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Interpretable Clinical Genomics
with a Likelihood Ratio Paradigm

Peter N. Robinson,1,2,* Vida Ravanmehr,1 Julius O.B. Jacobsen,3 Daniel Danis,1

Xingmin Aaron Zhang,1,8 Leigh C. Carmody,1 Michael A. Gargano,1 Courtney L. Thaxton,4 UNC
Biocuration Core,4 Guy Karlebach,1 Justin Reese,5 Manuel Holtgrewe,6 Sebastian Köhler,6

Julie A. McMurry,7 Melissa A. Haendel,7 and Damian Smedley3

Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a

variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algo-

rithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide

measures of howmuch any individual phenotypic observation has contributed to the prioritization result. However, given that the overall

success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the

gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood

ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO pheno-

type, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL)

placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct

diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of

genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic

diagnostics.
Introduction

Phenotype-driven prioritization of candidate genes and

diseases is a well-established approach to genomic diagnos-

tics in rare disease.1–12 Most current approaches use the

Human Phenotype Ontology (HPO) for annotating the

set of phenotypic abnormalities observed in the individual

being investigated by whole-exome or whole-genome

sequencing. The HPO contains 14,813 terms arranged as

a directed acyclic graph in which edges represent subclass

relations; 13,182 of these terms represent phenotypic ab-

normalities. For instance, Abnormal renal cortex

morphology (HP:0011035) is a subclass of Abnormal renal

morphology (HP:0012210). The HPO project additionally

provides computational disease models of 7,623 rare dis-

eases that are constructed from HPO terms and metadata

that define the diseases on the basis of the phenotypic ab-

normalities that characterize them, their modes of inheri-

tance, and in many cases, the age of onset of diseases or

phenotypic features and the overall frequencies of features

in a disease.13 For instance, Meckel syndrome type 7 is

characterized by Patent ductus arteriosus (HP:0001643)

with a frequency of two of seven affected individuals and

Antenatal onset (HP:0030674).14

Diagnostic exome or genome sequencing typically re-

veals tens or hundreds of variants that are predicted to be
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deleterious by common computational frameworks, and

therefore, the analysis of such data generally requires

some additional criterion to prioritize genes.15 Phenotypic

approaches leverage the proband’s observed phenotypic

abnormalities to assess candidate diseases by searching dis-

eases with similar phenotypic abnormalities that are asso-

ciated with genes that harbor a predicted pathogenic

variant.16 However, current algorithms for phenotype-

driven genomic diagnostics have a number of shortcom-

ings that represent impediments to the successful imple-

mentation of genomic testing outside of specialist centers.

All current approaches that we are aware of present their

results as an ordered list of candidate genes or diseases. The

overall success rate of genomic diagnostics depends on the

cohort and the next-generation sequencing (NGS) tech-

nique but is still hovering at about 40% for a wide range

of conditions.17–20 Therefore, one must expect that, in

many cases, the top-ranked gene is actually not a good

candidate. Also, existing approaches do not provide a

framework for deciding how many candidates in the

ranked list are worthy of detailed examination. Therefore,

it would be desirable to provide a transparent measure of

how good the top predictions are and why. Such an

approach could reduce the number of candidates that

busy diagnostic labs have to review. Finally, current ap-

proaches do not provide information about how much
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individual phenotypic features contribute to the computa-

tional prediction. For clinical use, approaches that allow

users to understand the reasons for the computational pre-

dictions are preferable to black-box algorithms and better

support clinical decision making.21

In this work, we present an algorithm, LIkelihood Ratio

Interpretation of Clinical AbnormaLities (LIRICAL), that cal-

culates the likelihood ratio of each observed or excluded

phenotypic abnormality. If genomic data is available, likeli-

hood ratios are additionally calculated for genotypes. In

contrast topreviousapproachesbasedonsemantic similarity,

LIRICAL provides an estimate of the posttest probability of

candidate diagnoses. For each candidate diagnosis, LIRICAL

calculates the extent to which each phenotypic abnormality

(and if available genotype) is consistent with the diagnosis.

To test the performance of LIRICAL, we generated simulated

data from384published case reports and leverageddata from

116solvedcases fromthe100,000GenomesProject. LIRICAL

was highly accurate and robust to several sources of noise.
Material and Methods

Data Sources
The hp/releases/2019-09-06 version of the HPO (hp.obo) was used

for the analysis described here. The phenotype.hpoa file, contain-

ing HPO annotations (HPOA), was downloaded on October 16,

2019 from the HPO website.

Likelihood Ratio
The likelihood ratio (LR) is defined as the probability of a given test

result ðxÞ in an individual with a diseaseD divided by the probabil-

ity of that same result in a person without the disease ð:DÞ:

LRðxÞ¼ PrðxjDÞ
Prðxj:DÞ (Equation 1)

PrðxjDÞ is the sensitivity (true positive rate) of the test, i.e., the ex-
pected proportion of individuals with disease D who are correctly

identified. The specificity or true negative rate is the proportion

of individuals without diseaseDwho are correctly identified as un-

affected, i.e., Prð:xj:DÞ. Therefore, the LR can be expressed as

LRðxÞ¼ sensitivity

1� specificity
(Equation 2)

The definition of the LR can be extended tomultiple tests.22 Sup-

pose X ¼ ðx1; x2;/; xnÞ is an array of n test results. Under the

assumption that the tests are independent, LRðXÞ is defined as

PrðXjDÞ
PrðXj:DÞ¼

Prðx1; x2;/; xnjDÞ
Prðx1; x2;/; xnj:DÞ ¼

Yn
i¼1

PrðxijDÞ
Prðxij:DÞ (Equation 3)

The posttest probability refers to the probability that an individ-

ual has a disease given the information from test results X and the

pretest probability of the disease. The posttest probability can be

calculated as

PrðDjXÞ¼ pLRðXÞ
ð1� pÞ þ pLRðXÞ; (Equation 4)

where p is the pretest probability of D. Depending on the cohort,

the pretest probability can be defined as the population prevalence
404 The American Journal of Human Genetics 107, 403–417, Septem
of the disease or by some other estimate of the frequency of the

disease in the cohort being tested.

LIRICAL calculates LRs for observed phenotypic abnormalities

(HPO terms) and observed genotypes (as inferred from VCF files)

by defining probability distributions for phenotypes and geno-

types as described in the following sections.
LR for Phenotypes
The signs and symptoms and other phenotypic abnormalities of

probands being investigated by this approach are represented us-

ing terms of the HPO, which provides a structured, comprehen-

sive, and well-defined set of 14,813 classes (i.e., terms; September

2019 release) describing human phenotypic abnormalities.13,23–25

We model the clinical encounter that results in a set of n pheno-

typic observations encoded as HPO terms h1; h2; .; hn. The LR

of each phenotype term with respect to a specific disease D is

defined as

LRðhiÞ¼ PrðhijDÞ
Prðhij:DÞ: (Equation 5)

We assume that the tests are independent and the LR of the n

HPO terms can be obtained from the product of the individual

ratios.

