
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computer Methods and Programs in Biomedicine 197 (2020) 105740 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Accurate deep neural network model to detect cardiac arrhythmia on 

more than 10,0 0 0 individual subject ECG records 

Ozal Yildirim 

a , Muhammed Talo 

b , Edward J. Ciaccio 

c , Ru San Tan 

d , h , 
U Rajendra Acharya 

e , f , g , ∗

a Department of Computer Engineering, Munzur University, Tunceli,620 0 0, Turkey 
b Department of Software Engineering, Firat University, Elazig, Turkey 
c Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY 10032, USA 
d National Heart Centre Singapore, Singapore 
e Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 
f Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 
g School of Management and Enterprise University of Southern Queensland, Springfield, Australia 
h Duke-NUS Medical School, Singapore 

a r t i c l e i n f o 

Article history: 

Received 1 August 2020 

Accepted 31 August 2020 

Keywords: 

Arrhythmia detection 

Deep neural networks 

Ecg signals 

12-lead ECG 

a b s t r a c t 

Background and objective: Cardiac arrhythmia, which is an abnormal heart rhythm, is a common clinical 

problem in cardiology. Detection of arrhythmia on an extended duration electrocardiogram (ECG) is done 

based on initial algorithmic software screening, with final visual validation by cardiologists. It is a time 

consuming and subjective process. Therefore, fully automated computer-assisted detection systems with 

a high degree of accuracy have an essential role in this task. In this study, we proposed an effective deep 

neural network (DNN) model to detect different rhythm classes from a new ECG database. 

Methods: Our DNN model was designed for high performance on all ECG leads. The proposed model, 

which included both representation learning and sequence learning tasks, showed promising results on 

all 12-lead inputs. Convolutional layers and sub-sampling layers were used in the representation learning 

phase. The sequence learning part involved a long short-term memory (LSTM) unit after representation 

of learning layers. 

Results: We performed two different class scenarios, including reduced rhythms (seven rhythm types) 

and merged rhythms (four rhythm types) according to the records from the database. Our trained DNN 

model achieved 92.24% and 96.13% accuracies for the reduced and merged rhythm classes, respectively. 

Conclusion: Recently, deep learning algorithms have been found to be useful because of their high per- 

formance. The main challenge is the scarcity of appropriate training and testing resources because model 

performance is dependent on the quality and quantity of case samples. In this study, we used a new pub- 

lic arrhythmia database comprising more than 10,0 0 0 records. We constructed an efficient DNN model for 

automated detection of arrhythmia using these records. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

a  

p  

t  

5

l  

t  

i  

s  

s  

t  

h

0

. Introduction 

Cardiac arrhythmia, defined as an abnormal heart rhythm, is

 common problem in cardiology, and can range from benign to

otentially life-threatening rhythm types [1, 2] . Therefore, early de-

ection of arrhythmia is an important clinical task that can save
∗ Corresponding author at: Ngee Ann Polytechnic, 535 Clementi Road, Singapore, 

99489, Singapore 
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ives. The commonest method to detect cardiac arrhythmia uses

he electrocardiogram (ECG), which measures the electrical activ-

ty of the heart. The standard 12-lead ECG is recorded over a 10-

econd interval. In general, ECG records include long durations (i.e.,

everal hours or days) of heart activity samples, as needed for de-

ecting and analyzing arrhythmia [3] . This task can become time-

onsuming, tedious, subjective, and costly, because it requires the

ssistance of trained experts [4, 5] . Therefore, enhanced fully auto-

ated computer-aided diagnosis systems (CADs) with high accu-

acy can be feasible and even essential solutions to assist clinical

xperts during the analysis process [6, 7] . 

https://doi.org/10.1016/j.cmpb.2020.105740
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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Machine learning-based approaches are frequently utilized to

recognize arrhythmia [8–12] . Pre-processing, feature extraction,

and classification tasks are the main steps involved in these ap-

proaches [13] . The feature extraction step has a critical role to

achieve high classification performance. Researchers choose some

clinical features (i.e., P, QRS, T wave amplitude and duration,

etc.) and arbitrary features to meet this aim. In the feature

extraction phase, useful morphological [14, 15] , temporal [14, 16–

19 ], frequency-based [20–22] and/or transform-based [23–28] fea-

tures from ECG waveforms are obtained to improve the distinc-

tion between samples. The handcrafted feature extraction step re-

quires domain knowledge and increases computational complexity

[29, 30] . The requirement for expertise to select optimal features is

a challenge [31] . In recent years, deep learning [32, 33] has become

a popular subfield of artificial intelligence. The deep learning mod-

els usually have an end-to-end structure. This architectural struc-

ture enables one to perform feature extraction and classification

steps together [34] . It has been effectively used in medical appli-

cations such as brain image analysis [35–38] , histopathological im-

ages [39–41] , and brain electroencephalogram (EEG) signal analy-

ses [42–45] . It has also been adopted for the detection of coron-

avirus (COVID-19) patients [46–51] . 

