling for the measured risk factors, the

difference in life expectancy between the top 5% and the

bottom 5% of the cPRS distribution was estimated to be

2.99 (�1.28, 7.26) years in women and 5.39 (2.18, 8.60)

years in men.
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Finally, we evaluated the relationship between BMI and

smoking status and absolute risk of mortality for individ-

uals at different levels of polygenic risk (Figure 4). We

observe that the estimated 10-year absolute risk of mortal-

ity for a 60-year-old woman in the top 20% of the cPRS dis-

tribution who is obese is 0.044. This is 38% higher than the
ber 3, 2020



Figure 3. Kaplan-Meier Survival Curves
by Quantile of the cPRS
We estimated the sex-specific Kaplan-Me-
ier survival curves for all-cause mortality
by quantile of the cPRS in the test data.
The Kaplan-Meier curves do not include
adjustment for principal components.
cPRS, composite polygenic risk score.
estimated risk for a woman in the top 20% of the cPRS dis-

tribution who is not obese. Similarly, the estimated risk for

a 60-year-old woman in the top 20% of the cPRS distribu-

tion who is a current or former smoker is 64% higher than

for a woman who has never smoked (0.046 versus 0.028).

Likewise, for a 60-year-old man, the estimated 10-year

risk of mortality is 24% higher if the man is obese as

opposed to normal weight (0.087 versus 0.070) and the

estimated risk is 81% higher if the man is a current or

former smoker relative to a man who has never smoked

(0.087 versus 0.048). These differences highlight the po-

tential importance of lifestyle modification even among

those at high genetic risk. Furthermore, in most of these

examples, the estimated risk for an individual who is in

the top 20% of the cPRS distribution but who has a favor-

able risk factor profile is below the estimated risk for an in-

dividual in the middle 20% of the cPRS distribution, i.e.,

someone at moderate genetic risk (0.032 in women and

0.059 in men).
Discussion

Analyses using a large dataset from the UK Biobank indi-

cate that sex-specific composite PRS (cPRS) for all-cause

mortality have fairly modest predictive capacity overall.

However, there is evidence that the cPRS could identify

substantial fractions of the population with notably

elevated and reduced risk of all-cause mortality due to

the genetic risk accumulated across many variants. Impor-

tantly, our results also show that a substantial proportion

of the association between the cPRS and mortality was ac-

counted for by mortality risk factors measured in middle

age. These findings suggest that those individuals at high

genetic risk of mortality may derive substantial benefit

from modification of lifestyle factors; in particular, the

cPRS could be useful in counseling individuals at high ge-

netic risk on possible lifestyle choices that are associated

with lower mortality risk.

A previous study evaluated the utility of 707 SNPs iden-

tified from GWASs of 125 diseases and risk factors for esti-

mating mortality risk.30 This study developed a PRS
The American Journal of Human Genet
directly from the individual SNPs,

counting only the number of detri-

mental or protective alleles across

the variants (i.e., without weighting

the SNPs by the strength of associa-

tion). In a combined analysis of men
and women from two studies of northern European popu-

lations, the study reported a 10% higher risk of mortality

between individuals in the 4th versus 1st quartile of the re-

sulting PRS. In contrast, in the current study, we focus on a

limited number of the most important causes of and risk

factors for mortality and build cPRS for mortality based

on the underlying PRS. Our cPRS, although evaluated in

a different population, appears to provide greater mortality

risk stratification (HR for 4th versus 1st quartile ¼ 1.29

[1.13, 1.48] in women; 1.38 [1.24, 1.53] in men). These dif-

ferences may be due to the incorporation of a larger num-

ber of SNPs emerging from more recent GWASs as well as

the weighting of individual SNPs to account for their asso-

ciation with the individual diseases and risk factors in our

analysis.

