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Abstract

Background——Cytokines and growth factors have been implicated in the initiation and 

propagation of vascular disease. Observational studies have shown associations of their circulating 

levels with stroke. Our objective was to explore whether genetically determined circulating levels 

of cytokines and growth factors are associated with stroke and its etiologic subtypes by conducting 

a two-sample Mendelian randomization (MR) study.

Methods——Genetic instruments for 41 cytokines and growth factors were obtained from a 

genome-wide association study (GWAS) of 8,293 healthy adults. Their associations with stroke 

and stroke subtypes were evaluated in the MEGASTROKE GWAS dataset (67,162 cases; 454,450 

controls) applying inverse-variance-weighted meta-analysis, weighted-median analysis, MR-Egger 

regression, and multivariable MR. The UK Biobank cohort was used as an independent validation 

sample (4,985 cases; 364,434 controls). Genetic instruments for monocyte chemoattractant 

protein-1 (MCP-1/CCL2) were further tested for association with etiologically related vascular 

traits using publicly available GWAS data.

Results——Genetic predisposition to higher MCP-1 levels was associated with higher risk of 

any stroke (OR per 1-SD increase: 1.06, 95% CI: 1.02–1.09, p=0.0009), any ischemic stroke (OR: 

1.06, 95% CI: 1.02–1.10, p=0.002), large artery stroke (OR: 1.19, 95% CI: 1.09–1.30, p=0.0002) 

and cardioembolic stroke (OR: 1.14, 95% CI: 1.06–1.23, p=0.0004), but not with small vessel 

stroke or intracerebral hemorrhage. The results were stable in sensitivity analyses and remained 

significant after adjustment for cardiovascular risk factors. Analyses in the UK Biobank showed 

similar associations for available phenotypes (any stroke: OR: 1.08, 95% CI: 0.99–1.17, p=0.09; 

any ischemic stroke: OR: 1.07, 95% CI: 0.97–1.18, p=0.17). Genetically determined higher 

MCP-1 levels were further associated with coronary artery disease (OR: 1.04, 95% CI: 1.00–1.08, 

p=0.04) and myocardial infarction (OR: 1.05, 95% CI: 1.01–1.09, p=0.02), but not with atrial 

fibrillation. A meta-analysis of observational studies showed higher circulating MCP-1 levels in 

stroke patients compared to controls.

Conclusions——Genetic predisposition to elevated circulating levels of MCP-1 is associated 

with higher risk of stroke, particularly with large artery stroke and cardioembolic stroke. Whether 

targeting MCP-1 or its receptors can lower stroke incidence requires further study.

Twitter summary:

Mendelian randomization identifies genetic predisposition to high MCP-1 circulating levels as a 

risk factor for stroke

Keywords

MCP-1; CCL2; inflammation; cytokines; atherosclerosis; stroke; Mendelian randomization; 
genetics; human
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INTRODUCTION

Stroke is the leading cause of long-term disability and the second most common cause of 

death world-wide1, 2 with a growing burden on global health.3 Inflammatory mechanisms 

have been implicated in stroke and etiologic stroke subtypes,4–6 and specifically 

demonstrated for large artery atherosclerotic stroke.4, 5 Cytokines and growth factors 

regulate the inflammatory response4 and thus may serve as targets for cardiovascular disease 

prevention.7 Indeed, the CANTOS trial recently demonstrated the potential of targeting 

specific inflammatory cytokines in reducing vascular endpoints.8

Few studies have investigated associations between circulating levels of inflammatory 

cytokines and risk of stroke. Levels of IL-1β and IL-6 were found to be associated with 

incident and recurrent ischemic stroke.4 However, these associations derived from 

observational studies preclude conclusions about causal relationships because of possible 

confounding and reverse causation.9 Also, associations with etiologic stroke subtypes were 

not investigated in depth.4 Hence, the potential causative role of individual cytokines in 

determining stroke risk remains elusive. Developing meaningful strategies for stroke 

prevention will require defining these relationships.10

Mendelian randomization (MR) aims to overcome the limitations of conventional 

epidemiologic studies with respect to confounding and reverse causation. By using genetic 

variants as instrumental variables for a trait, MR enables an investigation of associations 

independent of the conventional biases accompanying observational studies.11 A recent 

genome-wide association study (GWAS) in 8,293 healthy subjects of Finnish ancestry 

identified multiple common genetic variants that influence circulating levels of 41 cytokines 

and growth factors (referred to hereafter as ‘cytokines’ for simplicity),12 thus providing 

comprehensive data on genetic determinants of circulating inflammatory biomarkers.12