Deep learning has been the preferred mode of ECG classifica-

tion over the last few years [4, 31, 52–61 ]. One-dimensional convo-

lutional neural networks (1D-CNN) have become popular to clas-

sify ECG records because of their one-dimension structure. In 2015,

Kiranyaz et. al. [55] proposed a 1D convolutional neural network

(1D-CNN) model for patient-specific ECG classification. Acharya

et al. [4] developed a nine-layer CNN model to classify five types

of heartbeats. They obtained an accuracy of 94.03% from original

signals using an augmentation technique. Hannun et al. [56] pro-

posed a CNN model that consists of 33 convolutional layers to clas-

sify 12 rhythm categories. They based their work on a large ECG

dataset containing 91,232 records from 53,549 patients. Li et al.

[57] presented a generic CNN for patient-specific ECG classifica-

tion. Oh et al. [58] suggested a modified U-net architecture to diag-

nose beat-wise arrhythmia. Li et al. [59] developed a 31-layer 1D

residual CNN model to identify five different types of heartbeats.

Li et al. [31] recommended a customized CNN model to classify

patient-specific heartbeat using 44 records. Yildirim et al. [60] ap-

plied a CNN model for classification of 17 cardiac arrhythmias us-

ing long-duration ECG signals. Sharker et al. [61] proposed an end-

to-end deep learning model to classify 15 ECG classes. 

Another deep learning algorithm for ECG analysis is long short-

term memory networks (LSTM), known as sequence learning. LSTM

is a practical approach to analyze time-series data [62] . In the last

decade, the LSTM algorithm has been employed for arrhythmia

detection [ 30,63–73 ]. Yildirim [65] proposed a wavelet sequence-

based LSTM model to classify ECG signals. Chang et al. [66] em-

ployed a bidirectional LSTM model to classify 12 common heart

rhythms on 12-lead ECG signals collected from 38,899 patients.

Gao et al. [30] used an LSTM model with focal loss (FL) to classify

eight different heartbeats. The combination of the LSTM and CNN

model is commonly used in ECG classification. Oh et al. [67] de-

signed a CNN-LSTM model to detect five heartbeats. Warric et al.

[68] used a combined deep classifier, CNN and LSTM, in the 2017

PhysioNet/CinC Challenge [69] . Xiong et al. [70] proposed a con-

volutional recurrent neural network to recognize four different

rhythms. Guo et al. [71] developed a deep model, including con-

volution blocks and a recurrent network, to classify five heartbeat

classes. Mousavi et al. [73] applied an alarm system on five types

of life-threatening arrhythmia. They used a deep model composed

of CNN layers, attention mechanism, and LSTM units. 

The performance of deep models tends to improve with more

training data [32] . Accessing public databases is a major challenge

in medicine, as these records are costly and time-consuming to
ollect [74] . In addition, legal and ethical issues may arise when

ollecting data [75] . The most widely used public database for

rrhythmia studies is the MIT-BIH Arrhythmia Database [76] col-

ected 40 years ago [77] . This dataset has some limitations, such as

mbalanced classes [61] . Therefore, the construction of new large

ublic datasets plays a vital role for studies on arrhythmia. As de-

cribed herein, we used one of the largest public ECG datasets to

etect rhythm classes [78] . The database includes 12-lead ECG sig-

als collected from more than 10,0 0 0 individual subjects. We de-

eloped a DNN model to classify rhythms from each of 12-lead in-

uts. We preferred to use the representation and sequence learning

tructure together because of their salutary performance on both

CG [52, 67, 68, 72] and EEG signals [45] . The novelty of this pa-

er can be summarized as follows: a useful single DNN model has

een constructed to detect multiple rhythm classes on 12-lead sig-

als. The experiments are performed on one of the recent largest

ew ECG datasets, including more than 10,0 0 0 subjects. To the best

f our knowledge, this is the first deep model study to classify

hythms using this ECG dataset. All of the experiments were per-

ormed with inter-patient schema. Additionally, the training and

esting subjects were different, so that there is no overlap between

he training and the test sets. 

. Materials and methods 

In this paper, we used both representation and sequence learn-

ng to detect heart rhythms and conducted the experiments on a

arge ECG database. The database has been recently published for

rrhythmia research and encompasses more than 10,0 0 0 individual

ubject ECG records. In Fig. 1 , a block representation of the mate-

ials and methods is given for the study. 

