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PolyCystic Ovary Syndrome KnowledgeBase (PCOSKBR2) is a manually curated database with 
information on 533 genes, 145 SNPs, 29 miRNAs, 1,150 pathways, and 1,237 diseases associated 
with PCOS. This data has been retrieved based on evidence gleaned by critically reviewing literature 
and related records available for PCOS in databases such as KEGG, DisGeNET, OMIM, GO, Reactome, 
STRING, and dbSNP. Since PCOS is associated with multiple genes and comorbidities, data mining 
algorithms for comorbidity prediction and identification of enriched pathways and hub genes are 
integrated in PCOSKBR2, making it an ideal research platform for PCOS. PCOSKBR2 is freely accessible 
at http://www.pcosk​b.bicni​rrh.res.in/.

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age1. The 
syndrome encompasses a broad spectrum of signs and symptoms, making the diagnosis of PCOS challenging. 
There exist many society-based guidelines for PCOS diagnosis such as the (i) Rotterdam criteria accepted by 
European Society for Human Reproduction and Embryology(ESHRE) and American Society for Reproductive 
Medicine (ASRM)2; (ii) National Institutes of Health or National Institute of Child Health and Human Disease 
(NIH/NICHD) criteria3 and (iii) Androgen Excess and PCOS Society (AE-PCOS/AES) criteria4. These guide-
lines rely on the presence of oligo-anovulation and hyperandrogenism, after excluding other androgen excess 
or related disorders, for diagnosis of PCOS. The prevalence of PCOS globally ranges from 2.2 to 26% contingent 
upon the population assessed and the criteria used for evaluation5. Many of the women with PCOS suffer from 
various comorbid conditions such as glucose intolerance6, type-II diabetes7, cardiovascular ailments8, anxiety 
disorders9, bipolar disorders10 and sleep-related disorders11.

The increasing prevalence of PCOS and its profound impact on the physical and mental health of women 
has catapulted research efforts to elucidate the genetic etiology and pathophysiology of PCOS12. This, in turn, 
has led to a surge in PCOS-related data available in the public domain; calling for an urgent need to manually 
curate and collate this information as online databases for researchers and clinicians.

The databases dedicated to PCOS, currently available online are PCOSKB13 and PCOSBase14. As on date, 
PCOSDB15 is not accessible. PCOSBase, categorized as a manually curated database, lists 8,185 proteins as associ-
ated with PCOS. This data is a compilation from 9 databases and 30 published expression studies, without having 
stringent criteria for cataloguing a protein as “PCOS-related”. PCOSKB, developed by our group in 2015, was 
created by critically reviewing the scientific literature available for PCOS. The manual curation exercise resulted 
in a list of 241 genes, which was further linked with relevant molecular, biochemical, and clinical data along 
with supporting reference literature.

Over the past 5 years, there has been a significant increase in the data available on PCOS. Here, we present an 
update to the content and functionality of the PCOSKB database. PCOSKBR2 holds information of 533 genes and 
29 miRNAs (manually curated) identified from peer-reviewed literature, based on experiments such as RT-PCR, 
western blotting, immunochemistry, and cell-based assays. Additionally, information on 4,023 genes identified 
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from microarray expression studies on PCOS is also included in PCOSKBR2. The PCOS genes are further linked 
with gene ontology terms, pathways, diseases, and SNPs.

Besides retrieving data, researchers can analyse the data in PCOSKBR2, using various tools embedded in the 
database such as Comorbidity analysis for estimating the risk of diseases to co-occur with PCOS; Network analysis 
for identifying enriched pathways and hub genes and Venn analysis16 for finding common and unique genes, 
pathways and ontologies. PCOSKBR2 will enable researchers and clinicians to efficiently interrogate the published 
data on PCOS and identify gaps in our current understanding of PCOS and its comorbidities.