Here, by leveraging data from this recent GWAS on cytokines12 and the largest GWAS 

meta-analysis on stroke and stroke subtypes to date,13 we implemented a two-sample MR 

study to: (i) explore the associations between genetic predisposition to higher or lower 

circulating cytokine levels with risk of any stroke; (ii) evaluate specific associations with 

ischemic stroke and its major etiologic subtypes (large artery stroke, cardioembolic stroke, 

and small vessel stroke), as well as with intracerebral hemorrhage; (iii) validate these 

findings in UK Biobank as an independent cohort; (iv) compare the MR associations to 

estimates of association derived from meta-analyses of observational studies and (v) 

examine the association with etiologically related cardiovascular outcomes including 

coronary artery disease (CAD), myocardial infarction (MI), and atrial fibrillation (AF).

METHODS

Access to publicly available data

The analyses for this study were based on publicly available summary statistics from GWAS 

Consortia. The web-links for downloading the data are provided in Supplemental Table 1 

along with descriptive characteristics of the Consortia. The retrieved summary data for the 

current analysis and the code script are available upon reasonable request to the 
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corresponding author. As all analyses have been based on publicly available summary 

statistics and not individual-level data, no ethical approval from an institutional review board 

was required.

Study design and data sources

The overall design of this study is displayed in Figure 1. Supplemental Table 1 summarizes 

our data sources for this MR study. The genetic instruments were taken from publicly 

available summary statistics.12 For each of the 41 cytokines (full list provided in 

Supplemental Table 2) we selected single nucleotide polymorphisms (SNPs) associated with 

its circulating levels at a significance threshold of a false discovery rate (FDR) <5%.14 To 

avoid bias by selection of false positive instruments, we performed additional analyses using 

a genome-wide threshold of significance (p <5×10−8). After extracting the summary 

statistics for significant SNPs, we pruned all SNPs in linkage disequilibrium (LD; r2 <0.1 in 

the European 1000G reference panel) retaining SNPs with the lowest p-value as 

independents instrument. We identified 698 SNPs not in LD to be significantly associated 

with circulating cytokine levels; 615 of them were also available in the MEGASTROKE 

dataset. To avoid use of pleiotropic instruments we excluded 126 SNPs that were associated 

with levels of more than one cytokine15 leaving 489 SNPs as the final instruments. These 

instruments related to the circulating levels of 23 cytokines, whereas for 18 cytokines no 

SNPs associated with their circulating levels at a significance level of FDR <5% could be 

identified.

The primary outcomes for this study were any stroke, any ischemic stroke, etiologic 

ischemic stroke subtypes defined by TOAST criteria (large artery stroke, cardioembolic 

stroke, and small vessel stroke),16 and intracerebral hemorrhage. We extracted estimates for 

the associations of the selected instruments with any stroke, any ischemic stroke and its 

subtypes from the MEGASTROKE multi-ancestry GWAS dataset (67,162 cases; 454,450 

controls).13 Sensitivity analyses restricted to individuals of European ancestry (40,528 cases; 

445,396 controls) were conducted, to minimize ancestral mismatch with the Finnish 

population used for the discovery GWAS on cytokines.12 For intracerebral hemorrhage, we 

extracted data from publicly available summary statistics of a GWAS meta-analysis on 1,545 

cases and 1,481 controls of European ancestry.17

We computed F-statistics to quantify the strength of the selected instruments18 and 

performed power calculations.19 The F-statistic for the 489 instrument SNPs ranged from 17 

to 789 (Supplemental Table 3), well above the threshold of F >10 typically recommended for 

MR analyses.20 Based on the sample size of MEGASTROKE, there was >80% power to 

detect significant associations with any stroke and any ischemic stroke for 18 of 23 

cytokines at an effect size (OR [odds ratio]) of 1.10. Power was lower for the remaining 5 

cytokines and for sub-analyses for ischemic stroke subtypes and intracerebral hemorrhage 

(Supplemental Table 3).