.1. The proposed DNN model 

We designed a new DNN model to classify rhythms automati-

ally. In Fig. 2 , a block representation of the proposed DNN model

s given. We constructed the proposed deep learning model using

ifferent layer combinations. We preferred a one-dimensional con-

olutional neural network (1D-CNN) due to the one-dimensional

tructure of ECG signals. One-dimensional-CNN models have an

xcellent ability to learn distinguishing hierarchical features from

he raw inputs when applying a 1D convolution. This procedure is

lso known as representation learning [45] . The model learns low-

evel features at beginning layers and high-level features through

he consecutive layers hierarchically. After the 1D convolution step,

any feature matrices termed feature maps emerge. These maps

re sub-sampled by the max-pooling layers to reduce computa-

ional cost. A tedious task is to determine the correct parameters,

uch as the number of filters, kernel size, and strides. We used

oth our previous experience on the long duration ECG signals

60] and brute force techniques to adjust these parameters. For the

umber of filters, experiments were made based upon exponents

f two, in the range from 16 to 1024. Performance observations

ere made by selecting values from a smaller search space such

s 2, 3, 5, 7, 9 and 13 for kernel sizes. Since the length of the input

ignal is long, 21 kernels are used in the first layer and 11 strides

re used to reduce the computational cost. All of these parame-

er settings have been adjusted to provide the optimal result by

esting for different data partitions. In addition, the parts such as

hich layers should be used and which parts of the model should

e placed are time consuming and difficult processes. These pro-

esses can be solved with a satisfactory optimization approach and

ardware with high computing power. However, the best opportu-

ity we have is to adjust these parameters with the help of experts

y trying many different variations. 
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Fig. 1. Block illustration of materials and methods for the study. 

Fig. 2. A block representation of the proposed DNN model for detecting rhythm classes. 
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In the proposed model, the first convolution layer had 64 fil-

ers with 21 kernel size that was applied to the raw input signals

sing an eleven movement amount (strides). The feature maps ob-

ained from this step were sub-sampled in a max-pooling layer.

he proposed model consisted of six different convolution lay-

rs and four max-pooling layers. We used two batch normaliza-

ion layers to normalize the data. Overfitting is an important prob-

em for machine learning tasks during training. Two dropout layers

ere placed at different positions of the model to avoid the over-

tting problem. A Leaky-ReLU layer with 0.1 alpha value was used

t the beginning layers. It is a useful function to avoid the dying

eLU problem. All layers mentioned so far were used for repre-

entation learning. In the model, a LSTM block was used for se-

uence learning. Some studies on 1D signals such as EEG and ECG

52, 67, 68, 72] show that the combination of representation and se-

uence learning can yield a higher performance than by using rep-

esentation learning alone. According to this information, we used

 128 unit LSTM block at the end of the representation learning

ayers. In Table 1 , we present our implemented DNN model with

etailed layer information. 

.2. The big ECG database 

In this work, we used a new large ECG database [78] collected

y Chapman University and Shaoxing People’s Hospital (Shaoxing

ospital Zhejiang University School of Medicine). The database in-

ludes a large number of individual subjects - more than 10,0 0 0 -

ith 12-lead ECG signals sampled at a higher than usual sampling

ate of 500 Hz. In this database, there are 11 heart rhythms and 56

ypes of cardiovascular conditions labelled by professional physi-

ians. The database comprises 10,646 patients, and 12-lead ECGs

ecords were acquired over 10 seconds. The Butterworth low pass
lter [79] , the local polynomial regression smoother (LOESS) [80] ,

nd Non-Local Means (NLM) techniques [81] had been used se-

uentially to process raw ECG records. Signal components with a

requency above 50 Hz and the effects of baseline wandering were

emoved using these methods. In Fig. 3 , the pre-process step is

hown with a signal sample and frequency spectrums. In this im-

ge, it can be seen that after the pre-processing, frequencies above

0 Hz and the baseline wandering effect are removed. 

Since some ECG recordings contain only zeros, and some chan-

el values were missing, we used a total of 10,588 topics from

his database. Table 2 contains some numerical information about

he recordings used, and Fig. 4 depicts a distribution rate graph of

hythm classes across the database. 

. Experimental results 

In this section, we present experimental results to detect

hythm classes on 10-second ECG signals. We used 11 rhythms

ith two scenarios, namely, with seven and four categories. 

.1. Experimental setups 

In this study, two different experiments were performed on the

ataset. The first experiment studied seven rhythm classes; the

econd, four. Also, 12-lead ECG signals from different subjects were

sed separately for analysis and performance evaluations. We have

sed an inter-patient scheme during the experiments. Only a sin-

le efficient DNN model was used for all experiments. The hyper-

arameters of the DNN model were not altered during training.

he standard hyper-parameters of the model were set as a learning

alue of 0.002, and batch size 128. We categorically used the cross-

ntropy loss function and Adam optimizer to adjust the weights of
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Table 1 

The layer information of the implemented DNN model. 