The Probability of Having Phenotypic Abnormality hi Given a

Disease D
Wefirst explain howwe define the numerator of Equation 5 on the

basis of the relationship of term hi to the set of phenotype terms to

which disease D is annotated (Figure S1). We distinguish seven

cases, all of which are detailed in the following sections.

hi Is Identical to One of the Terms to Which D Is Annotated

In this case, we define PrðhijDÞ ¼ f Di , that is, the frequency of the

phenotypic featurehi among individualswithdiseaseD. For instance,

if the disease model for D is based on a study in which seven of ten

persons with D had hi, then f Di ¼ 0:7. If no information is available

about the frequency of hi, then by default, we define f Di ¼ 1.

hi Is an Ancestor of One or More of the Terms to WhichD Is Annotated

Because of the annotation propagation rule of subclass hierarchies

in ontologies,26 D is implicitly annotated to all of the ancestors of

the set of annotating terms. For instance, if the computational dis-

easemodel of some diseaseD includes the HPO term polar cataract

(HP:0010696), then the disease is implicitly annotated to the

parent term cataract (HP:0000518) (to see this, consider that any

person with a polar cataract can also be said to have a cataract).

By extension, this is also true of more distant ancestors of the

term. We therefore define the probability of a term hi (e.g., cata-

ract) that is an ancestor of any term hj (e.g., polar cataract) that

explicitly annotates disease D as

Pr hijDð Þ ¼ max
j

f Dj such that hi˛anc hj

� �
and hj˛annot Dð Þ

(Equation 6)

where ancðhjÞ is a function that returns the set of all ancestors of

term hj and annotðDÞ is a function that returns the set of all HPO

terms that explicitly annotate disease D. In other words, the proba-

bility of hi in diseaseD is equal to themaximum frequency of any of

the descendants of hi that directly annotate disease D.

hi Is a Child Term of One or More of the Terms to Which D Is Anno-

tated

In this case, hi is a child (i.e., a specific subclass) of some term hj

that directly annotates D. For instance, disease D might be anno-

tated to syncope (HP:0001279), and the query term hi is
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orthostatic syncope (HP:0012670), which is a child term of syn-

cope. In addition, syncope has two other child terms, carotid sinus

syncope (HP:0012669) and vasovagal syncope (HP:0012668). Ac-

cording to our model, we will weight the frequency of syncope

in disease D (say, 0.72) by ð1 =��childðhjÞ
��Þ, where childðhjÞ is the

set of child terms of hj (so in our example, we would use the fre-

quency 0:7231=3 ¼ 0:24). In our implementation, only the direct

children of a disease-associated term hj are considered. The

maximum frequency ðf Dj Þ is taken across all disease-associated

terms.

Pr hijDð Þ ¼ 1��child hj

� ���$max
j

f Dj such that hi˛child hj

� �
and

hj˛annot Dð Þ (Equation 7)

where childðhjÞ refers to the set of direct descendants (child terms)

of HPO term hj. This algorithm is a heuristic whose intuition is

that if a proband is annotated to a specific subterm of a term

used to annotate a disease, this is not an exact match and should

be penalized to some extent. If the proband is annotated to a term

that is separated by more than one link from the disease term,

then this heuristic does not consider it to be a match.

hi and Some Term toWhichD Is Annotated Have a Non-root Common

Ancestor

In this case, hi is not a child term of any disease term hj and no dis-

ease term hj is a descendant of hi. LIRICAL then finds the closest

common ancestor of hi and all terms that annotate D (denoted

hca in the following). Noting that hca might have a zero or very

small frequency in diseaseD, we define the LR using the following

heuristic:

LRðhiÞ¼ PrðhcajDÞ
Prðhcaj:DÞ

¼ max

 
1

100
;

f Dca
Prðhcaj:DÞ

!

Because the common ancestor is higher up in the HPO hierar-

chy, the LR tends to be lower and sometimes substantially lower

for features with a high frequency across the HPO corpus [with a

corresponding low value for Prðhcaj:DÞ]. Therefore, in order to

avoid a single term’s having an excessive influence on the final

result, the LR is taken to be at least ð1 =100Þ.
hi Does Not Have Any Non-root Common Ancestor with Any Term to

Which D Is Annotated

In this case, hi does not affect the same organ system as any of the

annotations of D. A heuristic small value of ð1 =100Þ is assigned.
The Proband Has a Phenotypic Abnormality hi That Is Explicitly

Excluded from Disease D
In the HPO annotation resource, each disease is represented by a

list of HPO terms that characterize it together with metadata,

including provenance, and in some cases, frequency and onset in-

formation.13 Some diseases additionally have explicitly excluded

terms (there are a total of 921 such annotations in the September

2019 release of the HPOA data). These annotations are used for

phenotypic abnormalities that are important for the differential

diagnosis. For instance, Marfan syndrome and Loeys-Dietz syn-

drome share many phenotypic abnormalities.27 The feature ecto-

pia lentis (HP:0001083) is characteristic of Marfan syndrome but

is not found in Loeys-Dietz syndrome.28 The LR for such query

terms is assigned an arbitrary value of ð1 =1;000Þ, i.e., the ratio
The American
for a candidate diagnosis is reduced by a factor of one thousand

if an HPO term is present in the proband that is explicitly excluded

from the disease.

The Proband Was Shown Not to Have a Phenotypic Abnormality hi

That Is Explicitly Excluded from Disease D
On the other hand, if the query includes a negated term that is

explicitly excluded in the disease, then the opposite value is as-

signed, i.e., the ratio for a candidate diagnosis is increased by a fac-

tor of one thousand if an HPO term is present in the proband that

is explicitly excluded from the disease.

The Probability of Having Phenotypic Abnormality hi if Disease D Is

Not Present

The denominator of Equation 5 specifies the probability of the test

result given that the proband does not have some disease D. This

would be difficult to calculate for the general population for the

same reasons as those described above. However, we can estimate

this probability if we assume that all persons being tested have

some (unknown) Mendelian disorder by simply summing over

the overall frequency of a feature in the entire HPO corpus (with

N diseases).

Pr
�
hij:Dj

�¼ 1

ðN � 1Þ
X
ksj

PrðhijDkÞ ¼ 1

ðN � 1Þ
X
ksj

f Dk
i (Equation 8)

Equation 8 would need to be calculated separately for each of the

N diseases, but noting that we are summing over a relatively large

number of diseases (7,623 in September, 2019) in the complete

HPO database of rare diseases, we use the following approximation

that allows us to precalculate Prðhij:DjÞ for an arbitrary disease Dj.

Pr
�
hi

��:Dj

�
z

1

N

XN
k¼1

f Dk
i (Equation 9)

Likelihood Ratio for Genotypes
Our model of predicting the relevance of any given genotype

makes use of the following concepts. We define the genotype of

each specific gene with 0;.;n variants located in the gene on

the basis of the set of heterozygous or homozygous calls for each

observed variant as derived from a Variant Call Format (VCF) file.

There is a true but unobservable pathogenicity of each variant,

defined as a deleterious effect on the biochemical function of a

gene and the gene product it encodes, that leads to disease. We

can estimate the pathogenicity of a variant on the basis of a

computational pathogenicity score that ranges from 0 (predicted

benign) to 1 (maximum pathogenicity prediction). Our model

posits two distributions that allow us to calculate the likelihoods

of an observed genotype given that the sequenced individual

has the disease ðDÞ as compared to the situation in which the in-

dividual does not have the disease in question and the variants

originate from population background (B; that is, the variants

are called pathogenic by bioinformatic analysis but are not related

to the disease in question).

