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Abstract

Here we present the successful translation of a pore size distribution (PSD) estimation method 

from NMR to MRI. This approach is validated using a well-characterized MRI phantom consisting 

of stacked glass capillary arrays (GCA) having different diameters. By employing a double pulsed-

field gradient (d-PFG) MRI sequence, this method overcomes several important theoretical and 

experimental limitations of previous single-PFG (s-PFG) based MRI methods by allowing the 

relative diffusion gradients’ direction to vary. This feature adds an essential second dimension in 

the parameters space, which can potentially improve the reliability and stability of the PSD 

estimation. To infer PSDs from the MRI data in each voxel an inverse linear problem is solved in 

conjunction with the multiple correlation function (MCF) framework, which can account for 

arbitrary experimental parameters (e.g., long diffusion pulses). This scheme makes no a priori 
assumptions about the functional form of the underlying PSD. Creative use of region of interest 

(ROI) analysis allows us to create different underlying PSDs using the same GCA MRI phantom. 

We show that an s-PFG experiment on the GCA phantom fails to accurately reconstruct the size 

distribution, thus demonstrating the superiority of the d-PFG experiment. In addition, signal 

simulations corrupted by different noise levels were used to generate continuous and complex 

PSDs, which were then successfully reconstructed. Finally, owing to the reduced q- or b-values 

required to measure microscopic PSDs via d-PFG MRI, this method will be better suited to 

biomedical and clinical applications, in which gradient strength of scanners is limited.
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1. Introduction

Noninvasive characterization of porous media is critical to many scientific and technical 

fields, including material sciences [1,2], food sciences [3], well-logging [4], biotechnology, 

and medicine [5]. In biological tissue, and specifically nerve tissue, it is useful to treat axons 

as porous media—water-filled infinite cylindrical “pores.” The microstructure of this porous 

media can provide useful information about whether the tissue is normal, diseased, or 

degenerated, and in the case of unmyelinated and myelinated axons, the information that can 

be transmitted along them, since their conduction velocity scales with axon size [6,7]. 

Moreover, several diseases, such as amyotrophic lateral sclerosis and multiple sclerosis, have 

been known to alter the axon size distribution [8,9].

The mean axonal pore size is an important parameter that may help determine functional 

properties of nerves, and diffusion-weighted MR is an efficient way to obtain such 

information. A single pulsed-field gradient (s-PFG) experiment [10] is most commonly used 

to encode the spins’ net displacement, and the average dimension of the medium can be 

inferred from the resulting signal attenuation [11]. In cases where the expected variance in 

pore size is low, this technique has been used to characterize narrowly distributed emulsions 

[12], red blood cells [13], and packed monodisperse polystyrene spheres [14]. A recently 

proposed approach further expands the capabilities of the s-PFG experiment by using a 

modified Stejskal-Tanner sequence that preserves the phase information, thus revealing the 

pore space function [15]. However, due to the inverse relationship between the pore diameter 

and the scattering vector magnitude, q ≡ (2π)−1γδG (G is the gradient wave vector and its 

duration δ, and γ is the gyromagnetic ratio), obtaining fine microstructure detail requires a 

large q-value (q = |q|). Such gradients are an order of magnitude stronger than what is 

currently available on conventional clinical scanners, making such measurements infeasible 

[16].

In addition to biological samples, diffusion weighted NMR can be useful for characterizing 

porous biomaterials, since their porosity dictates the release rate of drugs or other bioactive 

agents from them [1], and affects their biocompatibility [17] and longevity [18]. Following 

implantation, some of these materials undergo structural changes in the body, which can be 

tracked in vivo using the NMR- and MRI-based methods.

An expansion of the s-PFG, the double-PFG (d-PFG) experiment [19,20], includes two PFG 

pairs that are applied successively, separated by a mixing time, τm. With long τm, this 

method is sensitive to microscopic [21] and compartment shape [20,22,23] anisotropy, while 

for vanishing τm the pore dimensions can be obtained [5,24–26]. In addition, the relative 

angle between the successive PFG blocks, φ, can be varied; thus the d-PFG experiment adds 

a second dimension in space of pulse timing parameters.