Results and discussion
PCOSKBR2 was developed using PHP 7.2.24, MariaDB Server 10.1.44, JavaScript, AnyChart 8.7.1, vis.js 4.21, R 
version 3.6.3 and XHTML 1.0. It has client server-based architecture and is hosted on Apache webserver 2.4.29 
with a Linux environment.

PCOSKBR2 has an interactive and user-friendly interface. The homepage provides a short description of 
the database and its functionalities. The data is organized into datasets dedicated to (a) genes, (b) miRNAs, (c) 
SNPs, (d) diseases, (e) pathways, and (f) gene ontology terms associated with PCOS (Fig. 1a,b). These datasets 
can be easily accessed using the navigation tabs located on the top panel of the webpage. A brief description of 
these tabs is given below:

•	 Search

	   a.	 Quick search enables users to retrieve information based on keywords; all the information 
available in PCOSKB related to the keyword is displayed.

b.	 Advanced search enables users to build specific queries for a gene, protein, SNP, miRNA, diseases, or 
pathways associated with PCOS.

•	 Browse This tab enables users to surf the datasets for genes, miRNAs, SNPs, diseases, pathways, and gene 
ontology terms associated with PCOS.

•	 Tools Algorithms for comorbidity, network, and Venn analysis can be accessed here.

	   a.	 Comorbidity Analysis This tool can be used to predict comorbidity for selected diseases 
based on (i) shared genes, (ii) uniqueness of shared genes, (iii) shared ontologies, and (iv) network-
based separation of shared genes (Fig. 1c1). The results for each of these modules can be downloaded 
as heatmap images (colored based on comorbidity scores) and spreadsheets with detailed information 
on shared genes and pairwise comorbidity scores for the selected diseases.

b.	 Network analysis The tool provides a disease-disease network for selected diseases, the enriched path-
ways in these diseases, and the hub and bottleneck genes that are critical for these diseases (Fig. 1c3). 
The results can be downloaded as spreadsheets or images.

c.	 Venn analysis This tool can be used to illustrate the unique and/or common genes, pathways, and 
ontologies for 2 or more (up to 6) diseases (Fig. 1c2). The analysis can be downloaded as Venn images 
or spreadsheets.

•	 Help: This page provides detailed information, with examples, for efficiently navigating the PCOSKB interface 
and using the data-mining algorithms.

The applications of these datasets and algorithms for estimating the comorbidity risk and understanding the 
genetic and functional overlap in comorbid conditions of PCOS are demonstrated by case studies.

A.	 Estimation of comorbidity risk:

Case 1: PCOS, Diabetes, and Hypertension.
There is ample clinical evidence that women with PCOS are more likely to suffer from diabetes and hyperten-

sion as compared to other cardiac ailments17–20.
The comorbidity risk can be estimated using the ‘Comorbidity analysis’ algorithm in PCOSKBR2. In accordance 

with the clinical reports, when disease terms such as diabetes mellitus, hypertensive diseases along with a less 
frequently observed comorbidity such as aortic diseases were analyzed for comorbidity scores; it was found that 
the risk for diabetes and hypertensive diseases to co-occur with PCOS was much higher as compared to aortic 
diseases. Expectedly, the maximum comorbidity score amongst the selected diseases was found to be between 
aortic diseases and hypertension (Fig. 2A). The above example illustrates the utility of the comorbidity analysis 
algorithm for estimating the risk of diseases to co-occur in PCOS.

Case 2: PCOS and Psychological disorders.
Women with PCOS are known to have an increased risk (albeit at varying levels) of suffering from mental 

health conditions such as anxiety, depression, and schizophrenia21,22. A study by Rassi et al., concluded that 57% 
of women with PCOS are diagnosed with at least one of the psychiatric disorders23. In an ambulatory population 
of 72 women with PCOS, it was observed that mental depression and schizophrenia were the most and least 
prevalent respectively among the psychiatric disorders23. Through a population-based retrospective study in a 
cohort of 5,431 women with PCOS and 21,724 controls, a significantly higher incidence of depressive and anxiety 
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disorders were reported in women with PCOS24. In another study, the prevalence of psychiatric comorbidity 
and depression was reported as the most common disorder in women with PCOS followed by anxiety25. Meta-
analysis of 57 studies (172,040 patients) summarised that women with PCOS were most likely to get diagnosed 
with depression followed by anxiety26.