We use the pathogenicity score of the Exomiser, which calcu-

lates a score for any variant in the coding exome or at the highly

conserved dinucleotide sequences at either end of introns. Exom-

iser pathogenicity scores are assigned via a variety of pathogenicity

predictors—usually a combination of PolyPhen, SIFT, and Muta-

tionTaster for missense mutations, heuristics for other classes of

variant, and membership of the variant in a high-confidence

pathogenic or likely pathogenic ClinVar dataset. The highest

(most deleterious) normalized score of these is used as the
Journal of Human Genetics 107, 403–417, September 3, 2020 405



Exomiser pathogenicity score.4,29 We use the estimated popula-

tion frequencies of variants from gnomAD,30 which is incorpo-

rated into the Exomiser database, to calculate the background dis-

tribution (version 12.1.0 was used for the analysis reported here).

Our model depends on the assumed mode of inheritance of the

disease; we will begin our explanation with autosomal-dominant

(AD) diseases. We are interested in the ratio of an observed geno-

type ðGÞ given that it is disease causing (i.e., the sequenced individ-

ual has disease D) or not disease causing (i.e., the sequenced indi-

vidual does not have disease D). Assume we observe n variants

ðv1; v2;.; vnÞ in gene g and have calculated their pathogenicity

score as sðviÞ for i˛f1;.; ng. For simplicity, we will assume that

the variants have been arranged such that sðv1ÞRsðv2ÞR.RsðvnÞ.
We first note that 98.9% of the pathogenicity scores of variants

classified as pathogenic in ClinVar31 are assigned a pathogenicity

score of 0.8 or more by Exomiser (Figure S2). For the purposes of as-

sessing and scoring candidate variants, we therefore divide the score

distribution into two bins,N and P; binN represents the predicted

non-pathogenic bin and has a range of pathogenicity scores of ½0;
0:8Þ, and bin P represents the predicted pathogenic bin with path-

ogenicity scores of ½0:8; 1�. That is, P represents the bioinformatic

prediction of whether a variant is ‘‘pathogenic.’’ In general, it is

not possible to know with certainty whether any variant (be it in

bin N or P) is causally related to a disease or phenotype.

In other words, LIRICAL models variants into two bins, N and

P. Variants in N are discarded. Variants in P are modeled as com-

ing from two distributions, D (disease-related) and B (back-

ground). The purpose of this scheme is to downweight variants

in genes that often show predicted pathogenic variants and tend

to be frequently found as false positives in exome sequencing re-

sults, such as many mucin and HLA genes.32

LIRICAL’s Genotype Concept

The word ‘‘genotype’’ is used with different meanings in different

contexts. Unless we specifically refer to the genotype of a variant

(e.g., homozygous reference, heterozygous, homozygous alter-

nate), in the following text we define ‘‘genotype’’ as follows. For

each gene that is associated with a candidate disease, LIRICAL

takes into account the predicted pathogenicity and genotype of

each variant. For instance, if three variants are observed in a

gene g and the first two are heterozygous (0/1) and the third is ho-

mozygous ALT (1/1), then LIRICAL defines the genotype of g to be

gtðgÞ¼ ½ð0 =1; sðv1ÞÞ; ð0 =1; sðv2ÞÞ; ð1 =1; sðv3ÞÞ� (Equation 10)

LIRICAL’s Genotype Model

Wemodel the expected counts of observed alleles in bin P as Pois-

son distributions, using separate distributions for the case that a

variation in a given gene is disease causing or not. In this context,

a Poisson distribution gives the probability of observing k variants

in a gene, based on a rate parameter l that represents the expected

number of variants.

PrðkÞ¼Poisðk; lÞ ¼ e�ll
k

k!
(Equation 11)

For an AD disease associated with pathogenic variants in gene g,

we expect one heterozygous disease-causing variant, and so lDg ¼
1; for autosomal-recessive diseases, lDg ¼ 2. We can estimate the

probability of observing a variant in bin P in a gene g that is not

related to the disease on the basis of the frequency of such variants

in the general population; we denote this probability as lBg .

Different genes have different distributions of predicted patho-

genic variants in the general population. If a gene has a low

frequency of predicted-pathogenic variants in the general popula-
406 The American Journal of Human Genetics 107, 403–417, Septem
tion, then the observation of a predicted-pathogenic variant in a

diagnostic context might be more likely to be a true-positive

disease-causing variant.33 We calculate lBg for each gene g on the

basis of available population frequency data from the gnomAD30

resource by summing up the frequencies of individual variants un-

der the independence assumption.

In detail, the frequency (if available) of each variant allele is

taken from each of the following populations: African/African

American (GNOMAD_E_AFR), Admixed American (GNOMA-

D_E_AMR), Ashkenazi Jewish (GNOMAD_E_ASJ), East Asian

(GNOMAD_E_EAS), Finnish (GNOMAD_E_FIN), Non-Finnish

European (GNOMAD_E_NFE), and South Asian (GNOMAD_E_

SAS). For the analysis reported here, the average frequency in

all populations is calculated. We note that this approach might

overestimate the overall frequency of variants per exome or

genome, but nonetheless we can use it as a heuristic to down-

weight genes commonly found to have predicted-pathogenic

variants in the population (e.g., Table S1), as we will show

below.

We denote the function that returns the predicted pathoge-

nicity of a variant as path and the function that returns the

average population frequency of a variant allele as freq. We repre-

sent the fact that variant i is assigned to gene g as vi˛g.

lBg ¼
X
vi

freqðviÞ þ e for vi ˛ g and pathðviÞ˛P (Equation 12)

The parameter lBg is thus the expected count of variant alleles in

gene g whose pathogenicity score is in bin P. A small number

ðe¼ 10�5Þ is added to the sum to avoid division by zero in subse-

quent steps because some genes did not display any variants in

bin P in the population data.

LIRICAL provides files with lBg values for hg19 and hg38 (back-

ground-hg19.tsv and background-hg38.tsv). The file appropriate

for the VCF file being analyzed is used automatically, but users

can provide custom background files if desired. The code used to

generate the background files is provided as a part of the LIRICAL

distribution.

Genotype LR for Genes Associated with AD Diseases

For a gene associated with an AD disease, the calculation pro-

ceeds as follows. Assume we are evaluating disease D, which is

associated with mutations in gene g, and that there is one pre-

dicted-pathogenic variant v0 in bin P and there are k other pre-

dicted-non-pathogenic variants in bin N . The model assumes

that any variants in bin N are unrelated to the disease and

have the same probability whether or not gene g is causally

related to the disease. That is, for a variant v
0
i˛N ,

Prðv0
i jDÞ ¼ Prðv0

i

��:DÞ. The genotype observed for gene g is sym-

bolized as gtðgÞ.

LRðgtðgÞÞ¼ PrðgtðgÞjDÞ
PrðgtðgÞj:DÞ

¼ Prðv0jDÞ
Prðv0j:DÞ3

Y
i

visv0

Prðvij:DÞ
Prðvij:DÞ

¼ Prðv0jDÞ
Prðv0j:DÞ

We model the process by which a variant or variants lead to dis-

ease by a compound distribution. A Poisson distribution models

the number of variants observed whose pathogenicity score is in
ber 3, 2020



bin P, and a Bernoulli distribution with parameter p ¼ sðv0Þ deter-
mines the probability that the allele is disease causing. Thus, let

fXng be a sequence of mutually independent random variables

each of which can take on the value of 0 (for not disease-causing)

or 1 (for disease-causing). The sum of N such variables is SN ¼ X1þ
X2 þ.þXn, and thus, SN represents the count of truly patho-

genic alleles (we expect SN ¼ 1 for AD diseases and SN ¼ 2 for auto-

somal-recessive diseases).

