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Abstract

Background—Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) 

data are far from standardized and require interfacing with third-party software. Here, we present 

Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless 

integration of pre-processing, linear-combination modelling, quantification, and data visualization.

New Method—Osprey loads multiple common MRS data formats, performs phased-array coil 

combination, frequency-and phase-correction of individual transients, signal averaging and Fourier 

transformation. Linear combination modelling of the processed spectrum is carried out using 

simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, 

which is segmented for tissue correction and quantification is performed based upon modelling 

parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey 

GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES 

datasets acquired in healthy subjects.

Results—Osprey successfully loads, processes, models, and quantifies MRS data acquired with a 

variety of conventional and spectral editing techniques.
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Comparison with Existing Method(s)—Osprey is the first MRS software to combine 

uniform pre-processing, linear-combination modelling, tissue correction and quantification into a 

coherent ecosystem. Compared to existing compiled, often closed-source modelling software, 

Osprey’s open-source code philosophy allows researchers to integrate state-of-the-art data 

processing and modelling routines, and potentially converge towards standardization of analysis.

Conclusions—Osprey combines robust, peer-reviewed data processing methods into a modular 

workflow that is easily augmented by community developers, allowing the rapid implementation 

of new methods.

Keywords

Magnetic resonance spectroscopy; pre-processing; linear-combination modelling; quantification; 
tissue correction

1. Introduction

Magnetic resonance spectroscopy (MRS) is the only methodology that can determine the 

levels of neurochemicals in living tissue non-invasively, providing a unique window on the 

neurobiology of the human brain in health and pathology. Over the course of several 

decades, the field has developed a wide range of data acquisition, processing, and 

quantitative analysis methods (Harris et al., 2017; Landheer et al., 2019; Öz et al., 2020; 

Wilson et al., 2019).

In general, state-of-the-art analysis of MRS data can be divided into three fundamental steps:

1. Pre-processing of raw data that has been exported directly from the scanner or 

obtained from an institutional archiving system (PACS). Currently, no convention 

for a standardized MRS data format exists. Instead, each major vendor has 

developed proprietary file formats that store data in varying degrees of ‘rawness’ 

and limited information on acquisition parameters. Some of the most widely 

used file formats (DICOM MRS, Philips SDAT/SPAR, Siemens RDA, GE P-file) 

contain data that have been pre-processed to varying extents in the vendor-native 

online reconstruction environment. On-scanner processing relies on proprietary 

vendor-specific reconstruction code and is therefore neither standardized nor 

publicly documented.

Data processing can include basic low-level operations on the raw time-domain 

data (down-sampling, zero-filling, filtering, truncating, Fourier transformation), 

higher-level operations to improve critical signal properties like linewidth and 

signal-to-noise ratio (weighted receiver-coil combination, alignment of 

individual averages), and operations to address acquisition-related artefacts 

(removal of residual water signal, eddy-current correction).

2. Modelling of the processed spectral data is performed to derive quantitative 

parameters that allow conclusions to be drawn about the levels of individual 

metabolites. The complexity of this process ranges from simple peak integration, 

through single-resonance modelling, to linear-combination algorithms to 
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decompose spectra into their constituent signals. While simple models are easy 

to implement, the full information content of an MRS spectrum can only be 

unlocked by modelling it fully. The most widely used linear-combination 

algorithms are exclusively implemented in third-party compiled software, either 

open-source (e.g. Tarquin (Wilson et al., 2011), Vespa (Soher et al., 2011)), or 

closed-source academic (e.g. the AQSES (Poullet et al., 2007) algorithm in 

jMRUI (Stefan et al., 2009)) or commercial (LCModel (Provencher, 1993)).

Despite their widespread use, all common fitting software packages are 

developed and maintained by small groups of researchers (or even a single 

individual), who often critically rely on third-party funding to keep the project 

alive.

3. Quantification is here used to describe the process of converting quantitative 

modelling parameters into biologically meaningful estimates of metabolite 

levels. Depending on the complexity of the quantification method, this may 

entail simply taking ratios of peak areas, or include more sophisticated 

calculations such as correcting for the fraction of cerebrospinal fluid (CSF), 

tissue-specific relaxation correction (Gasparovic et al., 2006), or accounting for 

assumed differences of metabolite abundance between tissue classes (Harris et 

al., 2015).