Layer (Type) Layer Parameters Output Shape Number of Parameters 

Conv1D Filters = 64, Size = 21, Strides = 11 453 × 64 1408 

MaxPooling1D Pool size = 2 226 × 64 0 

Batch Norm - 226 × 64 256 

LeakyReLU Alpha = 0.1 226 × 64 0 

Dropout Rate = 0.3 226 × 64 0 

Conv1D Filters = 64, Size = 7, Strides = 1 220 × 64 28736 

MaxPooling1D Pool size = 2 110 × 64 0 

Batch Norm - 110 × 64 256 

Conv1D Filters = 128, Size = 5, Strides = 1 106 × 128 41088 

MaxPooling1D Pool size = 2 53 × 128 0 

Conv1D Filters = 256, Size = 13, Strides = 1 41 × 256 426240 

Conv1D Filters = 512, Size = 7, Strides = 1 35 × 512 918016 

Dropout Rate = 0.3 35 × 512 0 

Conv1D Filters = 256, Size = 9, Strides = 1 27 × 256 1179904 

MaxPooling1D Pool size = 2 13 × 256 0 

LSTM Unit = 128, Return Sequences = True 13 × 128 197120 

Flatten - 1664 0 

Dense Unit = 64, Activation = ReLU 64 106560 

Dense Unit = [7,4], Activation = Softmax {7, 4} 260 

Fig. 3. An example of the pre-processing step with frequency spectrums, a) raw signal, b) Frequency spectrum of the raw signal, c) Filtered signal, d) Frequency spectrum 

of the filtered signal. 

Table 2 

Some numerical information about the ECG records used. 

Rhythms Number of Samples Age, Mean ± Std Number of Females Number of Males 

Atrial Flutter (AF) 438 71.14 ±13.47 182 256 

Atrial Fibrillation (AFIB) 1,780 73.35 ±11.13 739 1,041 

Atrial Tachycardia (AT) 121 65.21 ±19.30 57 64 

Atrioventricular Node Reentrant Tachycardia (AVNRT) 16 57.87 ±17.33 12 4 

Atrioventricular Reentrant Tachycardia (AVRT) 8 57.50 ±17.33 3 5 

Sinus Irregularity (SI) 397 34.88 ±23.00 175 222 

Sinus Atrium to Atrial Wandering Rhythm (SAAWR) 7 51.14 ±31.82 6 1 

Sinus Bradycardia (SB) 3,888 58.33 ±13.95 1,408 2,480 

Sinus Rhythm (SR) 1,825 54.37 ±16.29 1,024 801 

Sinus Tachycardia (ST) 1,564 54.67 ±20.97 769 795 

Supraventricular Tachycardia (SVT) 544 55.64 ±18.35 294 250 

All 10,588 59.23 ±17.97 4,669 5,919 
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Fig. 4. The distribution rate graph of rhythm classes across all records. 
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he model [82] . All experiments were performed on a computer

ith specifications of Intel Core i7-7700HQ 2.81GHz CPU, 16GB

emory, and 8 GB NVIDIA GeForce GTX 1070 graphics card. The

NN model was constructed using the Keras (v 2.3.1) deep learn-

ng library [83] and the TensorFlow (v. 1.14.0) framework. 

Another important step is preparing training, validation, and

est sets for the implementation of the model. There are two stan-

ard methods for this task, cross-validation and random splitting.

n general, per subject evaluation of the models can provide more

eliable results. Each subject in this database has only one unique

ecord. Therefore, the dataset split was done on a per subject ba-

is. The large size of the ECG dataset renders it suitable for ran-

om splitting. The dataset was randomly divided into training, val-

dation, and test sets as 80%, 10%, and 10%, respectively. We used

he same records for training, validation, and testing for the experi-

ents to compare the performances consistently. We evaluated the

erformance of the model on the test sets using standard evalua-

ion metrics, such as accuracy, specificity, sensitivity, precision, and

-score. The calculations of these criteria, according to distribution

f true positive (TP), true negative (TN), false positive (FP) and false

egative (FN) samples, are given as follows: 

ccuracy = (TP + TN)/Total (1)

ensitivity = TN/(FP + TN) (2)

pecificity = TN/(FP + FN) (3)

recision = TP/(TP + FP) (4)

ecall = TP/(TP + FN) (5)

-Score = 2 × (Precision × Recall)/(Precision + Recall) (6)

.2. Reduced rhythm classes 

In this section, we used the DNN model on seven rhythm

lasses. Deep models can work efficiently on a large number of

amples for each category. Due to the insufficient number of sev-

ral cases in the initially published dataset, such as 121 atrial

achycardia, 16 atrioventricular node reentrant tachycardia, 8 atri-

ventricular reentrant tachycardia, and 7 sinus atrium to atrial

andering rhythm, we eliminated these classes during the exper-

ment. In Table 3 , the used dataset includes seven rhythms and is

iven here with detail. 

Firstly, we divided the reduced dataset into training, valida-

ion, and testing sets as 80%, 10%, and 10%, respectively. It is seen

hat the data distributions used in this scenario are imbalanced

or classes. The data numbers in the AF, SI and SVT classes are

ower than the other classes. This problem is mitigated by merging

lasses in the next scenario. For this reason, the imbalance problem
as been attenuated in this scenario. The first process was train-

ng the DNN model using both training and validation sets. The

NN model was evaluated on the test sets that were unseen by the

odel during the training step. According to the training and vali-

ation values, the training process is performed for 25 epochs. Af-

er 25 epochs, the model tended to encounter an overfitting prob-

em. We did not use the early stop criteria to compare lead per-

ormances during the same epochs. The training and validation

raphs obtained from the training process are shown in Fig. 5 . We

resent the performance of each lead separately. 