This leads to the compound distribution

PrfSn ¼ kg¼Binomðk;n; pÞPoisðk; lÞ (Equation 13)

It can be shown that this is equivalent to a Poisson distribution

with parameter lp.34 Therefore, to calculate the LR, we substitute

the parameters lDg and lBg as well as pi ¼ sðviÞ.

LRðgÞ¼Prðv0jDÞ
Prðv0jBÞ ¼

Pois
�
1; pil

Dg
�

Pois
�
1; pil

Bg
� (Equation 14)

To calculate Equation 14, LIRICAL extracts the value of lBg from

the corresponding background frequency file (see above). The

value of pi is calculated on the basis of the corresponding Exomiser

pathogenicity scores. Finally, lDg ¼ 1 for AD diseases and lDg ¼ 2

for autosomal-recessive diseases. Equation 14 will have the effect

of favoring genes with a single heterozygous variant in bin P
with a maximal pathogenicity score ðpi ¼ sðv0Þ ¼ 1Þ and that

have a minimal frequency of bin P variant alleles in the popula-

tion. If this is the case, then lBg ¼ e and we can calculate the LR

by using Equation 11:

LRðgÞ¼Poisð1;1Þ
Poisð1; eÞz36788 (Equation 15)

LIRICAL does not calculate the LR for a gene unless at least one

predicted-pathogenic variant is present (i.e., k is always at least 1).

If more than the expected number of variants are found (say three

predicted-pathogenic variants for an AD disease, where lDg ¼ 1),

the numerator of Equation 14 would be smaller, that is,

Poisð3; pilDg Þ < Poisð1; pilDg Þ.
Genotype LR for Genes Associated with Autosomal-Recessive Diseases

The procedure for autosomal-recessive diseases is analogous,

except that lDg ¼ 2. In the case that gene g is causative for the dis-

ease in the individual being sequenced, then we expect to find two

alleles (which will be identical in case of a pathogenic homozy-

gous variant and distinct in the compound heterozygous case).

The two alleles in bin P with the highest pathogenicity score are

chosen for analysis. Let savg denote the mean of the pathogenicity

scores of the two variant alleles observed in gene g that have the

two highest pathogenicity scores, i.e., savg ¼ 0:5$ðsðv1Þþsðv2ÞÞ.
Then,

LRðgtðgÞÞ¼ Prðv0jDÞ
Prðv0j:DÞ ¼

Pois
�
2; savg$l

Dg
�

Pois
�
2; savg$l

Bg
� (Equation 16)

This will have the effect of favoring genes with a minimal fre-

quency of bin P variants in the population and with two patho-

genic alleles (homozygous or compound heterozygous) in bin P,
which have a maximal pathogenicity score ðsðv0Þ ¼ 1Þ. In this

case, lBg ¼ e and LRðgÞz3;678;831;200, but this value is not

seen in practice.

If onlyonepredicted-pathogenicvariant is found inanautosomal-

recessive disease, thenumerator of Equation 16 is smaller than if two

variants are present, i.e., Poisð1; savg $lDg Þ < Poisð2; savg $lDg Þ. This
has the effect of downweighting disease genes associatedwith reces-
The American
sive diseases for which only one heterozygous pathogenic allele is

found but avoids filtering them out entirely.

In males, hemizygous variants on the X chromosome are called

as homozygous by current variant-calling software. Therefore, we

set lDg ¼ 2 for both recessive and dominant X chromosomal

diseases.

Genotype Likelihood Ratio: Special Cases
No Variants at All Found in Gene g

If the molecular basis of a disease is known to be mutations in a

gene g, but no bin P variants or no variants at all are found in

that gene, then an LR of 1/20 is assigned for AD diseases, reflecting

an estimation that the probability of missing a pathogenic variant

if one is present is about 5%. For autosomal-recessive diseases, we

estimate the probability at 0:0530:05 ¼ 0:0025.

The motivation for this approach is that some downweighting

should be performed if no candidate variant is found in a gene,

but given the presumed high prevalence of false-negative results

in exome/genome sequencing, it would not be desirable to radi-

cally downweight otherwise strong candidates.

Clinvar Pathogenic Variant(s) Found in Gene g

ClinVar31 makes use of the American College of Medical Genetics

and Genomics and the Association for Molecular Pathology stan-

dards for the interpretation of a variant as pathogenic (i.e., causa-

tive of a disease).35 Denote the count of ClinVar pathogenic alleles

as c. If c ¼ 2 for autosomal-recessive diseases, then a heuristic LR of

1;0002 is assigned. If c ¼ 1 for an AD disease, then a heuristic LR of

1,000 is assigned. If the c does not match the count of pathogenic

alleles that would be expected for the mode of inheritance, then a

heuristic LR of 1,000 is assigned.

This heuristic means that if a ClinVar pathogenic variant is

found even in a gene, such as TTN, that is characterized by a

high frequency of predicted-pathogenic variants in the popula-

tion, then this is taken as being supportive of a diagnosis associ-

ated with variants in the gene.

Heuristic for Genes with Many Variants

Some genes commonly harbor variants in the general population

that are predicted as pathogenic by bioinformatic software (cf.

Figure S3 and Table S1). LIRICAL uses the background score to

assess this. The background score ranged from 0 to 20.7 (for

MUC4). Numerous disease-associated genes displayed scores over

1.0, including, for example, TTN, which had a score of 9.5. Accord-

ing to our model, it is not surprising to observe a predicted-path-

ogenic variant in a gene such as TTN whether or not the gene is

associated with the disease being investigated in any particular

case. LIRICAL downweights the LR for genotypes in these genes

if predicted-pathogenic variants are found in a VCF file because

such variants are commonly encountered as false positive find-

ings.15 It does so by limiting the value of lBg to be at most the

observed count of predicted-pathogenic variants, cpath, in cases

where lBgR1 (if the observed called-pathogenic variant count is

much higher, the probability calculated by the Poisson distribu-

tion will be very low).

lBg : ¼min
�
cpath; l

B
g

�
:

For instance, if one predicted-pathogenic variant is identified in

TTN, this scheme would lead to an LR of one—the observation of

the predicted-pathogenic variant in this gene neither adds to nor

detracts from the probability of the differential diagnosis (we treat

known disease-associated variants in ClinVar differently, see

above).
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–global Setting for Genotype Likelihood Ratio

Our approach has two options for dealing with genes in which no

predicted pathogenic variants are observed. With the default op-

tion, LIRICALwill remove the genes and the diseases they are asso-

ciated with from further analysis. This might be most appropriate

if the goal of analysis is to demonstrate the genetic etiology of a

disease.