For validation of significant associations in MEGASTROKE, we used the UK Biobank 

dataset as detailed in the Supplemental Methods. We included cases of prevalent and 

incident stroke. Cases with an unconfirmed self-reported diagnosis of stroke were excluded 

from the analysis. The final sample size consisted of 369,419 individuals, including 4,985 
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cases with any stroke and 3,628 cases with any ischemic stroke. No data were available on 

ischemic stroke subtypes.

Cytokines that were significantly associated with stroke were subsequently explored for an 

association with etiologically related vascular outcomes. Publicly available summary 

statistics were extracted from the CARDIoGRAMplusC4D Consortium for CAD and MI 

(60,801 CAD and 43,676 MI cases; 123,504 controls),21 and the AFGen Consortium for AF 

(17,931 cases; 115,142 controls).22

Statistical analysis

After extraction of data and harmonization of the effect alleles across GWASs, we computed 

individual MR estimates and standard errors from the SNP-cytokine and SNP-outcome 

associations using the Wald estimator and the Delta method that weight all estimates based 

on the magnitude of the SNP-cytokine association.23 The MR association between each 

cytokine and stroke was estimated after pooling individual SNP MR estimates using fixed-

effects inverse-variance weighted (IVW) meta-analysis.23 Statistical significance for the MR 

associations with stroke was set at a p-value corrected for multiple comparisons (based on 

number of cytokines) using the Bonferroni method. We further report on results corrected 

for both the number of cytokines and the number of examined phenotypes. A p <0.05 but 

above the Bonferroni-corrected threshold was considered as suggestive for association. The 

IVW MR approach assumes that instruments affect the outcome only through the exposure 

under consideration, and not by some alternative pathway.23 Any violation of this 

assumption would represent horizontal pleiotropy of the instrument and could introduce bias 

to the MR estimate. In the absence of any such horizontal pleiotropy, there would not be any 

expected heterogeneity in the MR estimates obtained from different instruments. As such, 

heterogeneity markers (I2 >25% or Cochran Q-derived p <0.05) from the IVW MR were 

used as indicators of possible horizontal pleiotropy.24

For cytokines showing either significant or suggestive associations or significant 

heterogeneity in the primary IVW MR analysis, we conducted additional sensitivity analyses 

that vary in their underlying assumptions regarding the presence of pleiotropic genetic 

variants that may be associated with the outcome independently of the exposure. 

Particularly, we used MR-Egger regression, which requires that the strengths of the 

instruments are independent of their direct associations with the outcome,25 and the 

weighted median method, which requires that at least half of the information for the MR 

analysis comes from valid instruments.26 We used the intercept obtained from the MR-Egger 

regression as a measure of directional pleiotropy (p <0.05 was considered significant),25 and 

also tested for outlier SNPs using MR-PRESSO.27

To generate MR estimates unaffected by the presence of pleiotropic pathways acting through 

cardiovascular risk factors, we performed regression-based multivariable MR with summary 

genetic association estimates28 that adjusted for the genetic association of instruments with 

circulating lipid levels (LDL cholesterol, HDL cholesterol, triglycerides), type 2 diabetes 

(T2D), and blood pressure measurements (systolic and diastolic blood pressure, 

hypertension). Genetic association estimates for these phenotypes were extracted from the 
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GLGC consortium,29 the DIAGRAM consortium,30 and the UK Biobank GWAS published 

by the Neale lab (https://sites.google.com/broadinstitute.org/ukbbgwasresults), respectively.

Instrument SNPs for cytokines showing significant associations with stroke were mapped to 

the nearest gene using the GRCh37/hg19 reference genome. We used the STRING 

database31 to look for protein-protein interactions between gene products and the cytokines 

and identified interacting subnetworks. As a sensitivity analysis and to gain further insight 

into the biological processes involved in the examined associations, we performed IVW MR 

analysis with SNPs restricted to the specific subnetworks.