Several recent studies26,54–57 have investigated the asso-

ciation of individual genetic variants and PRS with

parental lifespans due to the increased power of these ana-

lyses relative to analyses of lifespan in genotyped individ-

uals. Two large GWASs of parental lifespan, both including

data from the UK Biobank, identified a total of only 18

loci,26–28 highlighting major challenges in finding individ-

ual variants related to lifespan. We constructed a lifespan

PRS based on 17 of these variants (one was excluded as it

was a palindromic SNP whose direction could not be

resolved) and found modest associations with all-cause

mortality (HR per SD: 1.02 [0.99, 1.05] in women and

1.04 [1.02, 1.06] in men). We further constructed a new

cPRS, which included the 25 disease and risk factor PRS

constructed for our analysis as well as the lifespan PRS;

the associations of this new cPRS with all-cause mortality

were nearly identical to that of the original cPRS (HR per

SD of the new cPRS: 1.10 [1.05, 1.15] in women and 1.14

[1.10, 1.19] in men).

An important limitation of previous studies is the lack of

adjustment for known mortality risk factors in character-

izing the potential utility of PRS for estimating mortality

risk. In our analysis, the association between the cPRS

and mortality was attenuated by more than 30% after ad-

justing for the mortality risk factors under study. These re-

sults suggest that while genetic variants associated with

complex traits in GWASs could provide some mortality
ics 107, 418–431, September 3, 2020 425



Figure 4. Estimates of Absolute Risk ofMortality inDifferent Strata of the cPRSwithin Specific Categories of BMI andby Smoking Status
We generated estimates of 10-year absolute risk of all-cause mortality for a 60-year-old in different strata of the cPRS for specific values of
two mortality risk factors, BMI and smoking status. The results for women and men are presented in the top and bottom rows, respec-
tively. The horizontal line in each plot corresponds to an estimate of 10-year absolute risk of all-cause mortality for a 60-year-old in the
middle quintile of the cPRS, based on sex-specific Cox proportional hazards models with quintiles of the cPRS, modeled as a categorical
variable, fit in the test data. BMI, body mass index; cPRS, composite polygenic risk score.
risk stratification early in life, their utility later in life, when

other risk factors for mortality can be measured, is

diminished.

Most GWASs are case-control studies of disease risk as

opposed to prognosis, i.e., aggressiveness and/or progres-

sion of the disease leading to death. When we examined

the association of the disease PRS with the corresponding

cause-specific mortality among individuals with prevalent

disease in the UK Biobank (Figure S2), only the PRS for

CAD and COPD were (at least moderately) associated; in

other words, for most PRS, there was little to no evidence

of an association with prognosis or disease survival.

Although such analyses may be influenced by selection

associated with survivorship and poor health, in general,
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there is little evidence of association between disease risk

SNPs (and thus disease PRS) and survival following disease

onset. While future GWASs focusing on genetic determi-

nants of aggressiveness and disease progression are needed,

finding associations may be challenging due to available

sample sizes and heterogeneity as a result of various factors

such as treatment.

Our analysis of the relationship between the individual

PRS and all-cause mortality revealed some important pat-

terns (Figure 2). The strongest positive associations were

seen for the PRS for BMI, breast cancer (in women), CAD

(inmen), smoking status (particularly inmen), and alcohol

consumption (in men). In addition, weaker associations

with all-cause mortality were seen for the PRS for
ber 3, 2020



Alzheimer disease, lung cancer, and LDL cholesterol in

both sexes and, among men, associations were seen for

the PRS for stroke, cirrhosis, total and HDL cholesterol,

prostate cancer, triglycerides, SBP, DBP, and type 2 diabetes.

The negative association observed among men for the tri-

glycerides PRS appears to be driven by a strong negative as-

sociation between the triglycerides PRS and stroke-specific

mortality (Figure S4), which is consistent with the ‘‘triglyc-

erides paradox’’ reported by others.58–61

Given that the associations of the CAD PRS with CAD-

specific mortality were similar for men and women, the

differences in the associations with all-cause mortality

may be due to lower rates of CAD in women during the

relatively short follow-up period of the UK Biobank. Differ-

ential event rates for some diseases for which alcohol con-

sumption is a risk factor (e.g., CAD) could also partially

explain the differences observed in the association of the

alcohol consumption PRS with all-cause mortality by sex.