The core task of modelling is usually performed by third-party software, which typically has 

limited capability of pre-processing and quantification. This forces researchers to create their 

own local pipeline, starting from a rich diversity of scanner-specific export formats, 

choosing an appropriate set of processing steps, and finally exporting the processed data into 

a format that is accepted by the modelling software. Many modelling software solutions 

include the calculation of signal amplitude ratios to a reference (creatine, N-acetyl aspartate, 

water), but at the time of writing, none of them allow direct incorporation of tissue-specific 

segmentation or metabolite-specific relaxation information. Therefore, researchers must, 

again, develop local custom code to import the modelling results, apply corrections, and 

calculate final quantitative measures. In contrast to popular imaging modalities like 

functional MRI, which have established publicly available analysis frameworks and software 

environments open to community contributions, a widely used standardized pipeline is 

currently not available for MRS data analysis.

We have identified several issues with these practices. In short, the current best practices are 

not only inefficient, but severely hinder the more widespread use of MRS as a research tool, 

and curb its potential as a clinical one:

a. Waste of resources

If every lab resorts to writing custom code to carry out the same task, a lot of time, energy, 

and funding is wasted into duplicate efforts.

b. Methodological heterogeneity

The lack of a single analysis pipeline to include pre-processing, modelling and 

quantification forces all labs to rely on local custom code. Additionally, many labs 
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conducting advanced methodological MRS research rely on their own, long-established 

pipelines (including either local or third-party modelling) and keep methodological 

developments local. This is detrimental to standardization, comparability, and transparency 

of data analysis.

c. High-entry threshold

Developing custom analysis code represents an often insurmountable effort for new research 

groups for whom MRS is a potential tool, but not a primary focus, and who might not have 

the background knowledge, resources, or technical expertise to create a processing pipeline 

from scratch.

d. Inertia and slow evolution

New methodological developments take longer than necessary to gain acceptance and 

become widely adopted, because newcomers struggle to implement them if the code is not 

made publicly available right away. Integrating new developments into compiled third-party 

software requires larger programming efforts, with low incentives for the developer to 

devote resources to this task.

e. Dependence and vulnerability

To evolve and be maintained, third-party software is critically dependent on its developers. 

They may transition to different positions (or leave academia altogether), run out of funding, 

lack time or staff support, or simply have no incentive to actively develop the software. This 

is particularly true for closed-source or commercial software, or tools that are maintained by 

single individuals.

Here we describe a new open-source MATLAB-based toolbox “Osprey”. Osprey is an all-in-

one software package that combines all steps of state-of-the-art pre-processing, linear-

combination modelling, quantification, and visualization of MRS data. The Osprey 

framework is designed as a modular, fully open-source environment to flexibly adopt future 

methodological developments, accelerate their adaptation, and foster standardization. The 

entire source code of Osprey is available in the public domain, inviting improvements, bug 

fixes, and addition of state-of-the-art technical developments from the community.

2. Methods

The Osprey workflow is summarized in Fig. 1. Osprey consists of seven separate modules – 

Job, Load, Proc, Fit, Coreg, Seg, and Quant, all of which are sequentially called by simple 

MATLAB commands. Alternatively, users can conduct the entire workflow in a graphical 

user interface designed to minimize the amount of user input. The Osprey code builds upon 

functions and the organizational structure of FID-A (Simpson et al., 2017), an open-source 

collection of MATLAB scripts for simulating, loading, and processing MRS data. At the 

time of writing, the various signal processing and modeling functions require the 

Optimization Toolbox (to model the spectra) and the Statistics and Machine Learning 

Toolbox (for statistical analysis). To use the Osprey GUI, the GUI Layout Toolbox 

(Sampson, 2019) and Widgets Toolbox (Jackey, 2019) need to be installed from the 
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MATLAB File Exchange. Osprey has been tested using MATLAB versions 2017a and 

newer.

Additional details and MATLAB commands are summarized in section S1 of the 

Supplementary Material.

2.1 Job

The only user interaction that is required to specify and conduct an Osprey data analysis is 

to define a Job in a job file. The job system allows easy batch processing of multiple 

datasets. The job file is a text file containing the paths to the MRS data files and structural 

image files to be processed, and parameters to control data processing and linear-

combination modelling. In addition, the user must specify an output folder that Osprey will 

use to save exported data, coregistration and segmentation images, and quantitative result 

tables.