These clinical observations were accurately captured through the comorbidity scores generated using the 
network-based separation method. Mental depression had the highest comorbidity risk followed by anxiety dis-
orders and schizophrenia (Fig. 2B). It is noteworthy that although maximum number of genes (124) overlapped 
between PCOS and schizophrenia, as reflected in the edge thickness between these 2 disease nodes; comorbidity 
analysis correctly estimated the least risk for comorbidity with schizophrenia amongst the three mental diseases, 
in accordance with literature reports; highlighting the predictive power of network-based separation method 
for comorbidity analysis.

B.	 Identification of the genetic and functional overlap in comorbid conditions.

Figure 1.   Conceptual and relational view of data and tools in PCOSKBR2.
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Case 1: PCOS, Diabetes, and Hypertension.
Although, diabetes and hypertension are commonly observed comorbid conditions in women with PCOS; 

not much is known about the genetic overlap of these disorders27.
Venn analysis revealed that 32 genes and 364 pathways are commonly associated with PCOS, diabetes, and 

hypertension (Supplementary Table S1). Network analysis identified 104 enriched pathways, 21 hub genes, 
and 10 bottleneck genes for these diseases (Supplementary Figs. S1a1 and S1a2, Supplementary Table S1). Hub 
genes, due to their high degree of inter-cluster connectivity, play an important role in the crosstalk of enriched 
pathways. We mined literature for ascertaining the association of these 21 genes with the comorbid conditions 
of diabetes, hypertension, and PCOS. Of the 21 genes, we found literature evidence for association of four genes 
(ESR1, PTGS2, LEP, PPARG) with these comorbidities, as detailed below.

	 (i)	 ESR1 codes for estrogen receptor alpha and hence ESR1 mutations can increase the risk of estrogen-
dependent pathophysiologies. In a study by Zhao L et al., ESR1 polymorphisms were reported to be asso-
ciated with hypertension and diabetes28. A case–control study by Jiao X et al., documented that altered 
expression of ESR1 can influence the risk of PCOS and its upregulation may contribute to abnormal 
follicular development29,30.

	 (ii)	 Prostaglandin-endoperoxide synthase (PTGS2) is a key enzyme for biosynthesis of the inflammatory 
hormone prostaglandin. It is known to be upregulated in granulosa cells of women with PCOS and 
arteries of patients with hypertension and diabetes31,32.

	 (iii)	 Leptin hormone encoded by the leptin gene (LEP) plays an important role in the regulation of energy 
homeostasis and body weight management. Several independent studies have reported the associa-
tion of leptin receptor deficiency in diabetes, hypertension, and PCOS. High circulatory leptin has 
been observed in patients with a cluster of metabolic syndrome including hypertension, diabetes33, and 
PCOS69.

	 (iv)	 Peroxisome proliferator-activated receptor gamma (PPARG) regulates adipocyte differentiation and 
thereby controls beta-oxidation of fatty acids. Mutations in PPARG​ are known to increase the risk for 
development of hypertension and diabetes34.

