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Abstract

Background: Findings are inconsistent regarding the role of traumatic head injury in the 

subsequent development of neurologic outcomes.

Objective: Examine the relationship between head injury and later cognitive impairment.

Methods: A sample of 3,123 Japanese-American men was assessed for history of head injury and 

evaluated for cognitive impairment using the Cognitive Abilities Screening Instrument (CASI). 

For a subsample of 676 respondents, neuropathologic results from those with and without head 

injury were compared.

Results: Although the crude model showed an association between history of head injury and 

later severe cognitive impairment, the relationship lost significance in the adjusted model (OR = 

1.320, CI: 0.90–1.93), regardless of time between injury and impairment. Similar to cognitive 

impairment, hippocampal sclerosis was observed significantly more in the brains of respondents 

with a history of head injury in the crude model, but the relationship weakened in the adjusted 

model (OR = 1.462, CI: 0.68–3.12). After adjustment, decedents with a head injury demonstrated 

marginally higher brain weight (OR = 1.003, CI: 1.00–1.01).

Conclusion: We did not find a relationship between head injury and subsequent cognitive 

decline in this cohort. The neuropathology results also displayed no strong association between 

history of head injury and specific brain lesions and characteristics. These results support other 

findings in prospective cohorts. However, they could be influenced by the demographic make-up 

of the sample (male Japanese-Americans) or by the observation that the majority reported only a 

single head injury.
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INTRODUCTION

There is a long-standing question of whether traumatic brain injury (TBI) affects later-life 

cognitive function. In the early 1900 s, a condition called dementia pugilistica was used to 

describe progressive neurodegeneration in boxers resulting in a ‘punch drunk’ state [1]. 

More recently, a condition observed among athletes with repeat head injuries has been 

termed chronic traumatic encephalopathy (CTE) and has been shown to be associated with a 

variety of neurologic outcomes [2, 3]. Although the recognition of CTE has renewed interest 

in the association between head injury and neurologic outcomes, researchers have been 

addressing this question for decades, with mixed results. Even the findings from several 

meta-analyses have not been entirely consistent, as Table 1 summarizes.

The pathological mechanism by which a TBI may increase the risk for cognitive decline has 

not been established. Evidence suggests TBIs increase the accumulation of multiple 

abnormal proteins commonly associated with neurodegeneration, include tau, amyloid-β, α-

synuclein, and tar DNA binding protein-43 [4, 5]. TBIs may also cause substantial metabolic 

disturbances resulting in excitotoxicity, neuroinflammation, and oxidative stress [5, 6]. Some 

researchers suggest TBIs can trigger cerebrovascular pathology, predisposing individuals to 

neurodegenerative diseases [7, 8]. Others suggest the neuropathologic changes resulting 

from TBI may represent a distinct disease process rather than the initiation of development 

of a specific condition, such as Alzheimer’s disease (AD) [9-14].

With the current study, we examined the relationship between traumatic head injury and 

subsequent cognitive function in the Honolulu-Asia Aging Study (HAAS), a population-

based prospective cohort of Japanese-American men living in Hawaii stemming from the 

Honolulu Heart Program (HHP) [15]. Additionally, brain autopsies conducted on a subset of 

the sample allowed for the comparison of neuropathologic changes in individuals with a 

history of head trauma. In the HAAS, head injury data were self-reported and cognitive 

impairment was measured using the Cognitive Abilities Screening Instrument (CASI) [16]. 

The pathology data were obtained from a thorough assessment of brain tissue by clinical 

neuropathologists. Given the combination of cognitive and neuropathologic outcomes in a 

well-defined cohort, our results add uniquely to an expanding collection of research to 

understand the possible effects of head injury on subsequent neurologic outcomes.

METHODS

Study population

At the fourth exam (1991–1993), a subset of the cohort with no dementia was identified. 

Those who agreed to participate were placed in the HAAS, which was designed to study 

cognitive function and diseases of aging [17]. This group of 3,734 men, representing almost 

80% of the surviving HHP cohort, was examined approximately every two to three years 

through 2012. The average length of follow-up was 10.6 years. In addition to self-reported 

information on general health status, respondents were assessed for cognitive function with 

the CASI at each follow-up exam. Excluding respondents with missing data for head injury, 

the final sample for the TBI analysis was 3,123 participants. A subset of respondents agreed 

to a brain autopsy upon death, allowing for neuropathology assessment of 676 participants.
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Definition of cognitive impairment

The CASI is a comprehensive screening instrument specifically designed for the cross-

cultural assessment of cognitive impairment and dementia [16]. It combines measures of 

attention, concentration, orientation, memory, language, visual construction, abstraction, and 

judgement to create a composite score ranging from 1 to 100. It includes items identical or 

similar to ones used in three validated cognitive assessments: the Hasegawa Dementia 

Screening Scale (HDSS), the Mini-Mental State Examination (MMSE), and the Modified 

Mini-Mental State (3MS). As such, estimated scores for the HDSS, MMSE, and 3MS can be 

calculated from the CASI. They are only estimates because some items had to be modified 

to allow for larger cross-cultural reach.