The GWAS used to select cytokine instruments included no replication and its estimates of 

association were further adjusted for BMI, besides age and sex.12 As a sensitivity analysis 

for bias that may be introduced by this BMI adjustment,32 we also calculated an unweighted 

allele score for any cytokines demonstrating a significant association in our main IVW MR 

analysis.33 Such an unweighted allele score may offer evidence of a causal effect of the 

exposure on the outcome without suffering from bias in the genetic association estimates for 

the exposure, although this is at the cost of not being able to estimate the magnitude of any 

such effect.33 Statistical was analyses were conducted in Stata 13.1 (StataCorp).

Meta-analysis of observational studies

For the cytokines that showed significant associations with stroke in MR, we performed a 

meta-analysis of observational studies. We searched Medline until December 10, 2017 

(search strategy is available in the Supplemental Methods), for case-control studies 

comparing the circulating cytokine levels between stroke patients and controls, and cohort 

studies exploring the association of baseline levels with incident or recurrent stroke. We 

extracted relevant data and applied random-effects meta-analyses for Hazard ratios (cohort 

studies) or standardized mean differences (case-control studies). We evaluated heterogeneity 

with the I2 and the Cochran Q.

RESULTS

Genetically determined circulating levels of cytokines and risk of stroke

The primary results of the MR analyses for the 23 cytokines are presented in Figure 2. 

Following Bonferroni correction for testing multiple cytokines (p <0.05/23=2.2×10−3), the 

only cytokine showing statistically significant associations with stroke was the CC 

chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). As depicted in Figure 3A 

and Supplemental Figure 1, genetically determined higher circulating MCP-1 levels (1-SD 

increase) were associated with 6% higher odds for both any stroke (OR: 1.06, 95%CI: 

1.021.09, p=9×10−4; 523,047 individuals; 66,856 cases) and any ischemic stroke (OR: 1.06, 

95%CI: 1.02–1.10, p=1.8×10−3; 511,551 individuals; 60,341 cases) in MR analyses. 

Corresponding analyses for ischemic stroke subtypes revealed significant associations for 

large artery stroke (OR: 1.19, 95%CI: 1.09–1.30, p=1.7×10−4; 245,201 individuals; 6,688 

cases) and cardioembolic stroke (OR: 1.14, 95%CI: 1.06–1.23, p=3.5×10−4; 361,858 

individuals; 9,006 cases), but not for small vessel stroke (OR: 1.03, 95%CI: 0.95–1.11, 

p=0.50; 298,777 individuals; 11,710 cases). In addition, we found no significant association 
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of genetically determined MCP-1 levels with intracerebral hemorrhage (OR: 1.24, 95%CI: 

0.94–1.64, p=0.13), although this might be related to the lower sample size (3,026 

individuals; 1,545 cases). Importantly, the results for large artery stroke and cardioembolic 

stroke remained significant when further correcting for both the number of examined 

cytokines and the number of examined phenotypes (p <0.05/138=3.6×10−4; Figure 2). Sub-

analyses restricted to lobar (OR: 1.25, 95%CI: 0.88–1.79, p=0.22; 2,145 individuals; 664 

cases), and nonlobar intracerebral hemorrhage (OR: 1.03, 95%CI: 0.72–1.49, p=0.16; 2,362 

individuals; 881 cases) also showed no significant associations with genetically determined 

MCP-1 levels. The individual SNPs associated with MCP-1 levels explained 14.7% of the 

variance of MCP-1 levels (Supplemental Table 3) and are presented in Supplemental Table 

4.

There was no evidence for heterogeneity in any of the MCP-1 associations as measured by 

I2 and Cochran Q (Figure 3A) and no outlier SNPs were detected with the MR-PRESSO 

method. Also, there was no indication for directional pleiotropy effects as assessed by the 

MR-Egger intercept (any stroke, p=0.41; any ischemic stroke, p=0.39; large artery stroke, 

p=0.98; cardioembolic stroke, p=0.67; small vessel stroke, p=0.70; intracerebral 

hemorrhage, p=0.94). The weighted median estimator and the MR-Egger regression analysis 

provided estimates of the same magnitude as the fixed-effects IVW meta-analysis for large 

artery stroke (OR: 1.22, 95%CI: 1.07–1.40, p=2×10−3 and OR: 1.19, 95%CI: 0.93–1.53, 

p=0.13, respectively) and cardioembolic stroke (OR: 1.13, 95%CI: 1.01–1.27, p=0.04 and 