Osprey distinguishes between three classes of MRS data files:

• Metabolite (water-suppressed) data. These are a mandatory input.

• Lineshape reference data. These are an optional input, acquired with the same 

sequence as the metabolite data, but without water suppression, and used to 

perform eddy-current correction (Klose, 1990) of the metabolite data. If only 

lineshape reference data are provided, this signal is also used to calculate water-

scaled concentration estimates.

• Short-TE reference data. These are another optional input. If the user provides 

short-TE reference data, they will be used to derive water-scaled concentration 

estimates (and lineshape data are only used for eddy-current correction). Using 

short-TE water as the concentration reference standard reduces T2-weighting of 

the water reference signal (and associated correction errors) compared to long-

TE water data.

In addition to the paths to the raw data files, the job file must specify the type of sequence 

(with or without spectral editing, such as MEGA (Mescher et al., 1998; Rothman et al., 

1993), HERMES (Chan et al., 2016; Saleh et al., 2016), or HERCULES (Oeltzschner et al., 

2019a)), the target molecules of spectral editing experiments, and options for the fitting 

process, which are explained in Section 2.4.

2.2 Load

Osprey supports most common raw and processed file formats from major MRI vendors. 

This includes Philips (SDAT/SPAR, DATA/LIST), Siemens (RDA, TWIX) and GE (P-file) 

data. Additionally, single-file or multi-file DICOM datasets can be loaded. At the time of 

writing, single-voxel conventional and various J-difference-edited data from many sequence 

implementations are supported.

Upon calling the Load command, Osprey determines the file format, loads the raw 

spectroscopic data (FIDs) as well as all header information necessary for subsequent 

modules. The Load module also performs receiver-coil combination weighted with the ratio 
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of the signal to the square of the noise. If lineshape reference or short-TE water data are 

provided, they are used instead of the metabolite data to determine the phasing and 

weighting parameters.

2.3 Proc

The Proc (Process) module performs all necessary steps to translate the raw, un-aligned, un-

averaged data into spectra that are ready to be modeled.

The pre-processing pipeline includes the following steps: 1) alignment of individual 

averages using spectral registration in the time domain (Near et al., 2015); 2) averaging; 3) 

Fourier transformation; 4) automatic determination of the correct polarity of the spectrum 

since some water-suppression schemes can result in negative residual water peaks; 5) 

residual water removal by singular-value decomposition of the signal (Barkhuijsen et al., 

1987) and subtracting components between 4.6 and 4.8 ppm; 6) linear baseline correction 

(based on the mean of 100 data points at the far edges of the frequency domain spectrum; 7) 

correct frequency referencing based on a single-Lorentzian fit to the 2.01 ppm NAA singlet. 

If lineshape reference data are available, the Klose method (Klose, 1990) is applied to 

correct the metabolite spectra for eddy-currents.

For J-difference-edited experiments (MEGA, HERMES, HERCULES), sub-spectra are 

aligned by minimizing the frequency-domain difference signal within a particular frequency 

range containing identical signal in pairs of sub-spectra. As an example, the edit-ON and 

edit-OFF spectra in GABA-edited MEGA data usually share a considerable residual water 

signal that is used for alignment. In contrast, the residual water signal is suppressed in the 

edit-ON spectra of GSH-edited MEGA data due to the editing pulse being applied at 4.56 

ppm. In this case, the 2.01 ppm NAA signal is used for alignment. After sub-spectrum 

alignment, difference and sum spectra are calculated and stored.

In addition to performing the automated processing, Osprey determines several quality-

control parameters. Linewidth is determined as the full-width half-maximum of a single-

Lorentzian fit to the NAA peak (between 1.8 and 2.2 ppm). SNR is determined as the ratio 

between the amplitude of the NAA peak and the standard deviation of the detrended noise 

between −2 and 0 ppm. The frequency drift over the course of the experiment is determined 

based on the creatine signal in every single average (creatine and choline signals that 

nominally appear at 3.02 and 3.20 ppm are modeled by two Lorentzians).

The Proc module can optionally export the fully processed metabolite and water reference 

spectra to output subfolders, in formats readable by external third-party fitting software 

(LCModel, Tarquin, jMRUI, Vespa). This feature allows users to perform traditional data 

modelling, with the benefit of improved SNR and linewidth resulting from optimized coil-

combination and alignment of individual averages – features that the established software 

solutions currently do not offer.