For this analysis, a CASI score of less than 60 was used to indicate severe cognitive 

impairment, while a score from 60 to 74 was considered to reflect mild to moderate 

impairment, and a score of 74 or greater indicated negligible or no cognitive impairment. 

The HAAS sample was restricted to respondents whose baseline (HHP exam 4) CASI score 

was 60 or greater. During subsequent exams, if a respondent’s CASI score fell below 74 they 

underwent additional evaluation including a neurological exam, the Consortium to Establish 

a Registry for Alzheimer’s Disease (CERAD) Neuropsychological Assessment Battery, the 

Behavior Pathology in Alzheimer’s Disease Rating Scale (BEHAVE-AD), and Clinical 

Dementia Rating (CDR). More than 90% of the included participants had died before the 

final examination cycle. The last recorded CASI score available for each respondent was 

used to determine the presence (n = 515) or absence (n = 2,608) of severe cognitive 

impairment. For the majority of respondents, once their CASI score fell below 60, it did not 

rebound. Of the 538 respondents who ever had a CASI score less than 60,217 (40.3%) had 

additional CASI scores recorded after dipping below this threshold. Of these, 183 (84.3%) 

stayed below 60, while 34 (15.7%) had at least one subsequent CASI score at or above 60.

Definition of traumatic brain injury

Head injury data were obtained by self-report at baseline (HHP exam 4) of any head injuries 

‘severe enough to have lost consciousness.’ Additionally, respondents were asked about 

‘serious head injuries with more than a momentary loss of consciousness’ at exams 8 

through 12 (2002–2012). Respondents who reported a head injury at exam 4 or exams 8–12 

were coded as having a history of TBI (n = 216). Only 6% of these respondents had more 

than one TBI and none had more than 3. As such, we included these respondents with those 

reporting a single injury. Those who had no head injury at exam 4 and reported no follow-up 

injuries were coded as negative for TBI (n = 2,907). The respondents were asked about when 

the injury occurred. This information was used in addition to the date of the respondent’s 

last CASI test to estimate the age of the injury at final CASI assessment.

Neuropathologic assessment

Details on the neuropathologic assessment have been published previously [15]. Briefly, 

brain tissue was examined for the presence of AD lesions using Braak staging [18] and 

Lewy bodies using the McKeith score [19]. Microvascular lesions and lacunar infarcts were 

counted from multiple areas of the brain and the presence of unilateral or bilateral 

hippocampal sclerosis was noted. Counts of neuritic and diffuse plaques were performed and 
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the presence of evidence of trauma or subdural hematoma was observed. Brain weight was 

obtained prior to dissection. A combined index was calculated using the measures for AD 

lesions, Lewy bodies, microvascular lesions, hippocampal sclerosis, and brain weight. The 

index had a range from 0 (no pathology) to 5 (moderate to severe presence of all five 

characteristics).

Covariates

Covariates were calculated using a range of demographic and health data obtained at 

baseline (HHP exam 4). Health status measures included presence or absence of diabetes, 

hypertension, hearing impairment, and a history of depression. Stroke history was monitored 

until the final CASI. Lifestyle measures included smoking and drinking status (ever versus 

never) at baseline as well as educational attainment in years. Additional risk factors included 

apolipoprotein ε4 allele positivity (APOE ε4) and family history of AD. Military status was 

also examined, using a sample limited to respondents born in 1910 or later as the majority of 

military service in this cohort was during World War II. Age at death, follow-up time, and 

CASI score at baseline were also used.

Statistical analyses

Pearson’s chi-square and t tests (Pooled or Satterthwaite) were used to examine bivariate 

differences between respondents with and without a history of TBI. Multivariate logistic 

regression was used to compare respondents with and without severe cognitive impairment 

at their final CASI test. To account for variable follow-up times, the number of days between 

baseline and final CASI was controlled for in the analysis. Cox Proportional Hazard 

regression models using follow-up time were also run, but the main results did not change. 

As such, the results reported here are from logistic regression models for ease of 

interpretation. Multivariate regression analyses were also adjusted for age at baseline, CASI 

score at baseline, educational attainment, APOE ε4 status, and history of stroke. For the 

neuropathology analyses, multivariate logistic regression models controlled for age at death, 

final CASI score, and time between final CASI and death. An alpha value of 0.05 was used 

for all analyses. All analyses were conducted using SAS 9.4 statistical package (Cary, NC).