If the –global option is chosen, LIRICAL ranks all diseases

(including those with and without known associated disease

genes) according to the posttest probability. In this case, if a dis-

ease has no associated disease gene, the LR is calculated from the

phenotype evidence alone. Our procedure is designed to work

whether or not genetic evidence is available to support a candidate

diagnosis. If, for instance, the individual being sequenced is

affected by a Mendelian disease for which the causative genes

have not yet been identified, then, if there is a good phenotypic

match, ideally the analysis procedure would include the disease

in the overall results. Therefore, we omit the genotype score

from the overall LR for Mendelian diseases in the HPO database

that have a currently unclarified molecular basis.
Combined Genotype-Phenotype Likelihood Ratio Score
Our procedure takes as input a VCF file and a list of HPO terms rep-

resenting the set of phenotypic abnormalities observed in the in-

dividual being sequenced. For each of the �4,300 Mendelian dis-

eases in the HPO database for which the causative disease gene

has been identified, all predicted-pathogenic variants are extracted

and the corresponding genotype LR is calculated. The LRs are

calculated for each phenotypic feature as described above. The

final LR for some disease D is then

LRðDÞ¼LRðgtðgÞÞ3
Y
i

PrðhijDÞ
Prðhij:DÞ (Equation 17)

Ranking Candidates
Our approach calculates the LR of Equation 17 for each disease

represented in the HPO disease database (n ¼ 7;623 in the 9/

2019 release). By default, LIRICAL uses disease definitions derived

from the Online Mendelian Inheritance in Man (OMIM) knowl-

edge resource.36 This definition of disease treats each disease-

gene pair as a unique disease (e.g., each of the ten forms of

Hermansky-Pudlak syndrome are treated as a unique disease).

LIRICAL can also be run using phenotype annotations derived

from Orphanet37 by using the –orpha flag. Orphanet defines dis-

eases based on clinical considerations, whatever the number and

nature of the causes (i.e., number of causative genes, different

modes of inheritance, etc.),38 and so in this example, there is

only one disease code for Hermansky-Pudlak syndrome.

Finally, LIRICAL ranks diseases according to their posttest prob-

ability as calculated by Equation 4.
Visualization
The results of analysis are displayed here by showing bars whose

magnitude is proportional to the decadic logarithm of the LRs of

each tested feature. Features that support the differential diag-

nosis are shown in green and directed to the right of a vertical

line in the center of the plot, and features that speak against

the differential diagnosis are shown in red and directed to the

left.
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We curated HPO terms from 384 published case reports (Tables 1

and S2). We chose case reports in which the causative mutation

had been identified so that we could perform simulations with

and without a simulated exome. For each case report, we strove

to capture all of the phenotypic features that were observed or

explicitly excluded with corresponding HPO terms. The variants

reported in the case reports were recorded via hg19 coordinates

and checked via VariantValidator.39

We downloaded the file project.NIST.hc.snps.indels.vcf from

the Genome in a Bottle project website.40 This file contains variant

calls derived from Illumina short-read exome sequencing of the

samples NIST7035 and NIST7086. We used bcftools41 to create a

VCF file with NIST7035 as the single sample. For each pheno-

packet, the causative mutation or mutations were spiked into

the VCF file.

We compared the results of simulation with the original data

and also performed various types of obfuscation to assess the in-

fluence of noise on the performance of LIRICAL and Exomiser,

adding varying degrees of phenotypic or genotypic noise

(Table S3).

A comparison of LIRICAL and Exomiser was also performed for

116 solved cases from the 100,000 Genomes Project for which

detailed clinical phenotype data in the form of HPO terms had

been collected. All cases were singletons with single-sample VCF

files available. The diagnoses came from 89 different genes across

a wide spectrum of rare disease areas (cardiovascular, ciliopathies,

dermatological, dysmorphic and congenital abnormalities, endo-

crine, hearing and ear, metabolic, neurology and neurodevelop-

mental, ophthalmological, renal and urinary tract, rheumatologi-

cal, skeletal, and tumor syndromes).

Implementation
LIRICAL is implemented as a Java application. It is written in Java

1.8 and compiles under Java 11. An executable and source code

can be downloaded from the GitHub page, and detailed documen-

tation is available at the read the docs page (see Web Resources).

LIRICAL is freely available for academic use.
Results

In this work, we present an approach to clinically inter-

pretable prioritization of candidate diseases based on the

LR framework. The LR is defined as the probability of a

given test result in an individual with the target disorder

divided by the probability of that same result in an individ-

ual without the target disorder. The LR framework allows

multiple test results to be combined by multiplying the in-

dividual ratios and also relates the pretest probability to the

posttest probability in a way that can be used to guide clin-

ical decision making.22,42,43

The LIRICAL Algorithm

We define an LR-basedmodel of the clinical examination of

an individual being investigated for a suspected but un-

knownMendelian disorder as follows. Each recordedpheno-

typic observation is defined as a clinical test. The probability

that a person with disease D has a phenotypic abnormality

encoded by HPO term hi, denoted as f Di , is taken to be the
ber 3, 2020



Table 1. Phenopackets Used for Evaluating the Performance of LIRICAL

Total case reports 384

Diseases

Median # cases per disease 1

Maximum # cases per disease 19

Autosomal-recessive diseases 203

Autosomal-dominant diseases 128

X chromosomal diseases 10

Multiple modes of inheritance 43

Total 262

Disease genes

Total 259

HPO terms

Total over all cases 1687

Mean # HPO terms per case 11.1 (median 9)

Mean # negated HPO terms per case 2.71 (median 0)

384 phenopackets each describing a single published case report were derived from the literature by manual biocuration. See Table S2 for details. Multiple modes
of inheritance means that more than one mode has been described for the disease in question, e.g., inherited cataract associated with variants in PITX3 can be
inherited in an autosomal-dominant or autosomal-recessive fashion. The phenopacket schema represents an open standard for sharing machine-readable pheno-
typic descriptions in the context of rare disease, common disease, or cancer (see Web Resources).
frequency with which the abnormality is observed in

affected individuals as recorded in the computationaldisease

models of the HPO project based on literature biocuration (a

default value of 100% is used if specific frequency informa-

tion isnotavailable). Formanydiseasesandfeatures, anover-

all frequency of the feature is known; for instance, 19/437

persons ð� 4%Þ with neurofibromatosis type 1 have sei-

zures.44 On the other hand, 338/442 individuals ð� 87%Þ
with this disease havemultiple café-au-lait spots.45 In our al-

gorithm f Di represents the numerator of the LR.

The denominator of the LR is the probability of the

phenotypic feature if the proband does not have the disease

ðDÞ in question. It would be difficult to calculate this for

each of the 13,182 phenotypic abnormalities of the HPO

in the general population, but we note that a tractable

and realisticmodel for our purposes is that any proband be-

ing investigated by genomic diagnostics has some genetic

disease. We can therefore calculate the denominator of

the LR by means of the overall prevalence of HPO feature

hi in genetic diseases other than D. For instance, if D and

13 of the 7,622 other diseases in the HPO database are char-

acterized by feature hi andwe assume an equal pretest prob-

ability for all diseases, then the probability of the proband’s

having feature hi if the proband is not affected by diseaseD
is the sum of the frequencies of hi in the 13 diseases divided

by 7,622 (an efficient approximation of this probability is

used; see Methods).

Our algorithm takes as input a VCF file with genetic var-

iants identified in an exome, genome, or gene panel exper-

iment as well as a list of HPO terms that describe the

phenotypic abnormalities observed in the proband. The al-
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gorithm returns a ranked list of candidate diagnoses each

of which is assigned a posttest probability. Each of the

HPO terms is conceived of as a diagnostic test, and an LR

is calculated for each term, representing the probability

that a proband has the term in question if the proband

has the candidate disease divided by the probability of

the proband’s having the term if the proband does not

have the candidate disease.