While knowledge of the average pore size is valuable, it is preferable to determine the entire 

pore size distribution (PSD) of the sample. From it, one can infer the mean pore size or first 

moment, but also all other higher moments, which can provide additional information about 

the pore morphology and microstructure. Parametric PSD estimation of white matter tissue 

was previously demonstrated using data from an s-PFG experiment with varying diffusion 
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periods [27], while assuming a γ-distribution for the PSD. Obtaining the PSD using a 

nonparametric distribution (i.e., one with no a priori assumption about the parametric form 

of the distribution) would provide comprehensive subvoxel micro-structural information 

without introducing this bias. Estimation of such an empirical pore size distribution has been 

previously demonstrated with s-PFG NMR in conjunction with solving an inverse linear 

problem [2]. In this case the solution depends on the degree of linear independence (degree 

of correlation between the different independent variables [28]) of the matrix that describes 

the set of linear equations. As the degree of multicollinearity rises, the solution becomes 

more ill-conditioned.

Recently, this linear approach was extended to include a second dimension in the parameter 

space by using a d-PFG experiment [29]. The 2-D method was shown to reduce 

multicollinearity and thus improve the stability and reliability of the estimated empirical 

PSD [29,30]. Moreover, this 2-D NMR method was validated after being used on calibrated 

microcapillary PSD phantoms, resulting in accurate size distribution estimation [31]. To 

account for a continuous size distribution, this NMR technique was subsequently applied on 

porous bioresorbable polymer films, which are designed to release drugs in a controlled 

fashion [32]. The reliability of the estimations was confirmed upon comparison to scanning 

electron microscopy based analysis, which is the conventional characterization method of 

bioresorbable polymers.

Here we present the successful translation of this 2-D method from NMR to MRI, and 

demonstrate the faithful estimation of a known PSD along with different free water fractions 

using a well-characterized MRI size distribution phantom. We then show how the addition of 

the second gradient pair significantly improves the estimation. Finally, we examine by 

simulations the estimation quality of complex and continuous PSDs under different noise 

levels.

2. Theory

For many purposes, porous specimen can be modeled as comprising two components 

(according to the type of diffusion water molecules experience within them); one is 

restricted and the other is Gaussian (free diffusion). Using this bi-compartmental model in 

biological applications is common [33]. In packs of axons, the restricted component is 

usually said to be the intra-cellular content, while water in the extra-cellular space is 

assumed to experience free diffusion. If monodispersity is not assumed (i.e., the PSD is not a 

delta function), the MR signal in the restricted diffusion component is a superposition of 

signals from a distribution of different pore sizes [34]. Depending on the type of sample, the 

pores can be selected to be spherical, parallel plates, or cylindrical as in the present study.

Using s-PFG NMR pulse sequences, one measures the signal attenuation at different q-

values and then infers the PSD from the measured decay curve. The d-PFG pulse sequence 

(Fig. 1) introduces another experimental parameter to further constrain this inverse problem. 

This experiment produces an NMR signal from water molecules restricted in pores of radius 

R that is expressed as Erest (G1, G2, φ, R). In the current study, the restricted signal is 

calculated (for each value of G1, G2, φ, and R) using the Multiple Correlation Function 
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(MCF) method [35,36]. The restricted component is assumed to be composed of N different 

compartment sizes, Ri. The Gaussian component results in the signal EG(G1, G2, φ), which 

is calculated according to Stejskal and Tanner [10],

EG(G, φ) = exp  − γ2D
0

T
dt

0

t
G(t′)dt′

2
, (1)

where D is the diffusion coefficient, T is the time to echo, and γ is the gyromagnetic ratio. 