It is evident from these graphs that the DNN model exhibited

romising results for all lead ECG signals during training. The best

erformance was observed on the Lead-II, Lead-aVF, and Lead-V1.

he proposed model achieved a lower performance on Lead-aVL,

ead-V5, and Lead-V6. Our model could not start the training pro-

ess for Lead-V6 inputs with these training records. For this reason,

he results for Lead-V6 in this section have been obtained using a

ifferent record partition. When the loss values were examined, it

as observed that there were no overfitting and underfitting prob-

ems during the training of the model. In Fig. 6 , training and vali-

ation loss values are presented during 25 epochs for all lead sig-

als. 

After the training process, the performance of the DNN model

as tested on the unseen test sets. Deep learning models use val-

dation samples for adjusting network parameters. Thus, reliable

erformance measurements could be obtained from the unseen

est sets. The trained model was applied to the test records and

ielded promising results on unseen data. In Fig. 7 , we showed four

onfusion matrices obtained during the test process. The confusion

atrix has an essential role in the evaluation of the performance

f a model. In Fig. 7 (a), it can be seen that the model achieved

2.24% and 91.76% accuracy on Lead-II and Lead-aVF ECG signals.

he Lead-aVL and Lead-V5 signals yielded 89.36% and 89.94% accu-

acies, respectively. In confusion matrices, the model misclassified

everal rhythm classes. For example, in Fig. 7 (c), 13 actual atrial

brillation (AFIB) signals were classified as atrial flutter (AF) sig-

als and seven actual sinus rhythm (SR) signals were classified as

inus irregularity (SI) signals. Furthermore, nine original AF signals

ere labelled as AFIB, and 12 original SI signals are labelled as SR

ignals. Clinically, the misclassification between AFIB and AF and

etween SR and SI are not crucial, as the medical management is

o different between diagnoses in the respective pairs. According

o the confusion matrices, we calculated several performance met-

ics, including the sensitivity, specificity, precision, F-score, and ac-

uracy, for each lead input. In Table 4 , the performance values of

he proposed model on the test set are shown for each lead input.

he highest values are marked with bold font in the table. Also,

e present some graphical representations for these values, as in

ig 8 . 

The same test subjects were used for each lead. The highest

ensitivity and F-score values were obtained using Lead-V1 ECG

ignals with an accuracy of 91.19%. The highest accuracy value was

btained as 92.24% from Lead-II input. According to these values,

t can be said that the proposed DNN model yielded promising re-

ults on all ECG lead inputs. Only on three lead inputs (Lead-aVL,

ead-V5, and Lead-V6) were accuracy values observed under a 90%

ate. 

For further performance evaluation, we examined the values of

he test results for each rhythm class compared with Lead-II in-

ut, so as to ascertain which classes yielded a weak or strong per-

ormance by the DNN model. We chose the Lead-II signal for this

urpose, due to both its high accuracy values, and the fact that it

s commonly used in many ECG analysis studies. In Table 5 , some

tandard performance measurements of rhythm classes on the test

ubjects are given. 
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Table 3 

The numerical information of the reduced class dataset that includes seven rhythms. 

Rhythms Number of Total Samples Number of Training Samples Number of Testing Samples Age, Mean ± Std Number of Females Number of Males 

AF 438 406 32 71.14 ±13.47 182 256 

AFIB 1,780 1,622 158 73.35 ±11.13 739 1,041 

SI 397 355 42 34.88 ±23.00 175 222 

SB 3,888 3,494 394 58.33 ±13.95 1,408 2,480 

SR 1,825 1,632 193 54.37 ±16.29 1,024 801 

ST 1,564 1,398 166 54.67 ±20.97 769 795 

SVT 544 485 59 55.64 ±18.35 294 250 

All 10,436 9,392 1,044 59.16 ±17.94 4,591 5,845 

Fig. 5. The training and validation accuracy values of the proposed model during the training process for each ECG lead signal (Lead-I to Lead-V6) separately. 

Table 4 

Some important performance values obtained using the test sets (highest values marked with 

bold). 

ECG 

Leads 

Overall 

Sensitivity (%) Specificity (%) Precision (%) F-Score (%) Accuracy (%) 

Lead-I 78.17 98.56 80.45 78.83 91.19 

Lead-II 80.15 98.72 80.31 80.04 92.24 

Lead-III 79.04 98.49 78.53 78.58 90.71 

Lead-aVR 80.91 98.60 81.03 80.93 91.57 

Lead-aVL 76.07 98.28 75.44 75.53 89.37 

Lead-aVF 81.50 98.64 81.25 80.98 91.76 

Lead-V1 82.42 98.58 81.22 81.39 91.19 

Lead-V2 75.33 98.41 74.90 74.57 90.71 

Lead-V3 75.38 98.39 75.05 74.40 90.33 

Lead-V4 76.12 98.38 76.92 75.19 90.42 

Lead-V5 75.62 98.34 75.63 75.02 89.94 

Lead-V6 74.90 98.05 75.76 74.48 88.51 
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From the above table, performance values on the AF class had

the lowest values. The reason for this can be the low number of

data in this class. A similar problem was also observed between

the SI and SR classes. Accordingly, we present some incorrectly

classified signals related to these classes in Fig. 9 . In this figure,

some actual and predicted classes are given for the Lead-II signals.