In addition to the identification of hub and bottleneck genes, the View interaction option in the Gene network 
analysis tool can be used to display the tissue-specific interacting partners of each gene in the network (Sup-
plementary Fig. S1). Using this feature, we identified two genes (PON1, ADIPOQ) that interact with multiple 
hub genes (Supplementary Figs. S1a3 and S1a4). PON1 interacts with six hub genes (TNF, IL6, INS, CCL2, 
LEP, PPARG​) and one bottleneck gene (LIPC) (Supplementary Fig. S1a4). Adiponectin (ADIPOQ) interacts 
with 19 hub genes that are expressed in adipose tissue (Supplementary Fig. S1a3). The association of both 
these genes in the comorbid conditions of type 2 diabetes, hypertension, and PCOS is documented in the 

Figure 2.   Network-based comorbidity analysis for PCOS and (A) diabetes and hypertension; (B) psychological 
disorders.
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literature. Paraoxonase-1 (PON1) mediates enzymatic protection of low-density lipoprotein (LDL) against oxi-
dative modifications and is known to be associated with diabetes, hypertension, and PCOS35,36. Low levels of 
adiponectin are associated with several obesity-related disorders37 and ADIPOQ is a biomarker for type-2 dia-
betes, hypertension38, and PCOS39.

This case study illustrates the utility of the Gene network analysis tool in deciphering the genetic and func-
tional overlap of comorbid conditions. While the role of all the identified hub genes in PCOS, diabetes, and 
hypertension individually has been well established, it would be worthwhile to establish the role of these hub 
genes in the pathophysiology of PCOS, diabetes, and hypertension, as a combined disease state, and explore 
them as polypharmacological drug targets.

Case 2: PCOS and Psychological disorders—anxiety and mental depression.
Insulin resistance, obesity, and altered levels of androgens (Supplementary Table S2) have been reported as 

the common pathophysiological link between PCOS and psychiatric disorders24,40. Interestingly, evaluation of 
enriched pathways for the top two psychological disorders (mental depression and anxiety) that are comorbid 
with PCOS revealed pathways that represent these cellular mechanisms (Supplementary Table S2, Supplementary 
Figs. S1b1 and S1b2, Supplementary Table S1).

Network analysis of the enriched pathways revealed 21 hub genes and 10 bottleneck genes. Of these, the role 
of two hub genes (IL6, STAT3) in the comorbidity of PCOS and selected psychiatric disorders has been reported 
in literature. Kawamura S et al., reported elevated levels of inflammatory cytokine IL6 in women suffering from 
PCOS and depression41. The negative association of STAT3 with anxiety and depression have been reported 
by Feng and Shao in PCOS induced rat models42. Anxiety and depression in rats were analysed based on their 
decreased locomotor activity in behavioural tests such as open-field tests, object recognition tests, and elevated 
plus maze tests.

Case 3: PCOS and Pregnancy-related disorders—preeclampsia.
Women with PCOS are known to be at higher risk of pregnancy-related disorders as compared to women 

without PCOS43,44. In PCOSKB, genes, and miRNAs associated with pregnancy-related disease terms like “Preg-
nancy complications, Cardiovascular”, “Pregnancy associated hypertension”, “Ectopic pregnancy”, “Gestational 
diabetes”, and “Preeclampsia” can be accessed under the disease category of reproductive disorders.

miRNAs are known to play a critical role in the pathogenesis of PCOS and pregnancy-related disorders45–47. 
Pathways such as adipocytokine signaling, oxytocin signaling, TNF signaling, progesterone-mediated oocyte 
maturation, estrogen signaling, MAPK, and FoxO signaling are known to be regulated by miRNAs and associ-
ated with pregnancy outcome48,49.

miRNA-based pathway enrichment analysis of preeclampsia revealed 88 enriched pathways that included pro-
gesterone-mediated oocyte maturation, estrogen signaling, MAPK signaling, and FoxO signaling pathways (Sup-
plementary Table S1); these pathways are known to be associated with PCOS and preeclampsia in literature49–51.

Conclusion and future directions
The aim of developing PCOSKBR2 was to provide a one-stop online portal for accessing manually curated infor-
mation on PCOS to the community of clinicians and researchers. The genes, listed in the manually curated dataset 
of PCOSKBR2 were identified based on the inference and data mined from publications. Relevant annotations 
of these genes such as gene interactions, pathway associations, and SNPs have been provided along with links 
to the reference literature.