2.4 Fit

The Fit module models the processed spectra passed from the Proc module with a linear 

combination of basis functions. The default Osprey model is designed to mimic several key 
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features of the algorithms implemented in LCModel and Tarquin. Several fit options are 

specified in the job file, e.g. the frequency range over which the spectrum is to be modelled, 

and the baseline flexibility (as controlled by the minimum ppm-spacing between 

neighboring knots of the cubic baseline spline).

The Fit module requires a sequence-specific basis set, which is automatically selected by 

Osprey based on the vendor, sequence type, and sequence parameters. Several sequence-

specific basis sets for commonly used implementations of PRESS, MEGA-PRESS, 

HERMES, and HERCULES are included, derived from fast spatially resolved density-

matrix simulations (Zhang et al., 2017) using ideal excitation and shaped refocusing pulses. 

Basis functions for macromolecule and lipid functions are added by generating Gauss-

shaped signals with properties summarized in Tables S1 and S2 in section S3 of the 

Supplementary Material.

The Fit module interpolates the basis set to match the resolution (data points per ppm) of the 

processed spectra. All spectra of a single dataset (water-suppressed and water-unsuppressed) 

are then scaled to the basis set to facilitate convergence of the subsequent optimization.

Prior to the full analysis, two preparation steps are carried out. First, for optimal frequency 

referencing, the spectrum is cross-correlated with a sum of unit delta functions at 2.01 ppm, 

3.03 ppm, and 3.21 ppm, representing the major landmark singlets from NAA, Cr, and Cho, 

respectively, and the frequency shift corresponding to the offset of the cross-correlation 

function is applied to the spectrum. Second, to obtain good starting values for the phase and 

linebroadening parameters, a preliminary fit is performed with a reduced basis set only 

including the basis functions of NAA, Cr, PCh, Glu, and ml, and a more flexible baseline 

with a knot spacing of 0.15 ppm. The final phase and linebroadening estimates from this 

preliminary fit are used as starting values for the full fit. Together with the initial referencing 

step, selecting a reasonable starting point for the non-linear parameters helps stabilize the 

optimization problem.

Osprey fits the real part of the frequency-domain spectrum Y(v) using a model similar to the 

one used by the LCModel algorithm. The NM simulated time-domain metabolite basis 

functions mm(t) in the basis set receive the same Gaussian linebroadening γ, and individual 

Lorentzian linebroadenings αm and frequency shifts ωm (m = 1,..., NM) before they are 

Fourier-transformed into the frequency domain:

Mm v; αm, ωm = FFT mm(t)exp −iωmt − αmt − γt2 Equation 1

To account for deviations from a perfect Voigtian lineshape as determined by the 

linebroadening parameters, the frequency-domain basis spectra are then convolved with an 

arbitrary, unregularized lineshape model. This supplementary lineshape model S has a length 

equal to a spectral width of 2.5 times the coarse estimate of the FWHM of the spectrum that 

was estimated during the initial referencing step. S is normalized, so that this convolution 

does not impact the integral of signals, and is initialized as a unit delta function at the central 

point.
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The smooth baseline is constructed as a linear combination of NB normalized, equally 

spaced cubic B-spline basis functions Bj(v) with coefficients βj (j = 1, …, NB), with knots 2 

and (NB — 1) located on the edges of the fit range, and two additional knots outside the 

modeled range. NB is determined from the fit range based upon the minimum knot spacing 

condition that the user specifies in the job file. In contrast to the LCModel algorithm, the 

default Osprey model does not currently include baseline regularization. To prevent an 

unreasonably flexible baseline without using a regularizer, the default Osprey spline knot 

spacing is increased to 0.4 ppm, compared to the default LCModel ‘DKNTMN’ setting of 

0.15 ppm.

The model spectrum Y (v) is constructed from these components as follows:

Y (v) = exp i φ0 + φ1(v) ∑j = 1
NB βjBj + ∑m = 1

NM Am Mm * S . Equation 2

Here, φ0 represents the global zero-order phase correction; φ1(v) the global first-order 

(linear) phase correction; and Am the amplitude of each metabolite/MM/lipid basis function.