RESULTS

Table 2 shows the results of the comparison of respondents with and without a history of 

TBI. The two groups showed significant differences between their final CASI score (p = 

0.0110), CASI score at baseline (p <0.0001), and follow-up time (p <0.0001). Multivariate 

logistic analyses showed that, after controlling for CASI score at baseline and follow-up 

time, respondents with a history of TBI were no more likely to have a final CASI score 

below 60 than those without a TBI (OR = 1.422, CI: 0.99–2.05; data not shown).

Table 3 displays the differences between respondents with and without severe cognitive 

impairment (CASI score <60) at the final CASI assessment. Crude estimates and those 

controlling for CASI score at baseline, follow-up time, age at baseline, education, APOE ε4 

status, and history of stroke are shown. Although a history of hearing problems at baseline 

was marginally associated with cognitive impairment (OR = 1.277, CI: 1.02–1.60, p = 
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0.0306), it was not included in the adjusted model because the relationship lost significance 

when controlling for the other covariates. In the crude model, having a history of TBI 

increased the risk for severe cognitive impairment by more than 50% (OR = 1.537, CI: 1.10–

2.15, p = 0.0115). However, the relationship did not retain significance after adjusting for 

relevant covariates (OR = 1.320, CI: 0.90–1.93, p = 0.1534). No association was observed 

when limiting the sample to old injuries (5+ years before the final CASI) or new injuries (<5 

years from the final CASI; data not shown). The same results were obtained when 

respondents who were lost to follow-up during the study were excluded (data not shown).

Looking at the subsample of respondents with a history of TBI, those with severe cognitive 

impairment at the final assessment were significantly older at the time of their first injury 

(71.7 years versus 60.5 years; Table 3). Although the magnitude of effect was not large, it 

remained marginally significant after controlling for covariates (OR = 1.017, CI: 1.00–1.04).

Table 4 displays the neuropathology results for those with and without a history of TBI. 

Crude estimates and those controlling for age at death, final CASI score, and time between 

final CASI and death are shown. In the crude model, respondents with a history of TBI were 

almost 130% more likely to show hippocampal sclerosis (OR = 2.298, CI: 1.17–4.50, p = 

0.0152). However, the relationship weakened after controlling for covariates (OR = 1.462, 

CI: 0.68–3.12, p = 0.3266). Conversely, brain weight showed no difference in the crude 

model, but displayed marginal significance in the adjusted model (OR = 1.003, CI: 1.00–

1.01, p = 0.0174). In this sample, respondents with a history of TBI had slightly heavier 

brains at death than those without. Results excluding respondents who were lost to follow-up 

were the same (data not shown).

DISCUSSION

The results from this study suggest no significant association between history of TBI and 

development of severe cognitive impairment or neuropathologic changes. Although a small, 

but statistically significant association with TBI was observed in the crude model, this 

relationship did not hold once the model was adjusted for relevant covariates. The results did 

not change when examining old or new injuries (5+ years and <5 years from final CASI, 

respectively) or when respondents lost to follow-up were excluded. Among respondents who 

reported a TBI, those with severe cognitive impairment were older at the time of injury than 

those who did not develop impairment. This calls into question the possibility of reverse 

causality. That is, people in the early stages of cognitive impairment may be more likely to 

fall and incur a brain injury. Previous studies have shown that a diagnosis of dementia 

increases the chances of one or more falls [20]. However, there was a greater number of 

recent injuries (<5 years before final CASI) among those without severe cognitive 

impairment than those with, suggesting reverse causation is not playing a role.

The current findings support the results of several studies looking at TBI and cognitive 

impairment using large, prospective cohorts. Crane et al. [11] found no association between 

TBI with loss of consciousness (LOC) and incident dementia in three large cohorts: Adult 

Changes in Thought (ACT), Religious Orders Study (ROS), and Memory and Aging Project 

(MAP). Dams-O’Connor et al. [12] also found no relationship between TBI with LOC and 
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dementia or AD in the ACT cohort. No association was found in the Rotterdam Study [21] 

or in the Canadian Study of Health and Ageing (CSHA) [22]. Within the National 

Alzheimer’s Coordinated Center (NACC) Uniform Data Set, there are conflicting results 

about the importance of TBI in subsequent cognitive decline or dementia [14, 23-25]. 

However, several studies using the NACC consistently found a relationship between earlier 

onset of cognitive decline and history of TBI [23, 26, 27].

Some studies have examined age at head injury as a factor for subsequent cognitive 

impairment. Gardner et al. [28] found the association between TBI and risk of dementia was 

stronger among older adults. In our sample, among respondents with a history of TBI, those 

with severe cognitive impairment at their final CASI assessment were significantly older at 

the time of their first injury. This may reflect increased vulnerability to TBI with age as a 

consequence of age-related decline in resilience or increase in frailty. Alternatively, it could 

be a result of older respondents in the early stages of dementia being more likely to fall.