For the d-PFG pulse sequence (Fig. 1) Eq. (1) is reduced to

EG(G1, G2, φ) = e−γ2Dδ2 Δ − δ
3 G1

2 + G2
2 − δ

3 G1G2cos(φ) . (2)

Because the two compartments are not exchanging, the signal from the entire sample is the 

superposition of the calculated signals from the restricted and Gaussian compartments, and 

is expressed as

E(G1, G2, φ) = ∑
i = 1

N
fiErest(G1, G2, φ, Ri) + fGEG(G1, G2, φ), (3)

where fi are the volumetric fractions that satisfy ∑i = 1
N fi + fG = 1. By varying both G and φ 

in the 2-D parametric space, a linear set of equations is obtained from Eq. (3), which can be 

written as the matrix equation

E = Ef, (4)

where E is the experimental data vector, f is the vector of relative volumetric fractions of 

each pore radius, and  is the transfer matrix.

3. Methods

3.1. MRI phantom and hardware

Fig. 2 shows a photograph of the PSD MRI phantom placed inside an NMR tube. The PSD 

phantom consists of glass capillary arrays (GCA) or wafers [26] whose diameter is close to 

the inner diameter of the NMR tube. Here we construct our phantom using six parallel packs 

of water-filled microcapillary wafers (Photonis, Sturbridge, MA), with three distinct pore 

radii, namely, four with R = 2.5 µm tubes, two with R = 5 µm tubes, and two with R = 13.7 

µm tubes. The microcapillary arrays were filled with pure water using a three-step 

procedure, which is detailed elsewhere [26]. The GCA phantom was placed in a 15 mm 

NMR tube (New Era Enterprises Inc., Vineland, NJ), and inserted into the magnet’s bore 

with the long axis of the capillaries aligned with the direction of the main magnetic field. All 

experiments were performed on a 7T vertical-bore Bruker AVANCE III spectrometer 

equipped with a micro-2.5 gradient set oriented along its magnetic field (z axis).

In many cases, sub-voxel resolution can provide important new microstructural information. 

The ability to obtain a PSD from a pixel-by-pixel analysis is therefore a desirable goal to 
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effectively enhance spatial resolution, allowing one to drill down into the voxel. The PSD 

phantom used in the present study does not allow such an analysis in the in-plane directions 

since the wafer thickness is larger than the spatial resolution (i.e., each voxel contains a 

single pore size). For lack of sub-voxel PSD, we turned to ROI-based analysis, which bears 

the closest resemblance to a pixel-by-pixel analysis. We demonstrate here, by selecting 

different ROIs and estimating the PSD within them, the versatility of this 2-D method.

We have used the signal intensity from a proton density image to calculate the relative water 

content of each GCA within a certain ROI. This strategy provides a direct and accurate 

measurement of the actual volumetric fraction. Relying on the physical characteristics 

provided by the manufacturer may lead to a errors due to structural imperfections (as 

indicated in Fig. 3G) and imperfect water-filling of the capillaries.

3.2. Experimental parameters

The d-PFG filtered MRI pulse sequence used in this study is detailed in Fig. 1. The sequence 

starts with a d-PFG filter that includes application of hard radiofrequency (RF) pulses. Three 

effective gradient pulses of duration δ = δ1 = δ2, with a separation period of Δ = Δ1 = Δ2, 

provide the diffusion encoding. The magnitude and the direction of the two gradients of the 

d-PFG encoding are specified by the vectors G1 and G2. The three effective gradients can be 

viewed as two pairs of diffusion gradients with no mixing time between them. The d-PFG 

encoded magnetization is subsequently fed into a standard imaging sequence with soft RF 

pulses to enable slice selection.

Double-PFG acquisition parameters were: δ = 1.65 ms, Δ = 45 ms, tm = 0. Eight diffusion 

gradient magnitudes were used, G = G1 = G2 = 0 − 605 mT/m, resulting in qmax = 425 cm−1. 

The angle φ was varied in the XY plane, which is the plane whose normal vector lies parallel 

to the axis of the GCAs microcapillaries. Ten different angles were used in the range φ = 0 − 

π. MRI acquisition parameters were: TR = 5 s, TE = 7.75 ms, NA = 1, ST = 1.1 ms, and 

spatial resolution = 0.242 × 0.242 × 1 mm3. A total of 80 acquisitions were sufficient to 

obtain an accurate PSD in each voxel, which resulted in an experimental time of 7 h.

