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Abstract
Intervertebral disc (IVD) degenerative diseases are a common problem in the 
world, and they cause substantial social and economic burdens for people. The 
current methods for treating IVD degenerative diseases mainly include surgery 
and conservative treatment, which cannot fundamentally restore the normal 
structure of the disc. With continuous research on the mechanism of degeneration 
and the development of regenerative medicine, rapid progress has been made in 
the field of regenerative medicine regarding the use of stem cell-derived 
exosomes, which are active biological substances used in intercellular 
communication, because they show a strong effect in promoting tissue 
regeneration. The study of exosomes in the field of IVD degeneration has just 
begun, and many surprising achievements have been made. This paper mainly 
reviews the biological characteristics of exosomes and highlights the current 
status of exosomes in the field of IVD degeneration, as well as future 
developments regarding exosomes.
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Core tip: This article mainly reviews the brief pathological process of disc degeneration 
and the biological characteristics and functions of exosomes. We highlight the current 
status and advancement of exosome research in the field of intervertebral disc 
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degeneration, analyze the possible mechanisms, and discuss the future development of 
exosomes in this field.
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INTRODUCTION
Low back pain (LBP) is a common spinal health problem worldwide[1]. In a global 
systematic review, the mean prevalence of LBP at a given time in the general 
population was approximately 18%, and the 1-year prevalence was approximately 
38%[2]. Therefore, a small reduction in health care or disability rates related to LBP 
could bring significant social and economic benefits[3,4].

The causes of LBP are complex[5,6], and although there is no direct evidence, IVD 
degeneration is considered a major cause[5]. The cause of intervertebral disc (IVD) 
degeneration is still not fully understood, but some factors, such as aging, abnormal 
mechanical stress, trauma, nutritional deficiencies, and heredity, are considered to be 
involved in this process[7]. The pathological process of disc degeneration includes the 
reduction of nucleus pulposus cells (NPCs)[8,9] and extracellular matrix (due to 
decreased synthesis and increased degradation), aging of the annulus fibrosus, and 
calcification of cartilage endplates[10].

Current treatments for LBP caused by IVD degeneration include invasive surgery 
and conservative treatment[11], which are mainly aimed at relieving symptoms rather 
than changing pathogenic mechanisms. Therefore, there is an urgent need for new 
therapies that treat disc degeneration by directly addressing causes and mechanisms 
to retain and/or restore disc structure and mechanical function.

Recently, an increasing number of studies have focused on degenerated disc 
regeneration, including studies related to bioactive molecular injection[12,13], cell-based 
therapies[14-16], tissue engineering[17,18], and gene therapy[19,20]. Bioactive molecular 
injection is a biological therapy utilizing chemical molecules with the effect of 
recruitment of endogenous stem cells into the IVD or stimulation of their proliferation. 
Although the short-term effect is acceptable, the long-term maintenance of biological 
activity has become an unavoidable obstacle for this therapy. Cell-based therapies, as 
the most attractive method among these studies, involve the injection of extracted 
cells, such as NPCs or various stem cells, into the disc in vivo to restore IVD 
homeostasis following the proliferation, differentiation, and immune regulation of the 
transplanted cells[21]. Although some progress has been made, the complex 
environment of the degenerated IVD causes a low survival rate of stem cells and 
makes it difficult to accurately control cell viability and differentiation. Additionally, 
the sources and safety issues of stem cells need to be considered. Gene therapy refers 
to modification of genomes to increase the expression of effector genes and promote 
the continuous production of one or more biologically active factors in the IVD to 
promote cell proliferation, extracellular matrix production, and inhibition of apoptosis.