The current version of the HPO database comprises

7,623 diseases of which 5,192 are associated with at least

one gene (total disease-associated genes: 4,025) and

2,431 diseases are not associated with a gene. In contrast

to previous approaches to phenotype-driven genomic di-

agnostics,1,2,29 our approach includes diseases with no

known disease-associated gene in the differential. Howev-

er, if a disease-associated gene is known, then the genotype

of the proband is also used as a diagnostic test in the LR

framework. The LR is calculated for the observed genotype

of the gene on the basis of our expectation of observing

one or two causative alleles according to the mode of in-

heritance of the disease and also the probability of

observing called pathogenic variants in the gene in the

general population. The individual LRs are multiplied to

obtain a composite LR, which, together with the pretest

probability of each disease, is used to calculate the posttest

probability in order to rank the diseases.

LIRICAL Supports Clinical Interpretation with Estimates

of Posttest Probability and Per-phenotype LRs

Figure 1 illustrates our approach for a published proband

with five characteristic features of ataxia-pancytopenia
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Figure 1. LIRICAL Evaluation of a Simulated Case of Ataxia-Pancytopenia Syndrome (ATXPC)
For each candidate diagnosis with an above-threshold posttest probability, LIRICAL shows the contribution of each phenotypic feature
and of the genotype to the final diagnosis. In this case, the data were extracted from a published case report on an individual with
ATXPC,46 and an additional unrelated term (high myopia) was added to simulate the effect of noise.
(A) LIRICAL provides a table of the top candidates with the posttest probability and a sparkline view of the contributions of each HPO
term and the relevant genotype.
(B) The observed HPO terms.
(C) The correct diagnosis, ATXPC, is ranked in first place because of a good phenotype match and a positive LR for the heterozygous
genotype for the causative gene SAMD9L.
(D) The second candidate has many of the same phenotype matches, but the first query term, dysmetria, matches exactly with Ataxia-
pancytopenia syndrome and only approximately with the second candidate, spinocerebellar ataxia, autosomal recessive 7.
(E) The third candidate has a posttest probability close to zero because it has more mismatching or poorly matching query terms.
syndrome (ATXPC; MIM: 159550): dysmetria, Babinski

sign, cerebellar atrophy, dysarthria, and ataxia.46 We addi-

tionally added the HPO term high myopia to simulate an

unrelated (false-positive) finding that is not related to the

underlying Mendelian disease. Exome sequencing was

simulated in this example case by spiking a heterozygous

variant in the causative gene for ATXPC, SAMD9L, into

an otherwise ‘‘normal’’ VCF file. LIRICAL was then run
410 The American Journal of Human Genetics 107, 403–417, Septem
on the combined phenotype and genotype data and

ranked ATXPC first out of the 7,623 diseases in the HPO

database. The graphical display of the results shown in

Figure 1A indicates how much each feature contributed

to the prediction. Figure 1D shows the second highest

ranking candidate, spinocerebellar ataxia, autosomal reces-

sive 7 (SCAR7). SCAR7matches four of the five phenotypic

features that ATXPC does. It scores lower because the
ber 3, 2020



match to the term dysmetria was exact for ATXPC but in

SCAR7 the closest match to dysmetria was ataxia, resulting

in a lower LR (the HTML output of LIRICAL allows the user

to browse the matching and approximate terms and their

LRs by tool tips that appear when mousing over the bars

that display the LR). The third candidate, oculodental

dysplasia (MIM: 164200), has two additional mismatching

HPO terms, Babinski sign and cerebellar atrophy, and is as-

signed a posttest probability of under 0.1%. LIRICAL

thereby provides users both with an assessment of the de-

gree to which any given phenotypic feature supports a

diagnosis or argues against it, as well as an estimated post-

test probability of the candidate diagnosis on the basis of

the information provided. Users can remove terms deemed

irrelevant (e.g., high myopia) and rerun the analysis. They

can choose to concentrate detailed follow-up on candidate

diagnoses with a high posttest probability.
LIRICAL Achieves State-of-the-Art Performance and Is

Robust to Phenotypic and Genotypic Noise

We evaluated the performance of LIRICAL by using several

different approaches. Many previous studies simulated

cases by choosing a certain number of HPO terms at

random to simulate a proband (e.g., choosing five terms

at random from the 56 terms that annotate Marfan syn-

drome in the HPO database). Phenotypic noise is simu-

lated by adding a certain number of HPO terms at random

from all available annotations (‘‘noise terms’’). In some

cases, imprecision of clinical data entry is simulated by re-

placing the randomly chosen disease terms by parent

terms. If studies simulate genomic analysis, then addition-

ally a published disease-associated variant would be spiked

into an otherwise normal VCF file.47–50 However, this kind

of simulation can be criticized because randomly chosen

terms are unlikely to resemble terms that would be chosen

in a real clinical encounter. In a real clinical encounter, the

clinician may or may not be able to describe phenotypic

abnormalities with the greatest possible detail. For

instance, a general practitioner may diagnose reduced vi-

sual acuity, but the precise abnormality, say Y-shaped cata-

ract, may only be observable by an ophthalmologist.

Therefore, in real-life situations, the different aspects of

the phenotype of a proband may have been observed, re-

corded, or communicated at different levels of detail.

Our basic approach for this study was therefore to

extract HPO terms and disease-causing variants from pub-

lished case reports and to perform simulations with the

original data as well as simulations in which varying types

of phenotypic or genotypic noise were added. We tested

the performance of LIRICAL by using a collection of 384

case reports derived from the literature and curated by us-

ing the GA4GH phenopacket format (Table 1; Web Re-

sources). LIRICAL can be run with or without genetic

data, and so we first compared it to Phenomizer, which ex-

ploits semantic similarity between query terms and dis-

eases on the basis of clinical (but not genetic) data.47 LIRI-
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CAL placed a total of 43.7% of cases in the top three ranks

compared to 35.3% for Phenomizer (Figure S4).

We then compared LIRICAL to Exomiser, which has

shown state-of-the-art performance against other algo-

rithms.49 Exomiser currently ranks disease genes

(combining all diseases associated with any given gene),

and so for this comparison, we recorded LIRICAL’s rank

by gene. LIRICAL placed the correct gene in the first ranks

in 80.7% of cases, compared to 77.3% for Exomiser. The

percentages for placing the correct gene in the top three

ranks were 92.9% for LIRICAL and 92.2% for Exomiser

(Figure 2B).

Diagnostic NGS data, including exome, genome, and

gene-panel investigations, can be affected by many

different kinds of noise.15 The disease-causing variant

may be missed, or in autosomal-recessive conditions, one

of the two pathogenic alleles may fail to be detected.

Phenotypic features unrelated to the Mendelian disease

may be included in the analysis. On the other hand,

phenotypic features associated with the disease may be

observed or described imprecisely. LIRICAL was designed

with a number of features that can help mitigate these

kinds of noise.

We first compared the performance of both approaches

in the presence of phenotypic noise (Figure 2A explains

the obfuscations). Figure 2E shows the performance if

two random HPO terms are added to each case to simulate

noise. Figure 2F shows the effect of additionally replacing

each of the original HPO terms with a parent term, and

Figure 2G shows the effect of additionally replacing each

original term with a grandparent term. The latter two ex-

periments simulate the effect of two different degrees of

imprecision in the description of the clinical data (e.g.,

not entering a term such as zonular cataract but instead

entering its parent term, cataract, or even grandparent

term, abnormality of the lens). It can be seen that LIRI-

CAL’s performance is better than Exomiser’s on this dataset

and that LIRICAL’s performance degrades less in the pres-

ence of noise.