This second release of PCOSKB has substantial advancement both in terms of data and analysis tools13. In 
addition to the advanced search and browser features for efficiently interrogating the database, users can avail 
of the tools to predict comorbidity risks, enriched pathways, and hub genes for selected diseases. These tools are 
powerful for gaining insights on the comorbidities of PCOS and the underlying gene-pathway associations, as 
can be seen by the aforementioned case studies. However, users need to be aware and cautious of the publishing 
or literature bias that can lead to erroneous inferences.

The impact of publication bias on the results of the comorbidity analysis tool can be assessed by the follow-
ing example. Women with PCOS are known to suffer from an increased risk of endometrial cancer followed by 
ovarian cancer as compared to women without PCOS50. The incidence of breast cancer is similar in women with 
and without PCOS41,50,51. The comorbidity analysis tool, using the method of shared genes, incorrectly predicted 
the highest risk of comorbidity for breast, followed by ovarian and least for endometrial cancer (Fig. 3). This 
error is inadvertently caused due to the positive publication bias for breast cancer (407,285 PubMed records) as 
compared to ovarian (116,514 PubMed records) and endometrial cancers (37,950 PubMed records). Hence, the 
genes that are known to be associated with endometrial cancer are far lesser (38 genes) than ovarian (57 genes) 
and breast cancers (129 genes).

The network separation based algorithm identified the highest comorbidity risk for ovarian, followed by 
breast and endometrial cancers (Fig. 3). The network separation method is based on the distance/separation 
of the disease-causing genes in pathway networks and therefore is more robust and less dependent (not inde-
pendent) on the number of disease-causing genes as compared to the algorithm of shared genes. This algorithm 
should, therefore, be the choice for comorbidity prediction when a fewer number of diseases; with possibility 
for publication bias is analysed.

The incidence of PCOS is rising globally52–56 and we expect the data, generated on PCOS, to increase expo-
nentially in the years to come. Depending on the availability and nature of data generated from these research 
efforts, PCOSKBR2 will be updated with new information and analysis tools. Hopefully, with more data, the 
negative impact of publication bias will be reduced. PCOSKBR2 will be a comprehensive source of updated and 
curated information on gene-disease-pathway associations in PCOS and its comorbidities.
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Methods
Dataset curation.  Curation of the gene dataset.  The genes associated with PCOS were identified by 
querying PubMed57 with MeSH(Medical Subject Headings)58 terms such as, “Ovary Syndrome, Polycystic”, 
“Syndrome, Polycystic Ovary”, “Stein-Leventhal Syndrome”, “Stein Leventhal Syndrome”, “Syndrome, Stein-
Leventhal”, “Sclerocystic Ovarian Degeneration”, “Ovarian Degeneration, Sclerocystic”, “Sclerocystic Ovary 
Syndrome”, “Polycystic Ovarian Syndrome”, “Ovarian Syndrome, Polycystic”, “Polycystic Ovary Syndrome 1”, 
“Sclerocystic Ovaries”, “Ovary, Sclerocystic”, “Sclerocystic Ovary”, “PCOS” and “Gene”. Using this query, 1561 
literature records were retrieved from PubMed.

The association of 533 genes with PCOS was manually confirmed by critically reviewing the 1561 publications. 
A gene was verified to be PCOS-associated if the literature mentions experimental evidence based on RT-PCR, 
western blotting, immunochemistry, and cell-based assays. Additional annotations such as nature of the study 
population, ethnicity, mutations/SNPs, unique identifiers for gene and protein records, protein structures, family 
and ontology details, metabolic pathway information were obtained from literature and mapping the gene records 
to databases such as Gene59, dbSNP60, Ensembl61, UniProt62, PDB63, GO64, KEGG65, OMIM66, Reactome67 and 
STRING68 (Supplementary Table S3).