Studies on the mechanism of stem cell therapy have provided increasing evidence 
that the factors that play an important role in these treatments are the exosomes that 
are secreted by stem cells[22-24]. Exosomes were considered waste products from cells 
when they were first reported in 1983[25]. Currently, this nanoscale cell vesicle is known 
to be an important substance in intercellular communication that can transfer 
biomolecules such as proteins and nucleic acids from parent cells to recipient cells. 
Their applications in regenerative medicine are also increasing, including in the 
regeneration of NPCs and the maintenance of disc homeostasis[26-28]. This paper 
reviews the biological characteristics of exosomes and their research status in the field 
of disc degeneration, and gives outlook on their future applications in this field.
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BIOLOGICAL CHARACTERISTICS AND FUNCTIONS OF EXOSOMES
Exosomes are a type of extracellular vesicle; the other two main types of extracellular 
vesicles are microvesicles and apoptotic bodies[29,30]. The characteristics of the three 
main extracellular vesicles are shown in Table 1.

Exosomes have spheroid membranes of a uniform lipid bilayer with diameters of 
approximately 30-150 nm[31]. They typically can be detected in various body fluids, 
such as blood[32,33], amniotic fluid[34-36], breast milk[37,38], urine[39,40], synovial fluid[41,42], and 
saliva[43,44]. They can be transported to corresponding target cells through the body 
fluids to perform a specific function. In vitro, exosomes also have been isolated from 
cell culture supernatant[45]. We now know that the mechanism of exosome formation 
involves the inward invagination of the endosomal membrane pathway. At the first 
stage, the inward budding of the plasma membrane with receptors leads to the 
formation of an endosome. Then, small vesicles can be formed by further inward 
budding of the limiting membrane to form a multivesicular body (MVB) with 
intraluminal vesicles. The vesicular contents in MVBs are finally degraded when 
MVBs fuse with the lysosome or are released into the extracellular space[46]. After being 
released into the extracellular space, exosomes play a biological role when they contact 
another membrane and are endocytosed into a recipient cell[46,47].

The function of exosomes mainly depends on their contents. Among the 
components of exosomes, lipids, proteins, and nucleic acids are the three main 
substances that determine the biological function of exosomes[48,49]. Lipids in exosomes 
are mainly located in the membrane, including cholesterol, phosphatidylserine, 
sphingomyelin, etc. In addition to maintaining the biological stability of exosomes, 
lipids are also involved in biological processes such as the formation and release of 
exosomes[50]. Exosomes are also rich in a variety of proteins, including cytoskeleton 
components, tetraspanins, heat-shock proteins, and other types of proteins[51,52]. Among 
them, ALIX and tetraspanin proteins, such as CD81, CD9, and CD63, are markers of 
exosomes[51]. However, it is difficult to distinguish exosomes from other extracellular 
vesicles with overlapping size and density based solely on these markers.

Exosomes usually carry nucleic acids, including mRNAs[53], microRNAs 
(miRNAs)[54,55], and long noncoding RNAs (lncRNAs)[56]. MiRNAs are a class of 
endogenous noncoding RNAs found in eukaryotes that have a length of 
approximately 20-25 nucleotides. Mature miRNAs are produced from longer primary 
transcripts that undergo a series of nuclease-mediated cleavages; then, the miRNAs 
are assembled into RNA-induced silencing complexes by complementary base pairing 
to a target mRNA, which guides degradation of targets or suppresses translation of 
targets, based on the degree of complementarity[57]. According to the principle of base 
complementary pairing, a miRNA usually can target hundreds of corresponding 
genes, which implies that miRNAs carried in exosomes may play an important role in 
regulating gene transcription in target cells. LncRNAs are a class of RNA molecules 
longer than 200 bp that do not encode proteins. They are widely involved in the 
transcription, translation, and posttranslational regulation of genes. LncRNAs can 
participate in chromatin modification, transcription activation, and transcription 
interference in cells, or they can act as "bait molecules" that interact with proteins, 
DNA, and RNA[58,59]. As messengers of intercellular communication, exosomes are 
secreted by parent cells and taken up by target cells in the following ways: (1) 
Transmembrane proteins are fused to target cell membranes by binding to receptor 
proteins; (2) The exosomal membrane fuses directly with the cell membrane, releasing 
the contents; and (3) Target cells take up exosomes through endocytosis[60,61].

THERAPEUTIC APPLICATION OF STEM CELL-DERIVED EXOSOMES IN 
VARIOUS TISSUES
Recently, an increasing number of studies have shown that exosomes derived from 
stem cells play an important role in restoring tissue homeostasis and promoting tissue 
regeneration.