LIRICAL’s genotype LR does not apply a hard filter to

candidates whose genotype does not match the expected

genotype for some disease. In exome and genome

sequencing, structural variants and single-nucleotide or

other small variants in GC-rich exons may be missed,

which can lead to only one of two pathogenic alleles’ being

detected for an autosomal-recessive disease. LIRICAL will

rate such a genotype less highly than a pathogenic bi-

allelic genotype but will not filter out such candidates

(Figure S5). We therefore compared the performance of

LIRICAL and Exomiser on the 221 autosomal-recessive

cases in our dataset. LIRICAL placed the correct candidate

in first place in 84.6% of cases compared to 71.0% for

Exomiser. If one of the two pathogenic alleles was

removed, LIRICAL still placed the correct gene in first place

in 62.0% of cases, compared to only 20.1% for Exomiser

(Figures 2C and 2D). The performance of LIRICAL was

slightly better in cases where at least one of the variants
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Figure 2. Evaluation of LIRICAL and Exomiser on 384 Case Studies
The case studies were formatted as phenopackets (Table 1), and the diagnostic process was simulated by spiking disease-causing variants
into a VCF file, which was passed together with phenotype data to LIRICAL and Exomiser.
(A) Simulation approach. Random noise terms were added to some simulations, and in some cases, terms were replaced by their parent
term or grandparent term to mimic imprecision in measuring or recording phenotypic abnormalities.
(B–G) Results of simulations are shown with the x axis showing the rank assigned by LIRICAL or Exomiser to the correct disease gene,
and the y axis showing the percentage of cases in which the given rank was achieved. The following is shown: original data (B), perfor-
mance on the subset of 221 autosomal-recessive cases (C), the same 221 autosomal-recessive cases in which one of the two pathogenic
alleles was removed (D), two random (‘‘noise’’) HPO terms added to each case (E), original terms replaced by a parent term and two noise
terms added (F), and original terms replaced by a grandparent term and two noise terms added (G).
was listed as pathogenic by ClinVar for both AD and auto-

somal-recessive modes of inheritance (Figure S6).

LIRICAL ranked 259 of 384 (67.4%) cases at a posttest

probability above 0.5, and 287 cases (74.7%) were above

a posttest probability of 0.05. The overall rankings as well

as the posttest probability were robust to the addition of

noise, deteriorating only slightly when two random terms

were added per case, somewhatmore if terms were replaced

by more general parent or even more general grandparent

terms, and falling to amean of only 29.4% if all pathogenic

alleles were omitted and to 2.9% if all HPO terms were re-

placed by random terms (Figure 3). This suggests that LIR-

ICAL assigns substantially mean lower posttest probabili-

ties to candidate diseases for which an apparently

pathogenic variant is identified by diagnostic NGS by

chance but where there is no clinical match.

Finally, we examined 116 solved singleton cases from

the 100,000 Genomes Project. All cases were singletons

with single-sample VCF files available. The diagnoses

came from 89 different genes across a wide spectrum of

rare disease areas (cardiovascular, ciliopathies, dermatolog-

ical, dysmorphic and congenital abnormalities, endocrine,

hearing and ear, metabolic, neurology and neurodevelop-

mental, ophthalmological, renal and urinary tract, rheu-

matological, skeletal, tumor syndromes). LIRICAL placed

the correct gene in first place in 60.3% of cases, compared
412 The American Journal of Human Genetics 107, 403–417, Septem
to 64.6% for Exomiser, and placed the correct gene in the

top five ranks in 88.8% compared to 87.1% for Exomiser

(Figure 4). This is an impressive outcome, considering

that Exomiser is already part of the 100,000 Genomes Pro-

ject’s diagnostic pipeline and was used as part of the deci-

sion-making process for 26 of the 115 diagnoses. Consid-

ering the 89 diagnoses where Exomiser was not utilized,

Exomiser prioritized 57/89 (64.0%) in first place compared

to 51/89 (57.3%) for LIRICAL.

Prioritization of Genes Associated with Multiple

Diseases

Many Mendelian-disease-related genes are associated with

more than one disease (for instance, mutations in FBN1 are

associated with both Marfan syndrome and geleophysic

dysplasia). In contrast to Exomiser, LIRICAL ranks diseases

rather than genes (for an example, see Figure 5). The by-

disease ranking results for LIRICAL for the data in

Figure 2B are shown in Figure S8.

Incorporation of ClinVar Data and Analysis of Excluded

Phenotypic Abnormalities

LIRICAL uses several heuristic algorithms to account for

some challenges in the prioritization of genomic data.

For instance, genes such as TTN have a high population

frequency of variants predicted computationally to be
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Figure 3. Posttest Probability
The posttest probability of the correct diagnosis was calculated for
each of the 384 phenopacket case reports (original).
Densities are shown for the original data (original; mean posttest
probability, pp, 67:4%.); noise2**, in which two random HPO
terms were added and original terms were replaced by grandparent
terms (mean pp, 50.3%); and random, in which all HPO terms
were replaced by random terms (mean pp, 2.9%). Figure S7 shows
results for other perturbations.

Figure 4. Performance of LIRICAL and Exomiser on 116 Solved
Singleton Cases from the 100,000 Genomes Project
The x axis shows the rank assigned by LIRICAL or Exomiser to the
correct disease gene. The y axis shows the percentage of cases in
which the given rank was achieved.
pathogenic that are found in apparently healthy individ-

uals. On the other hand, specific TTN variants are listed

as pathogenic in ClinVar.31 There is currently no approach

that always correctly interprets pathogenicity of variants

in such genes. In such cases, LIRICAL takes the approach

of downweighting rare, predicted pathogenic variants

without support in ClinVar, but heuristically assigns vari-

ants listed as pathogenic in ClinVar an LR score of 1,000.

In a simulated case of TTN-related dilated cardiomyopathy,

LIRICAL correctly ranks a known pathogenic variant in

first place but ranks a rare variant that is computationally

predicted to be pathogenic but is listed in ClinVar as uncer-

tain only in eighth place (Figure S9).

In clinical practice, the differential diagnostic process can

occasionally be empowered by identifying phenotypic ab-

normalities that a proband does not have. In medical ge-

netics,manydiseases share anumberof phenotypic features

but differ with respect to one characteristic feature that pre-

sents in one disease but never presents in others. Such a

feature can be very important for the differential diagnosis.

For instance, Loeys-Dietz syndrome4 isnot characterizedby

ectopia lentis, whereas the phenotypically similar disease

Marfan syndrome is.27 LIRICAL uses a heuristic to down-

weight candidate diagnoses by a factor of 1,000 if the candi-

date is explicitly annotated not to have a feature present in

thequery terms.Tenof the380phenopacketshaveexcluded

query terms (e.g., the individual does not have some HPO

term) that support one candidate diagnosis (column 1 in

Table S4) but speak against another (column 2 in the table).

In all cases, the correct diagnosis via the negated annota-

tions was 1, and the mean posttest probability was 98.9%.