To minimize the sum of squares of the difference between the data Y(v) and the model Y (v), 
the Fit module uses an implementation of the popular Levenberg-Marquardt (Levenberg, 

1944; Marquardt, 1963) non-linear least-squares optimization algorithm that allows hard 

constraints to be imposed on the parameters (Dentler, 2015). The amplitude parameters 

applied to the metabolite and baseline spline basis functions occur linearly in the model, and 

are determined at each iteration of the non-linear algorithm with a limited-memory 

algorithm for bound constrained optimization (L-BFGS-B) (Becker, 2015; Byrd et al., 1995; 

Zhu et al., 1997), constraining the metabolite amplitudes to be non-negative (Ai ≥ 0). Default 

hard constraints on non-linear parameters and weak soft constraints on macromolecule and 

lipid amplitudes are imposed to stabilize the solution, and are defined as they are in 

LCModel and Tarquin (Table S3 in section S4 of the Supplementary Material).

Water-unsuppressed data are modelled from a simulated water resonance with the same 

constrained non-linear least-squares algorithm using a simplified model, only including the 

following six hard-constrained modelling parameters: zero-order phase (−2π ≤ φ0 ≤ 2π), 

first order phase (− π
4 ≤ φ1 ≤ π

4 ), Gaussian linebroadening (0 Hz ≤ γ ≤ 5000 Hz), Lorentzian 

linebroadening (0 Hz ≤ α ≤ 50 Hz), frequency shift (−15 Hz < ω < 15 Hz), and amplitude A. 
No baseline is included in the water model.

2.5 Coreg

The Coreg module uses information about size, position and orientation of the MRS voxel in 

scanner-space coordinates to create a binary voxel mask, i.e., a 3D image in which the 

values 1 and 0 represent locations inside or outside the MRS voxel, respectively. The binary 

voxel mask is then transformed to the same coordinate system as the structural image (in 

NlfTI format) that the user provides in the job file. This step ensures that the voxel mask is 

coregistered to the structural image, and reproduces the original voxel placement.
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2.6 Seg

The Seg module invokes the SPM12 segmentation function to segment the structural image 

into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The coregistered 

voxel mask that was created by the Coreg module is then overlaid with the GM, WM, and 

CSF tissue probability maps. The Seg module then calculates fractional tissue volumes fvol 

for GM, WM and CSF according to:

fvol, k =
∑N pk(n)

N , Equation 3

with the tissue probabilities pk (n) for the tissue class k ∈ GM, WM, CSF and the n-th image 

voxel (n ∈ 1, 2, …, N), where N represents the number of image voxels within the MRS 

voxel.

2.7 Quant

The Quant (Quantify) module calculates various quantitative outputs, depending on the 

available modelling parameters that have been determined during the Fit process:

• Ratios of the metabolite signal amplitudes Smet to the total creatine amplitude 

StCr = SCr + SPCr are always determined, regardless of whether water data have 

been provided, according to

[met]tCr = Smet
StCr

Equation 4

These tCr ratios are reported as raw ratios, i.e. no relaxation correction or 

accounting for tissue composition is applied. In difference-edited experiments, 

the Cr resonances are usually subtracted out in the difference spectra. In these 

cases, the tCr reference is determined from the edit-OFF spectrum if the fit 

option ‘Separate’ has been selected, and from the sum spectrum if the fit option 

‘Concatenated’ has been selected.

• When an unsuppressed water signal is provided, Osprey can report water-scaled 

metabolite estimates. If both lineshape reference data (i.e. data with the same TE 

as the water-suppressed data) and additional short-TE water data are available, 

the latter will be used as the water-scaling reference signal. Osprey reports water-

scaled metabolite estimates according to Equation 5, analogous to the LCModel 

water scaling procedure, which does not account for tissue composition and 

assumes pure white matter by default:

[met]H2O = Smet
SH2O

× H2O × concH2O × 1 − e−
TRw
T1w

1 − e−
TRmet
T1met

× e−
TEw
T2w

e−
TEmet
T2met

Equation 5

Here, [H20] is the molal concentration of pure MR-visible water, i.e. 55.5 mol/kg 

of MR-visible water (Gasparovic et al., 2006; Knight-Scott et al., 2003); concH2O

is the relative water density of white matter (0.65); TRW, TRmet, TEW, TEmet are 
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the repetition and echo times of the water-unsuppressed and water-suppressed 

acquisitions; T1w and T2w are averaged relaxation times for tissue water (for 

brain data at 3T, T1w = 1100 ms and T2w= 95 ms (Wansapura et al., 1999)); 

T1met and T2met are the averaged relaxation times of all metabolites and 

generated from a lookup table that can be modified by the user. No tissue 

correction is applied. These water-scaled estimates are calculated even if no 

tissue composition information (from the Seg module) is available.