Exosomes from bone marrow mesenchymal stem cells (MSCs) can significantly 
enhance bone regeneration, promote vascular regeneration, and accelerate fracture 
healing in a rat femur nonunion model[62]. Exosomes from adipose stem cells promote 
the vascularization of endothelial cells[63]. Human umbilical cord MSC exosomes can 
promote angiogenesis and repair of second-degree burn wounds of the skin[64]. 
Exosomes from human stem cells can promote the repair of jaw joints and the 
synthesis of extracellular matrix in that tissue[24]. Increasing experimental results show 
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Table 1 Characteristics of three main types of extracellular vesicles

Types of 
vesicles Diameter Markers Cargos Density 

(g/mL) Origin Ref.

Exosomes 30-150 nm CD63, CD81, CD9, HSP70, 
Flotillin, TSG101, etc.

mRNA, microRNA, lncRNA, 
circRNA, DNA lipid, protein, etc.

1.13-1.18 Endosomes pathway
[51,74-
77]

Microvesicles 50-1000 
nm

Integrins, selectins, CD40 ligand mRNA, microRNA, other non-coding 
RNA, protein, etc.

1.16-1.19 Plasma membrane; 
outward budding

[51,75]

Apoptotic 
bodies

500-2000 
nm

Phosphatidylserine, genomic 
DNA

Nuclear fractions, cell organelles, etc. 1.16-1.28 Plasma membrane
[47,51,
78]

the potential regenerative ability of stem cell-derived exosomes through their 
promotion of cell proliferation, enhancement of angiogenesis, promotion of 
extracellular matrix homeostasis recovery, inhibition of inflammation, and other 
unknown effects. Some of these beneficial mechanisms can also be achieved in the 
repair of disc degeneration.

THERAPEUTIC EFFECTS OF STEM CELL-DERIVED EXOSOMES ON IVD 
DEGENERATION
Stem cell transplantation for treatment of IVD degeneration has made great progress. 
In vitro and in vivo studies have revealed the great advantages of stem cells as seed 
cells for cell-based therapies. However, because of the complex and harsh in vivo 
environment of the IVD, there are obstacles to be overcome by IVD degeneration stem 
cell therapy approaches[65]. With continued research into stem cell therapies, it has been 
found that the exosomes secreted by stem cells play an important role in their 
therapeutic effect[26,66]. Therefore, exosomes have attracted more and more attention in 
some preclinical studies of promoting IVD regeneration (Table 2).

When exosomes derived from bone marrow MSCs were cocultured with NPCs from 
degenerated IVDs, cell proliferation was significantly accelerated by extending the 
incubation time with exosomes. Additionally, the expression of the extracellular 
matrix synthesis and protection genes ACAN, COL2A1, SOX-9, and TIMP-1 increased 
with incubation time, while the degradation-related genes MMP-1 and MMP-3 were 
decreased. Therefore, it seems to indicate that MSC-derived exosomes promote the 
proliferation and extracellular matrix homeostasis of NPCs[26].

Stem cell-derived exosomes not only promote the proliferation of NPCs but also 
inhibit their apoptosis. In a study by Cheng et al[28], human bone marrow MSCs and 
fibroblast-derived exosomes were used to treat TNF-α-induced apoptotic NPCs. The 
cells treated with the exosomes derived from the bone marrow MSC group had a 
significantly lower apoptotic rate than those of the other groups. In vivo experiments 
showed that the MSC-derived exosome treatment group had significantly lower 
Pfirrmann grade, histological grade, and apoptotic rate than the noninjection groups. 
Another in vitro study also confirmed the anti-apoptotic effect of stem cell exosomes. 
Liao et al[27] co-incubated exosomes from MSCs with advanced glycation end products-
induced NPCs and confirmed that the levels of apoptosis-related markers caspase-3 
and caspase-12 decreased significantly. With the increase in exosomal concentration, 
the declining trend was greater. The above studies confirmed that exosomes have 
significant anti-apoptotic effects both in vivo and in vitro.