It was already shown, for similar experimental parameters and a long separation time (ST) 

between the diffusion filter and the imaging block, that the effect of incorporating imaging 

gradients in the signal calculation is negligible [26]. In addition, it is suggested that if ST is 

shorter than the characteristic time it takes the spins to sample the pore, imaging gradients 

should not be ignored. In our case, the separation time was set to the minimum to allow the 

shortest possible TE, and therefore does not allow full sampling of the largest pore within 

the system. In addition, the slice orientation in the present study is sagittal, therefore the 

slice-select gradients are applied in the direction of the diffusion encoding (i.e., 

perpendicular to the cylinder’s axis). Owing to the MCF framework, the calculated 

theoretical signal attenuations took into account slice-select and diffusion gradients, along 

with all other experimental parameters.

When φ = π the d-PFG is in fact an s-PFG experiment with a diffusion period of 2Δ. Such 

an s-PFG subset from the acquired d-PFG data was taken and analyzed for performance 

comparison reasons. To allow a fair study, qmax in the s-PFG experiment was kept identical 
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to the one used in the d-PFG experiment. In contrast to the d-PFG, in an s-PFG experiment 

the relative angle, φ, does not exist, therefore leading to a single-varied experimental 

parameter, G. To obtain the maximal amount of information, the gradient amplitude was 

acquired with the smallest increments allowed by the current hardware, and resulted in 42 

steps in the same gradient range used in the d-PFG protocol.

3.3. Simulations

Simulations were performed to demonstrate the capabilities of the suggested framework to 

estimate continuous PSDs with a more complex and realistic shape (other than the discrete 

PSD of the phantom). Two different PSDs were simulated:

1. A Bimodal-Gaussian PSD with means of μ1 = 6.84 µm and μ2 = 11.99 µm, 

standard deviations of σ1 = 1.5 µm and σ2 = 2.0 µm, and relative fractions of 

0.375 and 0.625.

2. A more complex PSD that is composed of three peaks. The first peak is 

lognormal with μ1 = 3.00 µm, and standard deviation of σ1 = 4.0 µm. The other 

two peaks are Gaussian with means of μ2 = 11.65 µm and μ3 = 16.28 µm, and 

standard deviations of σ2 = 1.1 µm and σ3 = 1.2 µm. The relative fractions are 

0.35, 0.4, and 0.25, respectively.

To approach the continuous nature of an actual size distribution, the signal attenuation 

profile was generated using a transfer matrix with very fine equal-sized spatial increments in 

R (0.17 µm). In addition, all of the generated signal curves were corrupted by Gaussian 

white noise. For each distribution, two noise standard deviations were analyzed, namely, 

0.5% and 1% relative to the signal attenuation without any diffusion gradient applied.

3.4. PSD estimation

In the current study we assumed N = 50 restricted compartments, with radii in the range of 1 

− 18 µm, which resulted in a PSD with 0.35 µm bins. All implementations of the theory 

were performed with Matlab® (R2013a, The MathWorks, Natick, MA) in-house algorithms. 

The partial volumetric fraction vector, f, was then obtained by implementing a non-negative 

least-square algorithm with an added constraint, that ∑i = 1
N fi + fG = 1, using the lsqlin 

Matlab function. Note that no regularization was used in the fitting process, since the PSD 

reconstructions were stable to increased noise level, as shown in the Results.

While in the d-PFG case the transfer matrix is better conditioned than for an s-PFG 

experiment, the inversion remains ill-conditioned. The important properties of the transfer 

matrix in the context of PSD estimation were recently discussed in great detail [30]. It is 

suggested that no single metric of the transfer matrix (e.g., column rank) can be used to 

predict the quality of the estimation. Instead, the stability of the inversion is related to the 

transfer matrix column rank, condition number, and signal-to-noise ratio (SNR). These three 

properties are related, as, for instance, the SNR is high and the matrix rank is low when 

weak gradients are applied.