OR: 1.21, 95%CI: 0.96–1.53, p=0.09, respectively, Figure 3B); although with wider 

confidence intervals as would be expected given the lower statistical power of these 

approaches.25, 26 Use of an unweighted allele score for the MCP-1 instrument SNPs also 

showed statistically significant associations with risk of large artery (p=1.5×10−4) and 

cardioembolic stroke (p=2.8×10−4). The significant association between MCP-1 and 

outcomes was retained both when restricting the analysis to individuals of European 

ancestry (Supplemental Figure 2), and when applying the more conservative threshold of p 
<5×10−8 for instrument selection (Supplemental Figure 3).

To explore whether the MR association between genetically determined MCP-1 levels and 

stroke was attributable through pleiotropic pathways relating to cardiovascular risk factors, 

we conducted multivariable MR analysis adjusting for circulating lipid levels, T2D, and 

blood pressure. The results remained stable regardless of the model (unadjusted, single or 

fully-adjusted model), thus supporting an independent association between MCP-1 levels 

and stroke and stroke subtypes (Table 1).

None of the genetic instruments for MCP-1 was within or close to the MCP1 gene. 

Assessing genes closest to the instruments for MCP-1 we noted that several of them encoded 

proteins that show a biological relationship with MCP-1, e.g. CCR2 the main receptor for 

MCP1 (Supplemental Table 4). To minimize the risk of using nonspecific instruments that 

might exert pleiotropic effects we performed an additional sensitivity analysis focusing on 

instruments in the vicinity of these genes. Using the STRING database, we found the 

chemokine receptors CCR2, CCR1, CCR3, and CCR9, the chemokine binding protein 

CCBP2, and the receptor of the complement C5a (C5aR1) to integrate into a subnetwork of 

established interactions with MCP-1 (Supplemental Figure 4A). Restricting the MR analysis 
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to the respective SNPs, resulted in significant estimates of association for large artery (OR 

per 1-SD increase in MCP-1 levels: 1.25, 95%CI: 1.08–1.45, p=2×10−3) and cardioembolic 

stroke (OR: 1.21, 95%CI: 1.07–1.37, p=3×10−3), as well as intracerebral hemorrhage (OR: 

2.19, 95%CI: 1.30–3.69, p=3×10−3) (Supplemental Figure 4B).

Several other cytokines not reaching the Bonferroni-corrected threshold showed suggestive 

(p <0.05) associations with risk of stroke in MR analyses: genetic predisposition to higher 

levels of eotaxin, IP-10, MIG, PDGF-bb, and VEGF were associated with an higher risk of 

stroke whereas predisposition to higher levels of SCF and SCGF-b were associated with 

lower risk of stroke (Figure 2).

Genetically determined circulating levels of MCP-1 and risk of stroke in UK Biobank

We next explored the MR association between genetically determined MCP-1 levels and risk 

of any stroke and risk of any ischemic stroke in the independent UK Biobank sample and 

meta-analyzed the MEGASTROKE and UK Biobank data (Figure 4A and Supplemental 

Figure 5). Estimates of association in UK Biobank were similar to MEGASTROKE for any 

stroke (OR per 1-SD increase: 1.08, 95%CI: 0.99–1.17, p=0.09; 369,419 individuals, 4,985 

cases) and any ischemic stroke (OR: 1.07, 95%CI: 0.97–1.18, p=0.17; 369,419, 3,628 

cases), but did not reach statistical significance. Genetically elevated circulating MCP-1 

levels were significantly associated with both any stroke (OR: 1.06, 95%CI: 1.03–1.09, 

p=2×10−4) and any ischemic stroke (OR: 1.06, 95%CI: 1.03–1.10, p=7×10−4) in the meta-

analysis of MEGASTROKE and UK Biobank

Circulating levels of MCP-1 and risk of stroke: meta-analysis of observational studies

Next, we compared the MR estimates with those derived from a meta-analysis of 

observational studies. Our search yielded 17 case-control studies of ischemic stroke patients 

and controls, two cohort studies on patients with a history of stroke or cardiovascular disease 

exploring the risk of recurrent ischemic stroke, and one case-cohort study of incident 

ischemic stroke in a community population (Supplemental Tables 5 and 6 and Supplemental 