The accumulation of a large number of inflammatory factors and extracellular 
matrix-degrading enzymes in the IVD is an important cause of NPC apoptosis and loss 
of the extracellular matrix[67,68]. Xia et al[69] collected the normal nucleus pulposus from 
trauma patients and the degenerated nucleus pulposus and then screened 150 proteins 
by gene ontology and KEGG analysis, of which 69 proteins were downregulated and 
81 were upregulated. Most of the proteins were associated with inflammatory 
responses, showing enhanced inflammatory responses in degenerative discs. By 
adding MSC-derived exosomes to apoptotic NPCs, the expression of IL-1β, iNOS, 
COX-2, IL-6, MMP3, MMP13, and other inflammation- and extracellular matrix 
degradation-related enzymes was significantly reduced. In vivo experiments also 
demonstrated that the exosome injection group had significantly lower MMP13 
expression at 2, 4, and 8 wk than the control group[69].

The decrease of viable cells is a key factor in the process of disc degeneration; 



Hu ZL et al. Intervertebral disc degeneration

WJSC https://www.wjgnet.com 807 August 26, 2020 Volume 12 Issue 8

Table 2 Studies on exosomes for intervertebral disc degeneration

Ref. Experimental objective Cargo 
analysis Animal model In vitro appraisement In vivo appraisement Inhibition test Research type

HBMSCs; Lu 
et al[26]

To detect the role of exosomes 
derived from BM-MSCs in NPCs

Not 
mentioned

None (1) Promoted proliferation; and (2) Increased synthesis of 
extracellular matrix and decrease in degradation

None None Cell 
experimentation

HBMSC; Cheng 
et al[28]

To explore the protective effect of 
MSC-exosomes on NPCs in a cell 
and rat model

Highly 
enrichment in 
miR-21

SD rat model of IVD 
degeneration by 
needle puncture

(1) Decreased apoptosis rate; and (2) Decreased cleaved caspase-3 (1) IVD degeneration score 
lower; (2) Decreased apoptosis 
rate; and (3) Lower histologic 
score

MiR-21 
antagonist 
enhanced cell 
apoptosis

Cell and animal 
experimentation

Rat nucleus 
pulposus; Moen 
et al[79]

To study the role of extracellular 
miRNA in lumbar radicular pain

Increased 
miR-223

Lewis rat IVD 
herniation

None MiR-223 increased after disc 
herniation

None Animal 
experimentation

Porcine 
notochordal 
cells; Bach 
et al[80]

To explore the biologic effect of 
the NCCM-derived EVs on 
canine and human CLCs from 
degenerated IVDs in vitro

None None Increased glycosaminoglycan (GAG) deposition None None Cell 
experimentation

HBMSCs; Liao 
et al[27]

To prove that the delivery of 
MSC-exos could modulate ER 
stress and inhibit excessive NP 
cell apoptosis during IDD

None SD rat model of IVD 
degeneration by 
needle puncture

(1) Western blot and TUNEL assays indicated decreased apoptosis 
rate; and (2) Western blot and qPCR data indicated decreased 
reticulum stress

(1) Higher DHI; (2) Lower 
Pfirrmann grade; (3) Lower 
histological grades; and (4) 
Decreased apoptosis rate

Akt inhibitor 
LY294002; ERK 
inhibitor 
PD98059

Cell and animal 
experimentation

C57BL/6 mice 
BMSCs; Xia 
et al[69]

To investigate the therapeutic 
effect of exosomes for use as 
IVDD therapeutics

None Rabbit model of IVD 
degeneration by 
needle puncture

(1) Decreased apoptosis rate; (2) Western blot and qPCR data 
indicated recovery of matrix homeostasis; (3) Decreased 
inflammatory marker expression; (4) Suppressed inflammasome; 
and (5) Recovery of mitochondrial-related proteins and attenuated 
mitochondrial dysfunction

(1) Higher DHI; (2) Lower 
Pfirrmann MRI grade; (3) Lower 
histological grades; and (4) 
Decreased apoptosis rate