We note that the sex differences observed in our results

more generally are supported by other studies, which

have similarly found indications of differences between

men and women in the mechanisms governing lifespan

and longevity.26,27,31,55,56,62,63

Our results are generally consistent with a recent paper

looking at PRS for many clinical risk factors and mortality

across the UK Biobank, a Finnish biobank (FinnGen), and

Biobank Japan.64 In thismulti-ethnic study, several modest

associations were observed, including for the PRS for SBP,

DBP, and BMI (HRs of around 1.03–1.04 per SD in the

trans-ethnic meta-analysis). Interestingly, the results

from this analysis varied by ethnicity: for instance, within

the UK Biobank, the association between the PRS for BMI

and mortality reported in Sakaue et al.64 was stronger

than was observed in the trans-ethnic meta-analysis (HR

of approximately 1.07 per SD in the UK Biobank versus

1.04 in the meta-analysis). This highlights the importance

of multi-ethnic analyses.

We evaluated the broad utility of PRS in terms of their

combined ability to predict mortality. In the future, other

broad measures of health outcomes and expenditures,

such as disability-adjusted life years (DALYs), should also

be considered. The framework we have created for

combining individual PRS could be used to a create com-

posite PRS for DALYs or other measures. Given that PRS

are known to be strongly associated with incidence of

many debilitating diseases, one would anticipate such a

composite PRS will have greater utility for predicting

DALYs than for mortality. However, analysis of DALYs in

a cohort study with limited follow-up, like the UK Biobank,

is challenging.

Our analysis has several strengths. We used data from

the UK Biobank, a large cohort study, to carry out a

comprehensive analysis of PRS for complex traits and mor-

tality, both overall and cause-specific. We used a novel

approach to derive composite PRS across many diseases

and risk factors to evaluate their combined utility for pre-

dicting overall mortality. Under the assumption that com-
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mon genetic variants identified through recent GWASs in-

fluence mortality risk through the outcomes underlying

the GWASs, the composite PRS approach provides a more

parsimonious and powerful approach to building models

for predicting composite outcomes than building models

based on individual SNPs. The weights of individual SNPs

in a PRS account for the strength and direction of associa-

tion of each SNP with the corresponding outcome and the

weights for the individual PRS in the cPRS reflect (in part)

the relative contribution of the individual diseases and risk

factors to mortality. Further, we conducted an unbiased

evaluation of the performance of the cPRS for predicting

mortality by building it in a training dataset and evalu-

ating it in an independent test dataset.

As the UK Biobank participants are volunteers, there is

evidence that this cohort differs from the general UK pop-

ulation in important ways, including being less likely to be

obese, smoke, or drink alcohol.65 Selection bias,65 which

contributes to such differences, could influence the gener-

alizability of our results.66 Additionally, while our cPRS

include germline mutations and so could potentially be

evaluated at birth, the UK Biobank is comprised of individ-

uals who have survived to at least middle age. Conse-

quently, the results may not be fully generalizable to

younger individuals and must be validated in other popu-

lations. Furthermore, the analysis of the cPRS with adjust-

ment for the mortality risk factors required excluding ob-

servations in the test data with missing values for any of

these risk factors. These observations constituted a sub-

stantial portion of the test data (40.3% in women, 30.3%

in men). However, as the missingness mechanism for at

least some risk factors is expected to be not random (e.g.,

individuals choosing not to answer questions regarding

smoking status or alcohol consumption due to the social

stigma surrounding these behaviors), imputation is not

appropriate. Thus, some caution is warranted in interpret-

ing these results.

As our analysis involved the evaluation of a large num-

ber of associations, issues related to multiple comparisons

are a potential concern. However, our main analysis of

the cPRS was carefully defined a priori and performed in in-

dependent test data. The other analyses we performedwere

intended to check the validity of the PRS we developed and

to better understand the results of the main analysis of the

cPRS. Additionally, we emphasize the strength of associa-

tion rather than statistical significance in interpreting the

results throughout.

Another potential limitation of this analysis was our use

of the GWAS Catalog to identify SNPs for inclusion in the

disease PRS. As the GWAS Catalog is not an exhaustive

listing of SNPs associated with every trait, we may have

missed some associated SNPs. Further, our approach to

constructing PRS for the mortality risk factors involved a

fairly simple approach based on summary statistics. To

investigate the degree to which better performance could

be achieved by using a more sophisticated approach to

constructing PRS, we considered two additional methods
Journal of Human Genetics 107, 418–431, September 3, 2020 427



for 14 traits for which summary statistics were available:

(1) LD clumping and thresholding (with various LD and

p value thresholds)67 and (2) LDpred, a Bayesian method

that incorporates information on LD structure68 (see Sup-

plemental Material and Methods). We evaluated the pre-

dictive capacity of the PRS constructed by the three

methods for each trait (i.e., the relationship between the

PRS and the corresponding trait) and found that the PRS

built using the GWAS Catalog generally performed well.