Curation of the gene‑disease association dataset.  Disease associations of the PCOS genes were retrieved from 
DisGeNET69 and PubMed57 databases. The disease terms in DisGeNET that are linked to PubMed literature and 
have an active MedGen70 ConceptID (CUI) were retained for further curation. The terms with disease type as 
“phenotype” and disease semantic type as “finding”, “pathologic function”, “sign or symptom”, “injury or poison-
ing”, “experimental model of disease”, “experimental model of disease; Neoplastic process”, “anatomical abnor-
mality”, “organism attribute” were discarded from the list as the terms under these headers did not refer to 
diseases.

This list was further subdivided into two sets based on the source of information in DisGeNET69. Dataset 
‘A’ comprised of gene-disease associations collated in DisGeNET from manually curated databases such as 
ClinVar71, CTD72, Genomics England73, GWAS Catalog74 and GWAS75 and Dataset ‘B’ had information collated 
from text mining datasets such as BEFREE76 and LHGDN77. Since dataset ‘A’ records were from curated sources, 
these were included in PCOSKBR2 without further verification. For dataset ‘B’, gene-disease associations were 
validated based on rigorous manual curation. The associated literature was reviewed carefully and evidence for 
gene-disease association was sourced from experimental techniques involving human samples, such as RT-PCR, 
western blotting, immunochemistry, and cell-based assays. Genes that did not have any disease information 
in DisGeNET were queried in PubMed and publication records were mined using pubmed.mineR package78.

In cases, wherein multiple disease terms referred to the same disease, the terms were retitled as explained 
in Table 1.

Unique categorization of disease groups.  Many of the disease terms in DisGeNET69 are mapped to multiple 
MeSH58 headings. E.g. ovarian neoplasm is linked to neoplasms and reproductive disorders. An empirical rule-
based method based on ICD-1179 classification (Fig. 4) was adopted to uniquely categorize the disease terms at 
the parent level.

For complete documentation of merged terms refer to Supplementary Table S1.

Tools.  Comorbidity analysis.  For a pair of diseases ( Di, Dj ), the list of PCOS-associated genes was retrieved 
from the gene-disease dataset of PCOSKBR2 (see “Curation of the gene-disease association dataset” section). 

Figure 3.   Comorbidity analysis for PCOS and cancers using (a) shared genes and (b) network-separation 
methods.
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Four different algorithms have been used to predict the risk of comorbidity in women with PCOS. The comor-
bidity scores are illustrated as dynamic heat maps created using AnyChart JS80 package.

Based on shared genes.  This method is based on the principle that disease relationships are dependent on their 
shared genes81. A score to predict the risk of diseases Di and Dj to co-occur is calculated using the below equation

where GDi and GDj are PCOS genes associated with diseases Di and Dj.
The score is directly proportional to the number of shared genes; hence a higher score indicates a higher risk 

of comorbidity.

Based on the uniqueness of shared genes.  This method is based on the observation that diseases, whose genes 
are not associated with multiple diseases, have a higher comorbidity risk as compared to diseases caused by genes 
associated with multiple diseases82.

The uniqueness of ith gene ‘ gi ’ associated with diseases Di, Dj is calculated as:

where DT represents the total number of diseases in the gene-disease dataset and Dgi is the number of diseases 
associated with ith gene.

If ngenes ∈ Di ∩ Dj then, comorbidity of each disease pair is calculated as follows:

The score is directly proportional to the number of uniquely shared genes, hence a higher score indicates a 
higher risk of comorbidity for the pair of diseases.

Based on the biological process and molecular function of associated genes.  This algorithm is based on the 
inference that 95% of disease links can be predicted by the functional overlap of the associated genes81. Disease 
pair comorbidity risk is calculated and scored as per the standard Jaccard index83.

where GOi and GOj are the set of distinct molecular functions and biological processes for genes of diseases i and 
j respectively as retrieved from Gene Ontology (GO) database.