Figure 6). Patients with any ischemic stroke were found to have significantly higher MCP-1 

levels than controls in the case-control studies (Hedges’ g: 0.66, 95%CI: 0.18–1.15 

[corresponding to a medium to strong effect size34]; 1137 cases, 717 controls; heterogeneity: 

I2=89%, p<0.001; Figure 4B and Supplemental Figure 7A). Studies on recurrent stroke 

(2,642 individuals, 605 events) yielded a HR of 1.11 (95%CI: 0.92–1.33) for 1 SD increase 

in MCP-1 levels (heterogeneity: I2=32%, p=0.23; Figure 4B and Supplemental Figure 7B), 

whereas the single study examining incident ischemic stroke (95 cases, 190 controls) 

reported a HR of 0.99 (95%CI: 0.68–1.45).

Genetically determined circulating levels of MCP-1 and etiologically related vascular 
outcomes

Figure 5 depicts the MR association between genetically determined MCP-1 levels and risk 

of CAD, MI and AF. Genetic predisposition to higher MCP-1 levels was associated with 

CAD (OR per 1-SD increase: 1.04, 95%CI: 1.00–1.08, p=0.04; 184,305 individuals, 60,801 

cases) and MI (OR: 1.05, 95%CI: 1.01–1.09, p=0.02; 167,180 individuals, 43,676 cases). 

Given the association of MCP-1 with cardioembolic stroke, we further explored the 
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relationship between genetically determined MCP-1 levels and risk of AF in MR analysis, 

but found no association (OR: 0.96, 95%CI: 0.91–1.01, p=0.09).

DISCUSSION

Exploring 41 cytokines in a two-sample MR approach involving the largest GWAS datasets 

available, we found that genetic predisposition to higher levels of MCP-1/CCL2 is 

associated with higher risk of any stroke, any ischemic stroke, large artery stroke, and 

cardioembolic stroke. The results were stable in alternative MR methods and sensitivity 

analyses and remained significant after adjustment for cardiovascular risk factors. Moreover, 

effect sizes for any stroke and any ischemic stroke were similar in the UK Biobank. We 

further found associations between genetic predisposition to higher MCP-1 levels and higher 

risk of CAD and MI as etiologically related outcomes. Collectively, our findings suggest that 

lifelong elevated circulating MCP-1 levels increase risk of stroke.

The directionality of the MR association between genetically determined levels of MCP-1 

and risk of large artery stroke is consistent with experimental data showing a key role for 

this chemokine in atherogenesis and atheroprogression. Acting mainly through its receptor 

CCR2, MCP-1 is the prototypical CC family chemokine that is upregulated by chronic 

inflammatory conditions and attracts monocytes to the subendothelial space of the 

atherogenic arterial wall.35 Mice lacking MCP-136 or CCR237 are less susceptible to 

atherosclerosis and anti-MCP-1 gene therapy,38 MCP-1 competitors,39 and CCR2 

antagonists40 reduce plaque size and inhibit plaque progression and destabilization in 

experimental atherosclerosis. Conversely, overexpression of MCP-1 leads to inflammation, 

accumulation of lipids, and smooth muscle cell proliferation in atherosclerotic plaques.41

We further found an MR association between genetic predisposition to higher MCP-1 levels 

and risk of cardioembolic stroke. Genetic predisposition to higher MCP-1 levels is 

associated with higher risk of coronary artery disease and myocardial infarction, which 

could promote the formation of left ventricular thrombus from myocardial damage thus 

resulting in cardioembolic stroke. Furthermore, MCP-1 has been reported to promote 

myocardial fibrosis,42 an established risk factor for AF.43 However, we found no association 

between the genetic instruments for MCP-1 and AF risk. Other investigators have found an 

association between circulating MCP-1 levels and the presence of atrial thrombi in patients 

with AF.44 Hence, it might be that MCP-1 increases the risk of cardioembolic stroke by 

promoting thrombus formation in patients with established AF. Alternative explanations for 

the association between circulating MCP-1 levels and cardioembolic stroke might include 

less frequent causes of cardioembolism such as valvular disease and misclassification of 

patients with multiple competing stroke etiologies including atherosclerosis.