• When unsuppressed water data and tissue segmentation are available, Osprey 

calculates water-scaled metabolite estimates corrected for the volume fraction of 

CSF in the voxel according to

[met]CSFcorr =
[met]H2O

1 − fvol, CSF
Equation 6

Here, [met]H2O is the water-scaled metabolite estimate obtained in the previous 

step, and fvol,CSF is the fractional tissue volume of CSF as determined by the Seg 
module.

• Finally, Osprey derives fully tissue-and-relaxation-corrected molal concentration 

estimates according to the Gasparovic method (Gasparovic et al., 2006), 

according to

met TissCorr = Smet
SH2O 1 − fCSF

× H2O

×
fGM × RH2O−GM + fW M × RH2O−W M + fCSF × RH2O−CSF

Rmet

Equation 7

Here, fGM, fWM and fCSF are the molal water fractions for GM, WM and CSF, 

which are derived from the volume fractions according to

fk

=
fvol, k × concH2O, k

fvol, GM × concH2O, GM + fvol, W M × concH2O, W M + fvol, CSF × concH2O, CSF
Equation 8

with the relative water densities concH2O, GM = 0.78 H2O , 

concH2O, W M = 0.65 H2O , and concH2O, CSF = 0.97 H2O . Tissue-specific 

relaxation corrections are calculated according to 

RH2O_k = 1 − e−
TRw

T1w−k × e−
TEw

T2w−k  and Rmet = 1 − e−
TRmet
T1met × e−

TEmet
T2met . 

Relaxation times for metabolites and water at 3T field strength were adapted 

from several widely used references (Edden et al., 2012; Mlynarik et al., 2001; 

Puts et al., 2013; Wansapura et al., 1999; Wyss et al., 2018).

For GABA-edited spectra, Osprey calculates an additional ‘alpha correction’ metric (Harris 

et al., 2015) that normalizes for the fact that GABA levels are higher in gray matter than in 

white matter (Jensen et al., 2005).
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Osprey saves all available quantitative results for the entire job as comma-separated value 

(CSV) tables to a subfolder “QuantifyResults” in the output folder. This easily accessible 

format provides a direct interface to external third-party software for subsequent statistical 

analysis and visualization (e.g. R, SPSS).

2.8 GUI

While all Osprey analysis steps can be carried out with simple MATLAB console 

commands, the Osprey GUI serves as the central hub for data visualization and quality 

assessment. Once a job file is loaded, all analysis steps can be triggered with dedicated GUI 

buttons, and the results from each step can be viewed on separate tabs, for each sub-

spectrum from each dataset in the job. The ‘Load’ tab displays the pre-aligned, pre-averaged 

data, while the ‘Process’ tab shows the aligned individual transients, the final averaged 

spectra that are passed on to the Fit module, as well as information about the frequency 

history of the experiment pre- and post-alignment, and the basic quality assessment metrics 

(linewidth and SNR). The ‘Fit’ tab shows the spectrum, the complete fit, residual, baseline, 

and individual basis function contributions. The ‘Coreg/Seg’ tabs visualizes the results of 

voxel coregistration and segmentation, and the ‘Quantify’ tab features tables with all 

available quantitative outcome measures.

The additional ‘Overview’ tab provides useful summary visualizations of batched jobs with 

many datasets. It provides visualization of mean spectra with overlaid ribbon plots of the 

standard deviation; mean fit, residual, and baseline; raincloud plots (Allen et al., 2019; 

Whitaker et al., 2019) of quantitative results for quick assessment of the population 

distributions of metabolite estimates; and interactive display of correlation plots between 

metabolite estimates. If the job file was specified in CSV format and included assignment of 

each dataset to a group (e.g. patients or control subjects), the data in each raincloud and 

correlation plot is separated by the group variable.