In the case of breast cancer and stroke, however, small

but meaningful gains in performance were seen for the

LDpred PRS. We repeated the main composite PRS mortal-

ity analysis, where the LDpred PRS for breast cancer and

stroke were used in place of the corresponding GWAS Cat-

alog PRS to construct a new composite PRS in the training

data. We found a stronger association between this new

composite PRS and all-cause mortality in the test data

among women (HR per SD: 1.14 [95% confidence interval:

1.09, 1.19] versus 1.10 [1.05, 1.16]) and a similar associa-

tion amongmen (1.16 [1.11, 1.20] versus 1.15 [1.10, 1.19]).

These results indicate that our approach, which allowed

us to apply a uniform procedure for SNP selection to all

traits (regardless of whether summary statistics were avail-

able), captured most of the known genetic susceptibility

for nearly all traits considered. Importantly, these results

also suggest that as the ability of trait-specific PRS to pre-

dict the corresponding trait continues to improve (driven

by increasing GWAS power and novel methods for PRS

construction), their utility in stratifying mortality risk is

also likely to increase. On the other hand, the ability of

trait-specific PRS, regardless of the method used to

construct them, to predict all-cause mortality will be

limited by the genetic correlation between the particular

trait and all-cause mortality.69 Further research on the ge-

netic determinants of disease prognosis and survival may

also increase the utility of PRS in understanding mortality

risk.

There is the potential for misuse of polygenic risk scores,

including the composite PRS we have developed for pre-

dicting mortality. In particular, we urge great caution in

the deployment of PRS and advocate for the creation of

appropriate measures in order to prevent the misuse of

PRS, e.g., for embryo screening70 or in ways that could

put individuals at risk of ‘‘genetic discrimination.’’71 As

PRS for predicting various outcomes become increasingly

available, a suitable regulatory framework for implementa-

tion will be needed to allow for the utilization of PRS to

improve healthcare while protecting individuals from

harm due to potential misuse.

In conclusion, our results suggest that by combining

knowledge gained from GWASs of complex traits, it may

be possible to identify individuals who are expected to

live substantially longer or shorter. In light of the ethical

repercussions of using genetics to make predictions

regarding an individual’s life course prior to or at birth,

we argue that the cPRS may be most useful for counseling

those in early adulthood about their genetic risk. In partic-
428 The American Journal of Human Genetics 107, 418–431, Septem
ular, the results of our analysis highlight the importance of

considering genetic risk in the context of clinical risk fac-

tors measured in adulthood; thus, the cPRS may be useful

in advising patients on the importance of certain lifestyle

choices associated with mortality risk. Using the cPRS in

this way would require validation of the cPRS outside of

the UK Biobank.
Data and Code Availability

Data from the UK Biobank are available by application to

the UK Biobank. The data needed to generate the trait-spe-

cific PRS (i.e., RS IDs and SNP weights) used in the main

analysis and code to construct and evaluate the composite

PRS are available on GitHub (see CompositePRS Code in

Web Resources). The GWAS summary statistic data used

to construct the LDpred PRS for breast cancer and stroke

can be downloaded from the BCAC and Megastroke sites,

respectively (see Web Resources).
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.07.002.
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Web Resources

BCAC GWAS Summary Results, http://bcac.ccge.medschl.cam.

ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-

result/gwas-summary-results-breast-cancer-risk-2017/

CDC WONDER Database: Underlying Cause of Death, https://

wonder.cdc.gov/ucd-icd10.html

CompositePRS Code, https://github.com/meisnera/CompositePRS

Megastroke, http://www.megastroke.org/index.html

Neale Lab, http://www.nealelab.is/uk-biobank

Office of National Statistics, https://www.nomisweb.co.uk/

datasets/mortsa

R Software, https://www.r-project.org/

rms Package, https://cran.r-project.org/package¼rms

survival Package, https://cran.r-project.org/package¼survival
ber 3, 2020

https://doi.org/10.1016/j.ajhg.2020.07.002
https://doi.org/10.1016/j.ajhg.2020.07.002
http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwas-summary-results-breast-cancer-risk-2017/
http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwas-summary-results-breast-cancer-risk-2017/
http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwas-summary-results-breast-cancer-risk-2017/
https://wonder.cdc.gov/ucd-icd10.html
https://wonder.cdc.gov/ucd-icd10.html
https://github.com/meisnera/CompositePRS
http://www.megastroke.org/index.html
http://www.nealelab.is/uk-biobank
https://www.nomisweb.co.uk/datasets/mortsa
https://www.nomisweb.co.uk/datasets/mortsa
https://www.r-project.org/
https://cran.r-project.org/package=rms
https://cran.r-project.org/package=rms
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival


References

1. Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I.,

Brown, M.A., and Yang, J. (2017). 10 years of GWAS discovery:

biology, function, and translation. Am. J. Hum. Genet. 101,

5–22.

2. Zeng, J., de Vlaming, R., Wu, Y., Robinson, M.R., Lloyd-Jones,

L.R., Yengo, L., Yap, C.X., Xue, A., Sidorenko, J., McRae, A.F.,

et al. (2018). Signatures of negative selection in the genetic ar-

chitecture of human complex traits. Nat. Genet. 50, 746–753.

3. Zhang, Y., Qi, G., Park, J.H., and Chatterjee, N. (2018). Estima-

tion of complex effect-size distributions using summary-level

statistics from genome-wide association studies across 32 com-

plex traits. Nat. Genet. 50, 1318–1326.

4. Khera, A.V., Emdin, C.A., Drake, I., Natarajan, P., Bick, A.G.,

Cook, N.R., Chasman, D.I., Baber, U., Mehran, R., Rader,

D.J., et al. (2016). Genetic risk, adherence to a healthy lifestyle,

and coronary disease. N. Engl. J. Med. 375, 2349–2358.

5. Lewis, C.M., and Vassos, E. (2017). Prospects for using risk

scores in polygenic medicine. Genome Med. 9, 96.

6. Garcia-Closas, M., Rothman, N., Figueroa, J.D., Prokunina-

Olsson, L., Han, S.S., Baris, D., Jacobs, E.J., Malats, N., De

Vivo, I., Albanes, D., et al. (2013). Common genetic polymor-

phisms modify the effect of smoking on absolute risk of

bladder cancer. Cancer Res. 73, 2211–2220.

7. Chatterjee, N., Shi, J., and Garcı́a-Closas, M. (2016). Devel-

oping and evaluating polygenic risk prediction models for

stratified disease prevention. Nat. Rev. Genet. 17, 392–406.

8. Maas, P., Barrdahl, M., Joshi, A.D., Auer, P.L., Gaudet, M.M.,

Milne, R.L., Schumacher, F.R., Anderson, W.F., Check, D.,

Chattopadhyay, S., et al. (2016). Breast cancer risk from modi-

fiable and nonmodifiable risk factors among white women in

the United States. JAMA Oncol. 2, 1295–1302.

9. Frampton, M.J.E., Law, P., Litchfield, K., Morris, E.J., Kerr, D.,

Turnbull, C., Tomlinson, I.P., and Houlston, R.S. (2016). Impli-

cations of polygenic risk for personalised colorectal cancer

screening. Ann. Oncol. 27, 429–434.

10. Seibert, T.M., Fan, C.C., Wang, Y., Zuber, V., Karunamuni, R.,

Parsons, J.K., Eeles, R.A., Easton, D.F., Kote-Jarai, Z., Al Olama,

A.A., et al.; PRACTICAL Consortium* (2018). Polygenic haz-

ard score to guide screening for aggressive prostate cancer:

development and validation in large scale cohorts. BMJ 360,

j5757.

11. Mavaddat, N., Pharoah, P.D.P., Michailidou, K., Tyrer, J.,

Brook, M.N., Bolla, M.K., Wang, Q., Dennis, J., Dunning,

A.M., Shah, M., et al. (2015). Prediction of breast cancer risk

based on profiling with common genetic variants. J. Natl.

Cancer Inst. 107, djv036.