As previously shown [29,30], a judicious choice of specific experimental parameters, and/or 

increased parametric space dimensionality (by adding more varying parameters, e.g., Δ, δ) 
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improves the stability of the size distribution estimation. For the purpose of introducing the 

current framework, a d-PFG 2-D parametric space was assumed, with linear steps in q and φ. 

Any experimental design optimization can be incorporated into the estimation framework, as 

a preliminary step.

Throughout the study the estimation quality was assessed based on the Jensen difference 

[37] between the theoretical and estimated PSDs. The Jensen difference metric is based on 

the Kullback–Leibler divergence, only it is symmetric and it always yields a finite value. The 

difference between two PSDs, Q and P, is defined as [38]

dJD = ∑
i

Piln(Pi) + Qiln(Qi)
2 − Pi + Qi

2  ln  Pi + Qi
2 . (5)

The Jensen difference metric was chosen since it is a well-established method of measuring 

the similarity between two probability distributions. This comparison is made possible since 

all of the theoretical PSDs are known (either in the case of the phantom or simulations). In 

all cases, lower distance value reflects higher similarity, and thus higher quality of 

estimation.

4. Results

4.1. Resolving different PSDs

We first solve Eq. (4) to provide an estimate of the monodisperse PSD of each of the GCAs, 

i.e., two R = 2.5 µm blocks, two R = 5 µm arrays, and two R = 13.7 µm arrays. Six different 

ROIs were selected accordingly, and are marked by different letters and colors on a proton 

density MR image of the phantom (Fig. 3G). The corresponding PSD of each of the marked 

single-size ROIs is presented in Figs. 3A–F. Estimated values of the size distribution are 

indicated in red; the expected theoretical values are indicated in blue.

To fully exploit the PSD phantom and to further demonstrate the method’s stability, three 

different ROIs were randomly selected (Fig. 4D). Each ROI included different volumetric 

fractions of all three nominal capillary radii. The ROIs are indicated by different letters and 

colors on a proton density MR image of the phantom (Fig. 4D). The corresponding PSD of 

each of the marked 3-size ROIs is presented in Figs. 4A–C. Estimated values of the size 

distribution are indicated in red; the theoretical values are indicated in blue. The Jensen 

difference between the theoretical and estimated PSDs from the different ROIs are detailed 

in Table 1.

Figs. 5A and B show experimental fits for two of the ROIs in Fig. 4D, ROI B and C, 

respectively. The signal attenuation shows a significant difference between the two cases, 

which reflects the variation in the PSD.

The PSD phantom consists of fused tubes, therefore there is no free water between them 

since that space is occupied by fused glass. Free water layers are present between the 

different glass wafers, and their fraction, fG, is detected from the solution of Eq. (3). The 

careful water-filling procedure of the phantom leads to a very small free water volume 
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between the wafers, and for all of the above ROIs, fG < 0.01. A careful study of the effect of 

increasing the free water fraction is followed.

4.2. Free water fraction estimation

To establish that the presented method can reliably reconstruct a PSD while accurately 

estimating the free water fraction, water has to be present in significant quantities. The small 

free water fraction quantities within the phantom (see previous section) do not establish the 

reliability of the technique.

Free water was present in the upper part of the MRI phantom, which allowed the 

demonstration of the estimation of the free water fraction, fG. This step was achieved by 

choosing a baseline PSD, which was a constant ROI that includes two different GCAs 

(labeled “ROI” in Fig. 6D). Then, three different free water volumes from the free water 

pool were added to the baseline ROI. These water volumes corresponded to the volumetric 

fractions, fG = 0.2, 0.27, 0.37.

In addition to the radii and their relative fractions, the free water fractions were estimated in 

each case and are all presented in Figs. 6A–C. As before, the same color legend was used, 

namely, red and blue text and bins for estimated and theoretical, respectively.

4.3. s-PFG vs. d-PFG

Even though the advantages of a d-PFG over an s-PFG experiment were theoretically 

demonstrated by Benjamini et al. [29] and more recently by Katz and Nevo [30], an 

experimental work to support the claims was still absent. The current reliable GCA phantom 

can provide the means for this comparison.