None Cell and animal 
experimentation

BMSC: Bone marrow stromal cells; IVDD: Intervertebral disc degeneration; MRI: Magnetic resonance imaging; IVD: Intervertebral disc; IDD: Intervertebral disc degeneration; MSC: Mesenchymal stem cell; HBMSC: Human bone marrow 
stromal cells; CLC: Cardiomyoblast-like cells; NPC: Nucleus pulposus cells.

conversely, in the process of disc regeneration, the recovery of cell numbers is the most 
important issue. These studies have confirmed that stem cell-derived exosomes could 
enhance cell proliferation and inhibit apoptosis, especially for stem cells remaining in 
the disc. Moreover, exosomes could also enhance the expression of the extracellular 
matrix in NPCs and inhibit the expression of matrix protein degrading enzymes, 
which is beneficial for maintaining the homeostasis of the extracellular matrix. During 
IVD degeneration, a large number of cytokines participate in and accelerate the 
degeneration of the IVD, leading to apoptosis and senescence of NPCs[70]. Exosomes 
have a significant inhibitory effect on inflammation, which induces the restoration of 
the microenvironment for the surviving cells and reduces the disturbance of the 
intracellular environment. Therefore, stem cell-derived exosomes have the potential to 
treat disc degeneration.
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POTENTIAL MECHANISM OF STEM CELL-DERIVED EXOSOMES FOR IVD 
DEGENERATION
With an increasing understanding of the mechanisms behind disc degeneration and 
with in-depth studies of exosomes, the application of exosomes in disc degeneration 
has achieved some new progress. This progress clearly shows the tremendous 
potential of exosomes in disc repair. However, the exact mechanism of how exosomes 
affect disc repair is still unclear.

In a study of Cheng et al[28], miRNA array hybridization and data analysis was 
performed to compare normal NPCs and TNF-induced apoptotic NPCs; five miRNAs 
(miR-18a, miR-21, miR-106b, miR-217, and miR-26a) were found at significantly lower 
levels in the TNF-induced NPC group than in the control group. Furthermore, only 
miR-21 was present in MSC-derived exosomes at higher levels than it was in 
fibroblast-derived exosomes. MiR-21 also decreased apoptosis and suppressed the 
expression of PTEN. Based on the above results, the researchers believe that the PTEN-
PI3K-Akt pathway is a potential target of exosomal miR-21-mediated apoptosis 
protection in NPCs. However, they believe that there are still other extracellular 
vesicles or other components in exosomes that are involved in this procedure[28].

Liao et al[27] proposed another possible mechanism. The endoplasmic reticulum 
stress-related markers GRP78 and CHOP were significantly increased in degenerated 
discs, and their expression positively correlated with Pfirrmann classification. Then, 
exosomes were added to induce NPCs, and the expression of endoplasmic reticulum-
related pathways and apoptosis markers was inhibited. This means that exosomes 
inhibit endoplasmic reticulum stress-mediated apoptosis through AKT and ERK 
signaling pathways by reducing the levels of CHOP, the key molecule of endoplasmic 
reticulum stress[27].

In addition to the above studies, Xia et al[69] found that 150 proteins differentially 
expressed in degenerative discs are closely related to enhanced inflammatory 
responses. Exosomes can significantly inhibit the inflammatory response of apoptotic 
NPCs and the formation of inflammatory bodies. The proteins found in bone marrow 
MSC exosomes mainly recovered the damage to mitochondria in NPCs, restored the 
normal structure of mitochondria, and reduced oxidative stress in mitochondria. The 
results indicate that exosomes can play a role in inhibiting disc degeneration by 
restoring mitochondrial homeostasis and the antioxidative response and inhibiting 
formation of inflammatory bodies[69].

These potential mechanisms have mainly been studied in terms of promoting 
extracellular matrix production, inhibiting matrix degradation, promoting an anti-
inflammatory response, and inhibiting apoptosis and other aspects of exosome-based 
promotion of IVD repair. Unfortunately, there is no study on how exosomes promote 
the proliferation mechanism of NPCs. One of the most important reasons for the 
degeneration of the disc is the decrease in the number of cells, and how to restore the 
number of cells in the disc is a key question in treatment. Alternatively, in the process 
of IVD degeneration, the senescence of NPCs is also an important factor. Some 
molecules have also been found in exosomes that can inhibit the senescence of cells. 
Previous research has mainly focused on specific miRNAs in exosome-mediated 
apoptosis, but are there additional miRNAs in exosomes that promote the proliferation 
and inhibit the aging of NPCs? Furthermore, how do exosomes inhibit inflammation 
and promote mitochondrial homeostasis, and how are other molecules in exosomes, 
including lipids, proteins, mRNAs, and lncRNAs, involved?