The score is directly proportional to the functional overlap of disease-associated genes and therefore higher 
score indicates a higher risk of comorbidity for the pair of diseases.

Based on network separation of disease genes in the human interactome.  Diseases whose genes are located 
closer in the human interactome have a higher probability of co-occurrence as compared to diseases with genes 
spread apart in the network84. Experimentally validated human protein–protein interactions from STRING 
v1168 were used for the algorithm. The comorbidity score is calculated as:

where Dii and Djj is the average of minimum distances of each gene associated with disease i and j respectively 
and Dij is the average of minimum distances between genes of diseases i and j.
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Table 1.   Rules for redundancy elimination in gene-disease association dataset.

S. No Types of redundancy

Examples

Disease terms Modified term

1 Target organ of disease ‘Malignant neoplasm of ovary’, ‘ovarian neoplasm’, ‘Epithelial ovarian cancer’ Ovarian cancer

2 Age of onset of disease ‘Adult type dermatomyositis’, ‘Dermatomyositis, Childhood 
Type’,‘Dermatomyositis’ Dermatomyositis

3 Synonyms of disease ‘Mental Depression’, ‘Major Depressive Disorder’, ‘Depressive disorder’ Mental Depression

4 Severity of disease ‘Mental disorder’, ‘Mental disorder, severe’, ‘Mental disorder, acute’, ‘mental 
disorder, chronic’ Mental disorder
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Since the score represents the network-based separation of disease-associated genes, a lower score indicates 
higher risk of comorbidity for the pair of diseases.

Network analysis.  This tool can be used for visualization of disease networks, identification of enriched path-
ways, and prioritization of disease genes. Vis.js85 visualization library was used for dynamic network creation 
and visualization. The tool has three modules as described below.

Disease‑disease network.  A dynamic subset of the human disease network86 can be created for a selected group 
of diseases. Diseases are represented as nodes and the size of a node is proportional to the number of genes or 

Figure 4.   ICD-11 based rules for non-redundant categorization of disease terms. Ovals represent retitled parent 
disease terms.
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miRNAs associated with the disease. Disease nodes are connected by edges based on the number of shared genes 
or miRNAs between them. Users can select multiple diseases for the identification of enriched pathways in these 
diseases.

Pathway enrichment analysis.  The disease-pathway associations are inferred based on mapping disease-asso-
ciated genes and target genes of associated miRNAs to their pathways87. Enriched pathways are identified based 
on hypergeometric distribution with the threshold p value set as 0.05 (gene dataset) and 0.001(miRNA dataset) 
based on the data size. Users can select pathways and visualize the network. Each pathway is represented as a 
node and is connected to other pathways in the network based on common genes or miRNAs. The thickness of 
the edge is proportional to the number of shared genes or miRNAs. If gene dataset is selected then, the enriched 
pathways can be examined for the identification of critical hub and bottleneck genes through the Gene network 
analysis module.

Gene network analysis.  Experimentally validated interactions from STRING v1168 were used for creating gene 
interaction networks for enriched pathways. Critical genes in these pathways were identified based on network 
topological properties such as degree, closeness centrality, and betweenness centrality calculated using graph 
package in R88. The hub and bottleneck genes were defined based on the study of Rakshit et al.89.

Hub genes: Degree > (Mean of Degree + (2* Standard Deviation)) OR Closeness centrality > (Mean of closeness 
centrality + (2* Standard Deviation)).

Bottleneck genes: Degree < (Mean of Degree) AND Betweenness centrality > (Mean of Betweenness centrality).

Venn analysis.  The common and unique list of genes, pathways, and ontologies can be identified for a selected 
list of diseases using this tool. jvenn source code 16 was used to develop the interactive 6-way Venn diagram.

Data availability
The data can be accessed and downloaded from the PCOSKBR2 portal (http://www.pcosk​b.bicni​rrh.res.in/).
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