12. Hsu, L., Jeon, J., Brenner, H., Gruber, S.B., Schoen, R.E.,

Berndt, S.I., Chan, A.T., Chang-Claude, J., Du, M., Gong, J.,

et al.; Colorectal Transdisciplinary (CORECT) Study; and Ge-

netics and Epidemiology of Colorectal Cancer Consortium

(GECCO) (2015). A model to determine colorectal cancer

risk using common genetic susceptibility loci. Gastroenter-

ology 148, 1330–9.e14.

13. Mega, J.L., Stitziel, N.O., Smith, J.G., Chasman, D.I., Caulfield,

M., Devlin, J.J., Nordio, F., Hyde, C., Cannon, C.P., Sacks, F.,

et al. (2015). Genetic risk, coronary heart disease events, and

the clinical benefit of statin therapy: an analysis of primary

and secondary prevention trials. Lancet 385, 2264–2271.

14. Natarajan, P., Young, R., Stitziel, N.O., Padmanabhan, S.,

Baber, U., Mehran, R., Sartori, S., Fuster, V., Reilly, D.F., Butter-
The American
worth, A., et al. (2017). Polygenic risk score identifies sub-

group with higher burden of atherosclerosis and greater rela-

tive benefit from statin therapy in the primary prevention

setting. Circulation 135, 2091–2101.

15. Mavaddat, N., Michailidou, K., Dennis, J., Lush, M., Fachal, L.,

Lee, A., Tyrer, J.P., Chen, T.H., Wang, Q., Bolla, M.K., et al.;

ABCTB Investigators; kConFab/AOCS Investigators; and

NBCS Collaborators (2019). Polygenic risk scores for predic-

tion of breast cancer and breast cancer subtypes. Am. J.

Hum. Genet. 104, 21–34.

16. Torkamani, A., Wineinger, N.E., and Topol, E.J. (2018). The

personal and clinical utility of polygenic risk scores. Nat.

Rev. Genet. 19, 581–590.

17. Lambert, S.A., Abraham, G., and Inouye, M. (2019). Towards

clinical utility of polygenic risk scores. Hum. Mol. Genet. 28

(R2), R133–R142.

18. Wald, N.J., and Old, R. (2019). The illusion of polygenic dis-

ease risk prediction. Genet. Med. 21, 1705–1707.

19. Khera, A.V., Chaffin, M., Wade, K.H., Zahid, S., Brancale, J.,

Xia, R., Distefano, M., Senol-Cosar, O., Haas, M.E., Bick, A.,

et al. (2019). Polygenic prediction of weight and obesity tra-

jectories from birth to adulthood. Cell 177, 587–596.e9.

20. Langenberg, C., Sharp, S.J., Franks, P.W., Scott, R.A., Deloukas,

P., Forouhi, N.G., Froguel, P., Groop, L.C., Hansen, T., Palla, L.,

et al. (2014). Gene-lifestyle interaction and type 2 diabetes:

the EPIC interact case-cohort study. PLoS Med. 11, e1001647.

21. Rudolph, A., Song, M., Brook, M.N., Milne, R.L., Mavaddat,

N., Michailidou, K., Bolla, M.K., Wang, Q., Dennis, J., Wilcox,

A.N., et al. (2018). Joint associations of a polygenic risk score

and environmental risk factors for breast cancer in the Breast

Cancer Association Consortium. Int. J. Epidemiol. 47, 526–

536.

22. Hedley, A.J., Wong, C.M., Thach, T.Q., Ma, S., Lam, T.H., and

Anderson, H.R. (2002). Cardiorespiratory and all-cause mor-

tality after restrictions on sulphur content of fuel in Hong

Kong: an intervention study. Lancet 360, 1646–1652.

23. Anthonisen, N.R., Skeans, M.A., Wise, R.A., Manfreda, J., Kan-

ner, R.E., Connett, J.E.; and Lung Health Study Research

Group (2005). The effects of a smoking cessation intervention

on 14.5-year mortality: a randomized clinical trial. Ann.

Intern. Med. 142, 233–239.

24. Grooteman, M.P.C., van den Dorpel, M.A., Bots, M.L., Penne,

E.L., van der Weerd, N.C., Mazairac, A.H.A., den Hoedt, C.H.,
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