DISCUSSION
The unique double-layered membrane structure of exosomes makes their contents 
difficult to degrade by various enzymes in body fluids. The unique shape, size, and 
density range of exosomes, as well as the special molecular markers on their surface, 
enable their identification and isolation. Animal experiments have confirmed that 
exosomes are more efficient at delivering effective content into cells and cause a lower 
immune response in recipients than other methods. By overexpressing miRNAs 
targeting specific mRNAs in donor cells, exosomes promote cell proliferation, inhibit 
apoptosis, and promote the production of the extracellular matrix[28]. Engineered 
exosomes can also be loaded with miRNA synthesized in vitro by electroporation and 
can then be injected into tissues to achieve therapeutic goals[71]. Exosomes may also be 
combined with scaffold material to promote IVD regeneration. In a study by Liu 
et al[72], photoinduced imine crosslinking hydrogel glue combined with stem cell-
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derived exosomes promoted defective cartilage repair and regeneration[72]. Therefore, 
an increasing number of studies have shown that exosomes are a promising method 
for the treatment of disc degeneration. However, there are still many challenges and 
disadvantages.

First, the physiological environment of the IVD is complex. As the largest avascular 
tissue in the body, long-term internal high pressure, high permeability, low pH, low 
nutrition, and low oxygen make it not suitable for cell proliferation[73]. In the 
degenerated IVD, the complex inflammatory environment, the decrease in the number 
of cells, and fibrosis may affect in vivo as in vitro results being the same. Additionally, 
IVD degeneration is a pathological process involving multiple factors, and the exact 
mechanism has not yet been determined. Therefore, choosing the appropriate 
exosomes for specific causes is very important.

Second, the exact mechanism of exosomal biogenesis needs to be further 
investigated. Exosomes are derived from endosomes after cell endocytosis. After 
processing, they may join multivesicular bodies (MVBs) and may contain proteins, 
nucleic acids, lipids, cholesterol, and other biologically active molecules; further, they 
may be secreted by exocytosis or may be encountered by a lysosome and become 
degraded[29]. This is a complex set of biological process, and more research needs to be 
done to determine the specific mechanisms. An increasing number of studies have 
demonstrated that exosome-mediated effects are mainly due to the contents of the 
exosomes, such as miRNAs, lncRNAs, and other molecules. Understanding how cells 
assemble these molecules in exosomes will enable additional exosomes to be 
harvested. The isolation of exosomes also has limitations regardless of the current 
methods being used, such as ultracentrifugation, ultrafiltration, and chromatography. 
Therefore, new methods need to be developed to improve the isolation and purity of 
exosomes.

Moreover, exosomes, as a collection of various biologically active molecules, are also 
affected by various factors, such as the source of cells, the status of cell growth, the 
conditions of culture, and even the consistency and reproducibility of their effects. All 
of those factors need to be considered. As a special carrier in the treatment of diseases, 
the application of exosomes still faces a series of problems, such as dosage, mode of 
administration, and evaluation of the efficacy.

CONCLUSION
Exosomes are attracting increasing attention because of their unique structures and 
diverse properties. Exosomes have shown favorable possibilities during the repair of 
IVD, since they can promote the proliferation of NPCs, promote the homeostasis of the 
extracellular matrix, and inhibit cell apoptosis (Figure 1). However, the detailed 
mechanisms behind these activities are still unclear, so further research is needed to 
explore the complex regulation mechanisms, optimize the culture and transplant 
conditions, and perform more preclinical trials to verify the safety of exosomes.
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Figure 1  Exosome-mediated mechanism of stem cells regulating the activities of nucleus pulposus cells.
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