In contrast, our analysis provides no evidence for an association of genetically determined 

MCP-1 levels with small vessel stroke even though the sample size was larger than for other 

stroke subtypes. In fact, we found none of the cytokines to be associated with small vessel 

stroke (all p>0.05, Figure 2). Overall, these observations agree with the notion that 

inflammatory processes are less important in small vessel disease than in large artery 

atherosclerosis although this has so far not been systematically examined.
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The lack of a signal with intracerebral hemorrhage, and particularly deep intracerebral 

hemorrhage, which like small vessel stroke is attributed to small vessel disease,17 is in line 

with this result. However, this analysis was based on a rather small sample size. Also, 

following restriction of the analysis to SNPs in the vicinity of genes interacting with MCP-1, 

we identified a significant association between genetically determined MCP-1 levels and 

intracerebral hemorrhage. This difference in results might relate to exclusion of nonspecific 

instruments in the sensitivity analyses and should be explored further in larger samples.

Our meta-analysis of case-control studies revealed higher circulating MCP-1 levels in 

patients with ischemic stroke compared to healthy controls. Our systematic search identified 

only three prospective cohort studies, one on incident45 and two on recurrent stroke events,
46, 47 none of which showed significant results. However, these studies had small sample 

sizes and a low number of events. Also, ischemic stroke subtypes were not considered, thus 

precluding meaningful comparisons with our MR results. Interestingly, observational cohort 

studies on CAD found higher MCP-1 levels to be associated with higher risk of incident48 

and recurrent49 events consistent with the observed association with atherosclerotic stroke. 

Serial measurements of MCP-1 in large population-based cohorts with data on ischemic 

stroke subtypes would offer further insights into the relationship between MCP-1 and risk of 

stroke.

Targeting specific inflammatory cytokines might reduce vascular risk. The recent 

multicenter CANTOS trial showed that canakinumab, a monoclonal antibody against IL-1β, 

decreases the rate of recurrent cardiovascular events, including nonfatal myocardial 

infarction, nonfatal stroke and cardiovascular mortality, among patients with MI and 

elevated circulating CRP levels.8 Unfortunately, the original cytokine GWAS did not identify 

any genetic instruments for IL-1β circulating levels12 thus precluding a comparison of the 

MR results with the results of the CANTOS trial.8 The MCP-1/CCR2 pathway was targeted 

in a small phase II clinical trial in patients with risk factors for atherosclerosis and elevated 

circulating CRP levels. MLN1202, a humanized monoclonal antibody against CCR2 

reduced CRP levels after 4 and 12 weeks.50 However, effects on clinical endpoints were not 

assessed50 and would need to be determined in a larger trial.

This study has several methodological strengths. We used the most recent and 

comprehensive dataset for cytokine levels and the largest available GWAS dataset for stroke 

and stroke subtypes. Results were confirmed through sensitivity analyses for pleiotropy 

including alternative MR methods, in sub-analyses on a biologically plausible protein-

protein interaction network, and in analyses on etiologically related outcomes (CAD and 

MI).

Our study also has limitations. First, none of the SNPs used as instruments for MCP-1 were 

located in the vicinity of the MCP1 gene thus precluding analyses restricted to SNPs within 

this locus. Consequently, while we found no statistical evidence for pleiotropy, we cannot 

preclude nonspecific effects of the MCP-1 trans-acting instruments. Second, our instrument 

selection was based on a single discovery GWAS that adjusted for BMI. While the 

association remained consistent when using an unweighted allele score, we cannot exclude 

that the BMI adjustment led to collider bias during instrument selection. Third, we could not 
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obtain reliable genetic instruments for 18 cytokines and several analyses for ischemic stroke 

subtypes were underpowered. Thus, we might have missed associations for several cytokines 

that have previously been implicated in vascular disease such as IL-1β, TNF-α and IL-6. 

Targeted studies incorporating further GWAS data on individual cytokines might reveal 

additional associations not captured by our approach. Fourth, genetic instruments were 

selected using an FDR-based approach, which might have weakened the instruments. 