If the negated query term was omitted, the average rank

was 1.3, and the mean posttest probability was 72.6%

(Figure S10). Figure S11 shows an example of a differential

diagnosis in which the omission of a negated term reduces
The American
the posttest probability of the correct diagnosis from

92.4% to 1.2% and changes the rank of the candidate from

1 to 2. To our knowledge, LIRICAL is the only HPO-based al-

gorithm for genomic diagnostics that leverages information

about excluded phenotypes in this way.
Simultaneous Analysis of Molecularly Elucidated and

Idiopathic Diseases

Another feature of LIRICAL is a mode (–global) that ranks

all candidates, including diseases whose molecular etiol-

ogy is unknown as well as diseases with a known associated

gene in which no pathogenic variants were identified. This

is a harder prediction problem because there are more

candidate diseases, but it can prioritize diseases that would

be missed by conventional approaches. For example,

Arima syndrome is an autosomal-recessive disease with

no known disease-associated gene. LIRICAL prioritized it

in first place in a simulated run in which some clinically

similar diseases, such as Joubert syndrome, failed to

achieve a good score (Figure S12). LIRICAL placed the cor-

rect diagnosis in first place in 24.5% of cases compared to

1.0% for Exomiser and placed the correct candidate in

the top three ranks in 38.2% (1.0% for Exomiser). Overall,

LIRICAL placed the correct candidate in the top ten ranks

in roughly half of the cases (Figure S13).
Discussion

Clinical decision support systems and genomic diagnostics

have rapidly been gaining importance in recent years. The

interpretability of computational predictions is of utmost

importance in clinical settings for clinicians to efficiently

and correctly integrate computational analyses into medi-

cal workflows, and even accurate black-box algorithms

might not be appropriate in clinical settings.21,52,53 The

LIRICAL algorithm presented here adapts the LR
Journal of Human Genetics 107, 403–417, September 3, 2020 413
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Figure 5. LIRICAL Evaluation of Simulated Case with a Pathogenic FBN1 Variant
(A–E) Eight distinct diseases are associated with variants in FBN1. LIRICAL prioritizes each disease separately, and in this case correctly
placed Marfan syndrome at rank #1. Three other FBN1-associated diseases were placed in ranks #2–#4 (A). Clinical and molecular data
were simulated according to individual 1 in Cao et al.51 The HPO terms are shown in panel (B). The graphic shows LIRICAL’s summary
table and three of the detailed LR plots for the candidates at ranks #1 (C), #3 (D), and #5 (E).
framework that is widely used in the interpretation of clin-

ical laboratory results.22,54,55 To the best of our knowledge,

the LR framework has not previously been used to support

phenotype-driven genomic diagnostics. LIRICAL provides

predictions of rare-disease diagnoses whose accuracy is at

par with that of previous state-of-the-art approaches,

such as Exomiser.29 LIRICAL exhibits substantially better

performance in the face of phenotypic and genotypic

noise. Additionally, it provides an estimated posttest prob-

ability of each candidate diagnosis and allows clinicians to
414 The American Journal of Human Genetics 107, 403–417, Septem
evaluate the contribution of each individual phenotypic

abnormality to each candidate diagnosis.

An LR indicates how many times more or less likely indi-

viduals with the disease are to have that particular result

than are individuals without the disease. An LR greater

than one indicates that the result of the test is associated

with the presence of the disease being investigated, whereas

an LR less than one indicates the absence of the disease. The

more the value of the LR deviates from one, the stronger the

evidence is for the presence or absence of disease.43 In
ber 3, 2020



practice, the posttest probability can be used as an estimate

of the quality of any diagnosis. The mean posttest probabil-

ity estimated for the candidate at rank one for randomized

data was close to zero, whereas the posttest probability of

the correct diagnosis was about 67% for the case reports

(Figure 3). In some cases, however, the correct candidate

was placed at rank one but received a low posttest probabil-

ity. Future improvements in the quality and comprehen-

siveness of HPO annotations aswell as in the computational

assessment of variants might lead to an improved ability of

LIRICAL to estimate posttest probabilities.

LIRICAL can analyze an exome in less than a minute on

a typical laptop computer. We identified 14 other tools for

phenotype-driven analysis of diagnostic exome or genome

data. None of these tools was both up to date and available

for execution on the command line, which would

have enabled testing of the total of 1,978 original or obfus-

cated cases from the phenopackets and the 116 cases from

the 100,000 Genomes Project (Table S5).

In addition to having a performance that is comparable

to that of other state-of-the-art tools, such as Exomiser,

LIRICAL provides users with interpretable results that can

be used to guide clinical actions. For instance, large-scale

disease-sequencing projects, such as the 100,000 Genomes

Project, often have hundreds or thousands of unsolved

cases. LIRICAL can be run on collections of unsolved cases,

and the posttest probability of the highest ranked candi-

dates could be used as a criterion to decide whether to sub-

ject a case to detailed reanalysis.

LIRICAL’s assessment of the contribution of individual

phenotypic abnormalities can also be useful in many

ways. For instance, in practice, individuals with genetic

diseases may present with a mix of signs and symptoms

that are related to an underlying Mendelian disorder and

may also have unrelated (coincidental) findings. If a core

set of phenotypes and a genotype strongly support a candi-

date diagnosis but some features do not, clinicians might

consider whether alternate explanations for the non-

contributory features are plausible according to their clin-

ical judgment. For instance, features such as myopia, scoli-

osis, and gastresophageal reflux are relatively common in

the general population and might therefore occur in per-

sons with genetic disease as coincidental findings. Clinical

judgment would be necessary to evaluate each term. For

instance, myopia (short-sightedness) is relatively common

in young adults, but the presence of high myopia in a

toddler is more likely to be a clinical finding that is impor-

tant for the differential diagnostic workup.

LIRICAL takes as input a list of HPO terms and can be run

with or without an associated VCF file with genetic vari-

ants. The Java implementation of LIRICAL presented

here assumes an equal pretest probability for each of the

diseases under consideration (e.g., ð1 =7; 596Þ for the

7,596 diseases currently represented in the HPO database).

This is a reasonable approach to the analysis of exomes in a

setting such as the 100,000 Genomes Project where we

speculate that rarer genetic diseases are more likely to be
The American
analyzed than common, more easily recognized genetic

diseases. However, in other settings, LIRICAL could be

used with other values for the pretest probability. For

instance, in general care settings, the rare-disease preva-

lence data from Orphanet could be used.56
Limitations

Similar to the Naive Bayes approach, LIRICAL makes the

assumption that the individual (phenotypic) features are

independent of each other; this is called ‘‘naive’’ because

it is almost never true. However, in practice, Naive Bayes

and LIRICAL perform well on real data. In the future, the

LIRICAL algorithm could be extended to model the depen-

dencies in the data by defining compound probability dis-

tributions. For instance, what is the probability of

observing a set of abnormalities of the skeleton given

that a certain diagnosis is present or not? Speculatively,

this could further improve the performance of LIRICAL,

but it would require data about co-occurrences of pheno-

typic features that are currently not generally available.

Several of LIRICAL’s features depend on the underlying

biocurated data. Currently, the HPO database contains

10,756 annotations of 2,321 diseases with explicit fre-

quency data, meaning that most annotations have an un-

known frequency (the LIRICAL algorithm uses the default

frequency of 100% in these cases). Therefore, deeper and

more detailed biocuration will be required to take advan-

tage of LIRICAL’s ability to use frequencies to calculate

the LR.
Data and Code Availability

LIRICAL is implemented as a stand-alone Java desktop

application that can be installed in less than an hour. LIR-

ICAL is freely available for academic use, and source

code can be downloaded from https://github.com/

TheJacksonLaboratory/LIRICAL. The 384 phenopackets

generated for this work are available via zenodo (https://

zenodo.org/record/3905420).
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.06.021.
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