The ROIs chosen for the s-PFG experiment were identical to the ones used in the d-PFG 

experiment (Fig. 4D). The estimated PSDs in this case are shown in Figs. 7A–C. These 

estimations should be compared to their d-PFG counterparts in Figs. 4A–C. The Jensen 

distances (as defined in the Methods section) between the estimated and theoretical PSDs for 

both the single- and double-PFG cases are summarized in Table 1.

4.4. Complex and realistic PSD simulations

Although being accurate and robust, the main disadvantage of any phantom, and specifically 

the current one, is the finite number of different compartment sizes it comprises. 

Reconstructing a continuous PSD would present a greater challenge, compared to a discrete 

one. Since such a phantom is not available, simulations can be used to test the framework 

under such conditions. For this purpose, two different continuous and complex PSDs 

(detailed in the Methods section) were generated.

The first PSD is a Bimodal-Gaussian function with overlapping wide peaks (with means 

6.84, 11.99 µm and standard deviations 1.5, 2.0 µm). Two cases of SNR were analyzed with 

noise standard deviations of 0.5% and 1% relative to the signal attenuation without any 

diffusion gradient applied. In Fig. 8, the theoretical PSD was drawn as a function of the 

radius (solid line), and the estimated PSD was overlaid on it (bins). Figs. 8A and B 

Benjamini et al. Page 8

J Magn Reson. Author manuscript; available in PMC 2020 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correspond to noise standard deviations of 0.5% and 1%, and their Jensen differences were 

0.0239 and 0.0435, respectively.

The second PSD is more complex, and is composed of two different functions, lognormal 

and Gaussian, and three peaks (with means 3.00, 11.65, 16.28 µm and standard deviations 

4.0, 1.1, 1.2 µm). As before, the same two cases of SNR were tested. In Fig. 9, the 

theoretical PSD was drawn as a function of the radius (solid line), and the estimated PSD 

was overlaid on it (bins). Figs. 9A and B correspond to noise standard deviation of 0.5% and 

1%, and their Jensen differences were 0.0200 and 0.0249, respectively.

5. Discussion

The spatially resolved PSD estimates obtained from the 2-D d-PFG MRI experiments agree 

with those derived based on light microscopy [26] (for compartment size) and proton density 

MRI intensity (for volumetric fraction). This study provides a vital step towards the 

migration of this method from NMR to MRI. Without a viable MRI phantom, imaging-

related issues cannot be addressed, and validation of this framework is not possible. The 

main goal of this 2-D method is to provide comprehensive microstructural information with 

sub-voxel resolution. The GCA phantom is constructed from vertically stacked wafers with a 

known size distribution (Fig. 2), and therefore any image slice orientation would not lead to 

a PSD within a voxel. This inherent limitation led us to use ROI-based analysis, which bears 

the closest resemblance to a pixel-by-pixel estimate.

One major issue with MRI acquisition is the so-called “noise floor” [39]. This noise-induced 

bias in the magnitude signal, which is often absent in NMR acquisitions where SNR is 

generally larger than in MRI, is particularly significant at high diffusion-weighting and is 

also related to the compartment size. Without applying elaborate signal transformations to 

remove this bias [39], the gradient amplitude had to be restricted to a maximal value, above 

which the signal from the largest compartment in the porous structure reaches the noise 

floor.

Another aspect that is unique to MRI is the potential cross-terms between diffusion and 

imaging gradients. A short separation time (ST) between diffusion and imaging gradients 

might influence pore size estimation if the last diffusion gradient could not refocus the 

magnetization. The effect of using different values of ST was previously investigated [26] 

and resulted in very minor differences in the estimation. We have examined how 

incorporating imaging gradients in the signal calculation affects the transfer matrix and 

found that, even when using short ST, the effect is smaller than 0.1%. Nevertheless, we have 

included the slice selection gradients in the calculation in an attempt to reach the most 

accurate signal attenuation curves. It is worth noting that this effect is expected to increase 

under different experimental conditions, such as smaller slice thickness.

The underlying geometry of the different GCAs was first established, by selecting ROIs with 

single size pores and accurately estimating their size according to the known values (Fig. 3). 