On the other hand, the model was able to distinguish sinus brady-

cardia (SB) signals from other classes, with a 99.04% accuracy per-
formance. t  
.3. Merged rhythm classes 

In the previous experiments, the DNN model produced some

eak class performances due to similarity, e.g. the AF, AFIB, SR, and

I classes yielded low-performance values. Also, in the dataset, sev-

ral classes had fewer samples, such as AVNRT, AVRT, and SAAWR.

o overcome this, we merged 11 rhythms into four classes as AFIB,

rouped supraventricular tachycardia (GSVT), SB, and SR, according

o the original dataset article [78] . In Table 6 , some brief informa-
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Fig. 6. The validation loss values of each lead signal during the training process. 

Fig. 7. The model test performances on several leads a) Lead-II, b) Lead-aVF, c) Lead-aVL and d) Lead-V5. 

Table 5 

The performance values for each class using the Lead-II ECG signal on the test subjects. 

Classes Sensitivity (%) Precision (%) Specificity (%) F- Score (%) Accuracy (%) 

AF 25.00 32.00 98.32 28.07 96.07 

AFIB 94.93 92.02 98.53 93.45 97.98 

SI 64.28 72.97 99.00 68.35 97.60 

SB 98.98 98.48 99.07 98.73 99.04 

SR 91.19 92.63 98.35 91.90 97.03 

ST 95.18 96.93 99.43 96.04 98.75 

SVT 91.52 77.14 98.37 83.72 97.98 

Overall 80.15 80.31 98.72 80.04 92.24 
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Fig. 8. A graphic representation for overall sensitivity, f-score, and accuracy values for all leads. 

Fig. 9. Some examples of AF and SR signals that the proposed model incorrectly predicted (Actual: original class, predicted: detected class by the model). 

Table 6 

Some numerical information about merged rhythms. 

Merged Rhythms New Class Name Number of Total Samples Number of Training Samples Number of Testing Samples Age, Mean ± STD 

AF + AFIB AFIB 2,218 1,983 235 72.92 ±11.66 

SVT + AT + SAAWR + ST + AVNRT + AVRT GSVT 2,260 2,061 199 55.51 ±20.41 

SB SB 3,888 3,488 400 58.33 ±13.95 

SR, SI SR 2,222 1,997 225 50.89 ±19.18 

All 10,588 9,529 1,059 59.23 ±17.97 

 

 

 

 

m  

d

 

t  

r  
tion is provided concerning the merged classes. In this experiment,

we applied the DNN model on these merged rhythm classes. 

We divided the merged dataset into training, validation and

testing sets as 80%, 10%, and 10%, respectively. The same hyper-

parameters from previous experiments were used in this experi-
d  
ent. In Fig. 10 , accuracy and loss graphs for each lead are given

uring the training step. 

It can be seen from these plots that the best results are ob-

ained from the Lead-II signal. Also, the model showed consistent

esults with four rhythm classes. There was no overfitting or un-

erfitting problem. Therefore, our proposed model architecture is
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Fig. 10. Validation loss and validation accuracy values for each ECG lead signals, a) loss graphs, and b) accuracy graphs. 

Fig. 11. All confusion matrices for each lead signal obtained from test records. 
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obust to detect rhythms with two different scenarios. The trained

odel has been applied to the unseen test records. We present all

onfusion matrices for each lead signal in Fig. 11 . 

The results showed that the proposed model generalized the

nput signals well, with accuracy rates all above 91%. The high-

st accuracy rates were obtained on Lead-II, Lead-I, and Lead-aVR

ignals at 96.12%, 95.27%, and 94.99%, respectively. The least accu-

ate classification was observed between AFIB and GSVT classes.

or example, according to the Lead-II confusion matrix, 13 of the

ctual GSVT records were classified as AFIB. Similarly, five of the

ctual AFIB records were classified as GSVT by the model. This is-

ue can be due to the GSVT category, which comprised six different

hythms (SVT, AT, SAAWR, ST, AVNRT, AVRT). In Table 7 , the perfor-

ance metrics on the test sets are given in detail. 
h  
The best overall performances were obtained from the Lead-II

nput with 95.43% sensitivity, 98.71% specificity, 95.78% precision,

5.57% F-score, and 96.13% accuracy. We show the class-based per-

ormances for the Lead-II input in Table 8 . The lowest sensitivity

erformance, which emerged from the GSVT class, was 89.94%. 