2.9 Demonstration

To demonstrate the versatility of the processing and modelling capabilities of Osprey for 

various acquisition techniques, several single-voxel MRS datasets from the Big GABA 

dataset (Mikkelsen et al., 2019, 2017) were loaded, processed, and modelled (see section S5 

of the Supplementary Materials for details on how to obtain the data from the Big GABA 

online repository).

Twelve PRESS datasets acquired on a 3.0T GE scanner (GE Healthcare, Milwaukee, United 

States) were selected. Parameters included: TR/TE = 2000/35 ms; 32 averages; 30 × 30 × 30 

mm3 voxel in midline parietal cortex; 5 kHz bandwidth with 4096 data points. For 

comparison and validation, the PRESS datasets were also modelled with LCModel and 

Tarquin, using default settings, and the same basis functions as for the Osprey analysis. 

Estimates of total NAA (tNAA = NAA + NAAG), total choline (tCho = GPC + PCh), myo-

inositol (mI) and Glx (glutamate + glutamine) were calculated with respect to total creatine 

(tCr = Cr + PCr). Agreement of metabolite estimates across software tools was determined 

based on group comparison and correlation analysis. Metabolite estimates were tested for 

normal distribution using Shapiro-Wilk testing, and for normal distribution of variances 
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using Fligner-Killeen’s test, with a post-hoc pairwise Fligner-Killeen’s test and Bonferroni 

correction for the number of pairwise comparisons. Group means were then compared using 

ANOVA, Kruskal-Wallis rank testing, or Welch’s ANOVA, depending on whether variances 

were normal and different. Finally, post-hoc paired t-tests with equal or non-equal variances 

were performed accordingly. Additionally, Pearson correlation coefficients were determined 

separately for each metabolite and each pair of software tools.

Further, eleven GABA-edited MEGA-PRESS datasets from the Big GABA repository, 

acquired on a 3.0T Philips scanner (Philips Healthcare, Best, The Netherlands), were loaded, 

processed, and modeled. Parameters that differed from the PRESS parameters included: TE 

= 68 ms; 320 averages; 15-ms editing pulses applied at 1.9 ppm (edit-ON) and 7.5 ppm 

(edit-OFF).

Finally, eight GABA/GSH-edited HERMES datasets, acquired on a 3.0T Philips scanner 

(Philips Healthcare, Best, The Netherlands), were loaded, processed, and modelled. 

Parameters that differed from the MEGA-PRESS parameters included: TE = 80 ms; 20-ms 

editing pulses applied in the GABA/GSH HERMES scheme (Saleh et al., 2016).

3. Results

All twelve PRESS datasets were successfully loaded and processed in Osprey, and are 

plotted in Figure 2A. The mean of these processed spectra (and ± one standard deviation 

range) is shown in Figure 2B, along with the mean of the model spectra and the mean 

modelling residual. NAA SNR was 150 ± 24 and NAA linewidth was 7.8 ± 1.2 Hz. The 

results of quantification of these spectra are summarized in the following. tCr ratios of 

tNAA, tCho, mI, and Glx were 1.46 ± 0.07, 0.18 ± 0.01, 0.75 ± 0.07, and 1.38 ± 0.07, 

respectively. Water-scaled estimates of tNAA, tCho, mI and Glx, for example, were 19.40 ± 

1.27 i.u., 2.42 ± 0.22 i.u., 8.88 ± 0.96 i.u., and 18.42 ± 1.34 i.u., respectively.

At group level, tNAA/tCr estimates agree well between the three tools, while Tarquin 

estimates higher tCho/tCr and Glx/tCr, and lower mI/tCr values than LCModel and Osprey 

(Figure 3A). Figure 3B shows cross-tool correlation results across the twelve datasets for the 

four metabolite-to-creatine ratios. Osprey estimates of tNAA/tCr, tCho/tCr and mI/tCr show 

significant positive correlations of moderate strength with LCModel estimates. Likewise, 

tNAA/tCr and mI/tCr estimates from Osprey and Tarquin correlate positively and 

moderately strong. In contrast, LCModel and Tarquin correlations do not reach significance.

GABA-edited MEGA-PRESS datasets were successfully loaded, processed and modelled in 

‘Separate’ mode, as summarized in Figure 4A and B. NAA SNR was 214 ± 32, while the 

NAA linewidth was 5.1 ± 0.6 Hz. GABA levels were quantified as 0.27 ± 0.07 (tCr ratio) 

and 1.67 ± 0.31 i.u. (water-scaled), respectively.