The versatility and stability of the method was later demonstrated by randomly choosing 
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three ROIs, which included different volumetric fractions of all three nominal capillary radii. 

All of the PSD estimations were reconstructed with high accuracy, as evident from Table 1.

The free water fraction in Eq. (3) was estimated throughout this study. Since there is no free 

water between the fused tubes in the GCA phantom, most of the signal from this phantom 

originates from restricted diffusion, therefore leading to a very small free water fraction. 

Larger free water fractions had to be investigated to establish the stability of the method by 

considering a bulk water volume that was present on the upper part of the phantom. As the 

result of an analysis of three different free water fractions in significant quantities, their 

fractions, along with their PSDs, were accurately estimated.

It has been recently shown [40] that an s-PFG experiment with a varying diffusion period is 

equivalent to a d-PFG experiment to the second moment of the total signal decay. While in 

some applications it may be wise to use such an s-PFG experiment and gain better SNR (due 

to higher signal intensity), for the PSD estimation problem a d-PFG experiment is still 

preferable. As previously shown [30], the application of two gradient pairs allows a better 

differentiation of different pores sizes, resulting in a higher transfer matrix rank. In addition, 

the experimental parameter space of a d-PFG sequence is inherently of a higher order, which 

can increase the inversion’s stability [29].

The advantage of d-PFG over s-PFG in the context of the PSD estimation problem was 

experimentally shown in this study. The estimated PSDs resulting from the s-PFG 

experiment were quite far from the theoretical ones, as opposed to results from the d-PFG 

experiment (Table 1). The s-PFG experiment failed to accurately reconstruct the PSD even 

for the relatively simple and discrete size distribution of the GCA phantom. One of the 

reasons for this limitation is that an s-PFG experiment has only one experimental variable, 

G, where the d-PFG has two, G and φ. This simple yet important notion was studied and 

discussed in our previous publications. In addition to the extended information resulting 

from the 2-D acquisition, the s-PFG experiment has a lower number of maximal acquired 

data points, since the minimal increment of G is limited by the hardware. This property does 

not limit the d-PFG experiment, and therefore reconstructing complex PSDs with a large 

number of acquired data points could become feasible.

In the present study the pore size distribution phantom consists of discrete sizes. A more 

accurate representation of the pore size distribution found in natural samples would be a 

continuous one. As such a distribution is impossible to create artificially and in a controlled 

manner, a discrete distribution was used. From a mathematical standpoint, as the PSD vector 

includes a greater number of non-zero values in it, its reconstruction becomes less stable and 

less accurate. Simulations of two different and representative continuous PSDs were used to 

account for this gap in experimental ability. These continuous PSDs were generated to 

account for important properties that are absent in the GCA phantom, namely, large standard 

deviations, overlapping peaks, and a variety of functional shapes. For each of the simulated 

PSDs, two noise levels were analyzed (σ = 0.005, 0.01). As known for ill-conditioned 

problems, the presence of noise reduces the accuracy of the reconstruction, and indeed the 

quality of the estimation in all the simulations is lower as noise level is higher (indicated by 
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the Jensen differences). Nevertheless, even for the highest noise level, the estimated PSDs 

were in good agreement with the theory.

The underlying assumptions of the method concern the axons geometry and orientation, as 

they are assumed to be coherent infinite cylinders. The current 2-D circular gradient 

sampling scheme was chosen because of the ideal nature of the phantom, namely, the 

cylinders are aligned orthogonal to the applied gradient pulses. Although this modeling 

approach has been widely used to date [33,41,27,36], it would introduce a systematic error 

to the analysis of brain white matter tissue, where the fibers take on all possible orientations 

across an image. In this case, a 3-D d-PFG acquisition scheme could be used, as proposed 

and applied by Komlosh et al. [5]. A 3-D gradient sampling scheme involves the application 

of the circular acquisition in different orientations, as used in Diffusion Tensor Imaging. The 

principal fiber orientation in each voxel can then be calculated from a subset of the 

measurements, and the projection of the data onto the perpendicular plane is used and 

analyzed. Although it increases the experimental time, a 3-D sampling scheme is essential 

when dealing with complex white matter (as opposed to spinal cord).