. Discussion 

Many researchers have attempted to develop an arrhythmia de-

ection system using deep learning architectures. They used differ-

nt data sources and approaches for this task. We have reported

everal state-of-the-art studies in Table 9 . Hannun et al. [56] de-

eloped a DNN model to detect rhythm classes from raw ECG in-

uts. Their results show that the DNN can classify ECG signals with

igh performance. Oh et al. [58] proposed a modified U-net model
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Table 7 

The DNN model overall performance values on the merged rhythms test set. 

ECG Leads Overall sensitivity (%) Overall Specificity (%) Overall Precision (%) Overall F-Score (%) Overall Accuracy (%) 

Lead-I 94.49 98.44 94.65 94.56 95.28 

Lead-II 95.43 98.71 95.78 95.57 96.13 

Lead-III 92.30 97.78 92.44 92.21 93.20 

Lead-aVR 94.35 98.40 94.21 94.18 95.00 

Lead-aVL 92.48 97.76 92.22 92.31 93.11 

Lead-aVF 93.20 98.10 93.46 93.32 94.24 

Lead-V1 93.30 98.03 93.08 92.98 93.86 

Lead-V2 91.81 97.63 91.91 91.67 92.73 

Lead-V3 90.01 97.10 89.96 89.76 91.12 

Lead-V4 90.46 97.16 90.53 90.27 91.41 

Lead-V5 90.93 97.27 91.18 90.92 91.88 

Lead-V6 92.63 97.78 92.53 92.56 93.30 

Table 8 

Class-based performance values for the Lead-II input. 

Classes Sensitivity (%) Precision (%) Specificity (%) F- Score (%) Accuracy (%) 

AFIB 96.17 94.16 98.30 95.15 97.82 

GSVT 89.94 96.75 99.30 93.22 97.54 

SB 98.75 98.25 98.93 98.50 98.86 

SR 96.88 93.96 98.32 95.40 98.01 

Overall 95.43 95.78 95.43 95.57 96.13 

Table 9 

Comparison of some state-of-the-art study performances to detect arrhythmia. 

Study Num. of Subjects Num. of Beats/Segments Input type Category Method Evaluation Scheme Performance 

Acharya et al. [4] 47 109,449 Single lead/ Beat 5 AAMI class CNN Intra-Patient Acc: 94.03% 

Xu et al. [5] 22 50,977 Single lead/ Beat 5 AAMI classes DNN Inter-Patient Acc: 93.1% 

Gao et al. [30] - 93,371 Single lead/ Beat 8 Heartbeats LSTM, FL Intra-Patient Acc: 99.26% 

Hannun et al. [56] 53,549 91,232 Single lead/ Segment 12 Rhythm CNN Inter-Patient F1: 0.83 

Oh et al. [58] 47 83,648 Single lead/ Segment 5 Heartbeats Modified U-net Intra-Patient Acc: 97.32% 

Li et al. [59] 47 94,013 2-lead/ Beat 5 AAMI class Deep ResNet Intra-Patient Acc: 99.38% 

Yildirim et al. [60] 45 1,000 Single lead/ Segment 17 Rhythm CNN Intra-Patient Acc: 91.33% 

Shaker et al. [61] 44 102,098 Single lead/ Beat 15 class CNN Intra-Patient Acc: 98.30% 

Yildirim et al. [65] - 7,326 Single lead/ Beat 5 Heartbeats DBLSTM-WS Intra-Patient Acc: 99.39% 

Chang et al. [66] 38,899 65,932 12 lead/ Segment 12 Rhythm LSTM Inter-Patient Acc: 90% 

Oh et al. [67] 47 16,499 Single lead/ Segment 5 Heartbeats CNN-LSTM Intra-Patient Acc: 98.1% 

Warric et al. [68] - 8,528 Single lead/ Segment 4 Rhythm CNN-LSTM Intra-Patient F1: 0.82 

Xindog et al. [70] - 12,186 Single lead/ Segment 4 Classes CNN + RNN Intra-Patient F1: 0.82 

Oh et al. [72] 170 150,268 Single lead/ Segment 3 Cardiac Disease CNN-LSTM Intra-Patient Acc: 98.51% 

Mousavi et al. [73] - 750 Single lead/ Segment 5 Rhythm CNN-attention-LSTM Intra-Patient Acc: 93.75% 

Wu et al. [84] - 8,528 Single lead/ Segment 4 Classes Binarized CNN Intra-Patient F1: 0.86 

Yao et al. [86] - 6,877 12-lead/ Segment 8 Rhythm ATI-CNN Inter-Patient F1: 0.81 

Proposed 10,436 10,436 Single lead/ Segment 7 Rhythm DNN Inter-Patient Acc: 92.24% 

10,588 10,588 Single lead/ Segment 4 Rhythm Inter-Patient Acc: 96.13% 
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to detect five different beat class. Their model achieved an accu-

racy of 97.32% using a total of 83,648 beats from 47 subjects. Li

et al. [59] proposed a deep ResNet model to identify five differ-

ent types of heartbeats. They reported a 99.38% accuracy using

94,013 beats. Acharya et al. [4] obtained an accuracy of 94.03%

with a nine-layer CNN model using a total of 109,449 heartbeats.