However, the F-statistics were high and the results were in line with those derived when 

selecting instruments based on the genome-wide threshold (p <5×10−8). Finally, the UK 

Biobank analysis was rather underpowered and did not include stroke subtypes. Yet, the 

consistency of both the direction and magnitude of the associations between genetically 

determined MCP-1 and risk of any stroke and any ischemic stroke supports our results.

In conclusion, this study demonstrates that lifelong elevated circulating MCP-1 levels are 

associated with higher risk of stroke and particularly with the large artery and the 

cardioembolic subtypes. Future studies should explore in more depth whether targeting 

MCP-1 or its downstream effectors could be a meaningful strategy to reduce stroke risk.
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CLINICAL PERSPECTIVE

What is new?

• Genetic predisposition to higher circulating levels of monocyte 

chemoattractant protein-1 (MCP-1/CCL2) was associated with higher risk of 

stroke

• Associations were also found for etiologic stroke subtypes, specifically large 

artery stroke and cardioembolic stroke

• Genetically determined levels of MCP-1 also associated with higher risk of 

the related phenotypes of coronary artery disease and myocardial infarction

What are the clinical implications?

• Additional work is needed to determine whether targeting MCP-1 or its 

downstream effectors is a meaningful strategy for lowering stroke risk
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Figure 1. Schematic representation of the study design.
Methods used to test for associations and for violations of the Mendelian randomization 

assumptions (dashed lines). AF, atrial fibrillation; CAD, coronary artery disease; DBP, 

diastolic blood pressure; HDL, high-density lipoprotein cholesterol; HTN, hypertension; 

IVW, inverse-variance weighted; LDL, low-density lipoprotein cholesterol; MI, myocardial 

infarction; MR: Mendelian randomization; MR-PRESSO: Mendelian Randomization 

Pleiotropy RESidual Sum and Outlier; SBP, systolic blood pressure; SNP, Single-nucleotide 

polymorphism; T2D. type 2 diabetes mellitus; TG, triglycerides.
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Figure 2. Mendelian randomization associations of circulating cytokine and growth factor levels 
with stroke and stroke subtypes.
Shown are the results derived from the fixed-effects inverse-variance weighted (IVW) meta-

analysis.

* Significant heterogeneity (I2>25% or Cochran Q-derived p <0.05)

† Bonferroni-corrected threshold for number of tested cytokines

‡ Bonferroni-corrected threshold for number of cytokines and number of phenotypes
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Figure 3. Mendelian randomization analysis for circulating MCP-1 levels and risk of stroke.
(A) MR-derived associations between genetically determined circulating MCP-1 levels (1-

SD increase) and risk of any stroke and stroke subtypes. (B) Associations between 

genetically determined circulating MCP-1 levels and risk of large artery (left) and 

cardioembolic (right) stroke based on different MR methods. I2 refers to heterogeneity in the 

Mendelian randomization analysis (inverse-variance weighted method). CI, confidence 

intervals; IVW, inverse-variance weighted; OR, Odds Ratio; SNP, single nucleotide 

polymorphism.
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Figure 4. Associations between circulating MCP-1 levels and risk of stroke in Mendelian 
randomization and in observational studies.
(A) MR-derived associations between genetically determined circulating MCP-1 levels (1-

SD increase) and risk of any stroke and any ischemic stroke in MEGASTROKE, in UK 

Biobank, and a meta-analysis of both samples. (B) Meta-analysis-derived associations 

between circulating MCP-1 levels (1-SD increase) and risk of ischemic stroke in case-

control and cohort studies. k refers to number of included studies. I2 in Figure 4A refers to 

heterogeneity in the Mendelian randomization analysis (inverse-variance weighted method) 

and in Figure 4B in the random-effects meta-analyses of observational studies.

CI, confidence interval; HR, hazard ratio; OR, odds ratio; SMD, standardized mean 

difference; SNP, single nucleotide polymorphism.
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Figure 5. Mendelian randomization analysis for genetically determined circulating MCP-1 levels 
and etiologically related vascular outcomes.
MR-derived associations between genetically determined circulating MCP-1 levels (1-SD 

increase) and risk of coronary artery disease, myocardial infarction, and atrial fibrillation. I2 

refers to heterogeneity in the Mendelian randomization analysis (inverse-variance weighted 

method).
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