The relatively long acquisition time (7 h) is not acceptable for clinical applications. A 

significant reduction in acquisition time can be achieved by a judicious choice of specific 

experimental parameters from the infinite possible different sets. Employing such an 

optimization scheme [29,30] may lower the number of acquisitions while improving the size 

distribution reconstruction.

An important aspect of this study is that the derived PSD is nonparametric, so it is not based 

on any assumption regarding its shape. Moreover, it is robust to variation in initial 

conditions. In neuronal tissue, while a parametric PSD may accurately describe healthy, 

normal tissue, a nonparametric PSD provides an objective description of any white matter 

tissue, regardless of its viability, pathological state, or stage in development.

6. Conclusions

This work demonstrates the feasibility of a spatially resolved PSD estimation using a d-PFG 

based method on a phantom that is specifically suitable to simulate axonal geometry. Other 

heterogeneous biological samples such as skeletal muscle and spinal cord will be 

investigated in the near future. The complex microstructural architecture of these tissues 

would be suitable for the same voxel-based analysis, and the information obtained from the 

compartment-size distribution would shed light on their normal or abnormal development 

and function. Obtaining spatiality resolved PSD would also be useful for non-biological 

materials, such as drug-eluting porous biomaterials. This method will allow in vivo 
structural changes of such implanted biomaterial devices to be followed, and for their 

continuous microstructural transformation to be reported over time.
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Fig. 1. 
The d-PFG filtered MRI pulse sequence used in this study.
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Fig. 2. 
A photo of the GCA PSD phantom placed in the NMR tube. Each GCA and its size is 

indicated.
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Fig. 3. 
A separate ROI-based estimation of the PSD of each of the 6 GCAs. The ROI of each of the 

PSDs (A–F) is marked on a proton density image (G), where some imperfections in the 

GCA are indicated by a yellow arrow. Estimated values of the size distribution are indicated 

in red, while the expected theoretical values are indicated in blue. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 4. 
Overlapped on a proton density image (D) are three ROIs that include different volumetric 

fractions of all three nominal capillary radii, indicated by A, B, C, and their estimated PSDs 

in (A), (B), and (C), respectively. The ROIs were randomly chosen to include different 

combinations of three GCAs. Estimated values of the size distribution are indicated in red; 

theoretical values are indicated in blue. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Experimental data (symbols) and their estimated values (solid line) for two of the ROIs in 

Fig. 4. (A) corresponds to Fig. 4B, and (B) corresponds to Fig. 4C. Different colors indicate 

angular dependency with different q-values. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. 
A constant ROI along with three free water volumes are indicated on a proton density image 

(D). The estimated PSDs with different free water fractions are shown in (A), (B), and (C). 

Estimated values of the size distribution are indicated in red, while the expected theoretical 

values are indicated in blue. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 7. 
Overlapped on a proton density image (D) are the same three ROIs that were used in the d-

PFG case (Fig. 4D) and their estimated PSDs from the s-PFG experiment in (A), (B), and 

(C), respectively. Estimated values of the size distribution are indicated in red; the 

theoretical values are indicated in blue. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)

Benjamini et al. Page 20

J Magn Reson. Author manuscript; available in PMC 2020 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
PSD estimation (bins) of a simulated Bimodal-Gaussian function (solid line) with 

overlapping wide peaks. Two noise standard deviations of (A) 0.5% and (B) 1% relative to 

the signal attenuation without any diffusion gradient applied, were used.
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Fig. 9. 
A PSD composed of lognormal and Gaussian functions (solid line) and its estimation (bins). 

Two noise standard deviations of (A) 0.5% and (B) 1% relative to the signal attenuation 

without any diffusion gradient applied, were used.
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Table 1

Jensen difference between the estimated and theoretical PSDs for both single- and double-PFG experiments.

ROI A B C

d-PFG 0.2951 0.2697 0.3224

s-PFG 0.4275 0.6931 0.6931
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