Yildirim et al. [60] proposed a CNN model to classify 17 cardiac

rhythms. They reported a 91.33% accuracy rate using 1,0 0 0 ECG

fragments. Shaker et al. [61] used a generative adversarial net-

work (GAN) and CNN model to classify 15 different ECG classes.

They obtained a 98.30% accuracy rate using augmented data with

the GAN algorithm. Chang et al. [66] used a sequence-sequence

learning task to classify 12 rhythm classes from 38,899 ECG sig-

nals. Yildirim [65] reported a 99.39% accuracy rate using a wavelet

sequence-based deep bidirectional L STM (DBL STM-WS) model. Gao

et al. [30] used an LSTM model with FL to detect eight different

heartbeats from a total of 93,371 beats. 

Xindog et al. [70] used the 2017 PhysioNet/Computing in Car-

diology (CinC) Challenge database to classify four rhythms (sinus,

AF, noisy, and other), and they achieved 0.82 F1 scores. Wu et al.

[84] used a binarized CNN model on the 2017 CinC database. The
uthors reached a 0.86 F1 score. Oh et al. [67] constructed an LSTM

nd CNN combination model to detect five types of heartbeats.

hey used a total of 16,499 beat signals from 47 subjects, and their

odel reached a 98.1% accuracy rate. Mousavi et al. [73] proposed

 deep learning model to detect true alarms on five types of ar-

hythmia in the 2015 PhysioNet challenge [85] . Oh et al. [72] per-

ormed a CNN and LSTM based deep model to categorize CAD,

HF, and MI cardiac abnormalities. They used a total of 170 patient

ecords and achieved an accuracy of 98.51% to categorize these

bnormalities. Yao et al. [86] proposed an attention-based time-

ncremental CNN (ATI-CNN) model to classify 8 different arrhyth-

ias using 12-lead ECG signals. They achieved an average F1-Score

f 81.2% to classify arrhythmias with varied-length inputs. 

In this study, we have developed a new DNN model to detect

ifferent rhythm types. We used more than 10,0 0 0 (10-sec du-

ation ECG records) for this aim. Our model showed 92.24% and

6.13% classification performances on two different class scenar-

os. When we compare our study with other studies, generally, the

rior studies used a limited number of subject records. They also

sed many beats extracted from the same subjects. This situation

an limit the generalizability of models on unseen subjects. In this
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tudy, each ECG record was obtained from a unique subject; hence

he proposed model generalized well on unseen ECG signals. Han-

un et al. [56] constructed a large database that included 53,549

ubjects, but this database consists of ECG records with a single

ead only. Chang et al. [66] used a large 12-lead ECG database of

8,899 subjects. Their database is not publicly available. We have

lready obtained highest accuracy using a single lead. Hence, we

id not combine the performance of all leads. However, we ana-

yzed all lead signals and according to the results our model per-

ormance can be generalizable to 12-lead signals. We intend to ex-

lore this further using a new deep learning model in future work.

n addition, many of the studies [4, 5, 30, 58, 59, 61, 65, 67] are predi-

ated on the detection of heartbeat signals, unlike in our model,

hich is based on the 10-second ECG input. 

The main advantages of the system presented in this study can

e summarized as: 

• Only one DNN model was used to classify different rhythm

groups with high performance using all lead signals. 
• We used a public ECG dataset, which is recent, and one of the

largest datasets, containing more than 10,0 0 0 unique subject

data. 
• The experiments were performed using 11 different rhythm cat-

egories with 10-sec ECG records. 
• All experimental results were reported with inter-patient

schema, and the performance of the model was promising. 
• The model has a good generalization ability to detect ECG ar-

rhythmia for each of 12-lead ECG signals. 
• The model worked on 10-second ECG records and did not re-

quire the detection of heartbeats. 

The main disadvantage of this work is the requirement for so-

histicated hardware due to the nature of the deep models. In fu-

ure works, we will evaluate these ECG records with multi-task

eep learning models. In addition, some features in non-ECG do-

ains were also provided within this database, and we will try to

se these features to improve the performance of deep models. 

. Conclusion 

In this paper, a new DNN model comprising both representa-

ion and sequence learning structures was proposed to detect ar-

hythmia. Experiments were performed on a new large public ECG

atabase that includes more than 10,0 0 0 unique subject records.

he DNN model was applied to the 10-s raw 12-lead ECG signals.

he proposed DNN model yielded promising results for each lead

nput. Two different rhythm class scenarios were used for the ex-

eriments. The first scenario included seven rhythm classes, for

hich the model obtained an accuracy of 92.24%. In the second

cenario, 11 rhythm classes were merged into four main rhythm

lasses. The model achieved an accuracy of 96.13% performance

n this dataset. According to the obtained results, it can be said

hat the proposed DNN model has a good generalization ability for

ubject-wise classes. 
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