Our neuropathology results partially align with the findings from three large prospective 

cohorts in which an increase in Lewy bodies and microinfarcts was observed among 

individuals with a history of TBI, but no difference was seen in neuritic plaques or 

neurofibrillary tangles [11]. Other studies have also shown no difference in AD pathology 

between people with and without a history of TBI [27, 29], while some have found an 

increase in amyloid beta precursor protein or amyloid plaques [13, 30]. Although neuronal 

loss from the hippocampus has been demonstrated as a result of TBI [31, 32], other studies 

have found no difference in hippocampal volume [10]. We observed more hippocampal 

sclerosis in respondents with a history of TBI, but the relationship was lost after adjusting 

for covariates. The pathology of TBI is complex and dependent on a number of variables, 

including age at injury, severity of injury, and time to death. Variations in these and other 

variables may explain the inconsistent neuropathological results observed across studies.

Although our study results suggest no association between TBI and cognitive impairment or 

neuropathology, it is possible the absence of correlation is an artifact of the demographic 

make-up of the cohort (Japanese-American men). However, Kondo et al. [33] found an 

association among their cohort of elderly Japanese. Alternatively, the results may be 

influenced by the fact the majority of our respondents reported only a single head injury. 

Although evidence exists that even a single injury can increase the risk of dementia and 

cause neurodegenerative pathology [34], the risk may be negligible until multiple injuries 

have occurred.

One issue in this body of research that is often cited as part of the explanation for the 

inconsistent results is the lack of a standardized definition for TBI and the use of varied 

criteria for diagnosis of neurodegenerative disease [12, 35]. Beyond the lack of standardized 

definition, injury data are obtained from different data sources across the studies. Self-

reported head injury data may suffer from recall bias, but may also capture more mild 

events. Hospital data are generally accurate, but exclude those who did not seek medical 

treatment as a result of their injury. Additionally, there is no agreed upon scale for injury 

severity, though many researchers used length of time spent unconscious as a metric. There 

is evidence to suggest that increased frequency or severity of the injury may increase the risk 
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of dementia [36]. Only 6% of our cohort reported more than one head injury and severity in 

terms of time of LOC was only collected at baseline. At subsequent exams, respondents 

were asked if they had a head injury with more than momentary loss of consciousness. As 

such, we were not able to make comparisons based on the severity or frequency of injury.

It is interesting to note our results demonstrate no association between a history of TBI and 

service in the military. There is much concern about the effects of combat on the future 

health of service members and several studies have found an increased risk for 

neurodegenerative diseases among veterans with a history of TBI [36-42]. The cohort for 

this study may be slightly different in regard to their military experience. The vast majority 

of the veterans in the group served during World War II and may have been exposed to 

qualitatively different injury risks than those serving in more recent combat.

As with other research of similar design, there are limitations to be considered when 

interpreting the results of this study. Any information collected via self-report is subject to 

recall bias that may affect the accuracy of the results. The longitudinal study design allowed 

for the collection of injury data prior to onset of cognitive impairment, which should reduce 

this bias. However, we still relied on the respondent’s memory, the accuracy of which may 

vary depending on cognitive function. To measure cognitive impairment, we used the CASI 

screening instrument, which has been validated as an effective tool for measuring cognitive 

impairment and progression of dementing disorders across cultures [16]. However, it has 

limitations in its use as a proxy for determining the presence of dementia. Ideally, multiple 

metrics should be used in this determination.

As a result of data collection methodology, the study was also limited in what could be 

examined. In the sample, only 6% of respondents reported multiple head injuries, and data 

on injury-related amnesia LOC were only collected at baseline. As such, we were unable to 

test for differences by injury frequency or severity. Given the composition of the cohort, we 

were also unable to examine the relationship by gender or race. The sample definition also 

brings generalizability of the results into question, given the cohort consists only of men 

with Japanese ancestry. However, previous studies using the HAAS data have shown similar 

findings as other cohorts, including the Nun Study, the ROS, and the MAP [17, 43, 44].

The current study has many strengths, including the longitudinal study design, large cohort 

size, and high participation rates. Data were collected prospectively, reducing bias, and there 

was a long follow-up period for monitoring cognitive function, up to 21 years. With exams 

every two to three years, the HAAS obtained considerable data on the changing health and 

behavior of the cohort as it aged. The availability of autopsy data for a subset of the sample 

allowed for neuropathologic assessment, another strength of the study.

Conclusion

In this prospective cohort, there was no association between a history of TBI and subsequent 

severe cognitive impairment. This is in accordance with studies looking at other prospective 

cohorts [11, 12, 21, 22]. Additionally, we found no strong neuropathologic differences with 

a history of TBI. However, the results However could be influenced by the demographic 
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make-up of the sample or by the observation that the majority of respondents reported only a 

single head injury.
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