Similarly, the HERMES data are summarized in Figure 5. NAA SNR was 215 ± 24 with a 

NAA linewidth of 5.3 ± 0.5 Hz. GABA and GSH levels were estimated as 0.19 ± 0.04 and 

0.19 ± 0.03 (tCr ratios), and 2.03 ± 0.28 i.u. and 1.94 ± 0.35 i.u. (water-scaled), respectively.
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The figures show individual spectra overlaid (green lines) in panel A, demonstrating 

consistent high-quality data resulting from the Osprey processing pipeline. Panels B display 

mean spectra (black solid lines), the standard deviation of the spectra (gray ribbon plots), 

mean model fits (red) and mean residuals (above the spectra) across all datasets. Panels C 

show representative linear-combination modelling. The fits approximate the data well with a 

relatively smooth baseline.

The structure of the GUI is shown in Figure 6. The workflow buttons corresponding to the 

different Osprey modules are in the left column, as well as a list of loaded datasets from 

which the user selects the dataset to be displayed. The tabs above the data display panels are 

used to switch between the analysis stages, and the tabs below correspond to different sub-

spectra (here A, B, C, D, sum and difference spectra for HERMES data, along with water 

reference data).

Figure 7 shows the GUI data display panels corresponding to the various stages of analysis 

of a single HERMES dataset, exemplifying the visualization of spectral-editing sub-

experiments.

4. Discussion

The magnetic resonance spectrum of the human brain is rich with biochemical information, 

but extracting that information is a challenging task due to the overlapped nature of the 

metabolite spectra and the broad in-vivo linewidth. Quantitative MRS measurement 

outcomes are known to vary considerably depending on field strength, scanner vendor, 

localization technique, acquisition parameters, and choice of data processing and 

quantification practices. Recently, the MRS community has led efforts to converge towards 

standardized data acquisition (Deelchand et al., 2019a; Öz et al., 2020; Saleh et al., 2019; 

Wilson et al., 2019). In contrast, consensus on the processing and analysis of data has been 

slower to emerge.

The most commonly used strategy for quantitative analysis of MR spectra is linear-

combination modelling. As a result of the methodological diversity and lack of standardized 

processing pipelines, most researchers have developed their own code to prepare their data 

for third-party quantification software. This practice is problematic for a number of reasons: 

a) methodological heterogeneity and opacity diminish comparability and reproducibility of 

quantitative MRS studies; b) benchmarking and subsequent adaptation of methodological 

progress is considerably slowed down; c) researchers new to the field experience a high-

level entry threshold; d) strong dependency on engagement, support, and funding situation 

of third-party software developers leaves the community vulnerable.

Our new toolkit ‘Osprey’ seeks to address these issues by providing the community with a 

freely available open-source environment that unifies all steps of modern MRS data analysis 

– processing, modelling, quantification – into a common framework. Osprey is designed to: 

a) reduce methodological heterogeneity with its built-in standardized processing pipeline, 

modelling and quantification routines. These can serve as a substrate and starting point for 

the development of advanced data analysis methods, such as coil-combination or spectral 
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alignment routines; b) accelerate the benchmarking, critical evaluation and finally 

integration of improved methods into the modular workflow; c) be immediately deployed by 

novice MRS users who seek to obtain quantitative results from MRS data using a single 

software solution, and who lack the resources to develop analysis code of their own; d) 

reduce the dependency of the MRS community on continued development of third-party 

linear-combination modelling software. Instead, the model code is directly accessible, 

modifiable, and exchangeable, allowing the research community to study the factors 

influencing results of linear-combination modelling, and compare or improve modelling 

algorithms.

Across the demonstration sample of PRESS datasets, Osprey estimates of the major 

metabolites are broadly comparable to estimates from LCModel and Tarquin, while the 

agreement between LCModel and Tarquin was weaker than expected. Between-software 

agreement generally appears to be best for tNAA, while ml and Glx estimates are less 

consistent. In spite of the small sample size of this demonstration, the results do appear to be 

representative. A broader analysis of the full “Big-GABA PRESS” dataset indicates that 

correlations of metabolite estimates between tools were moderate at best. While tNAA and 

tCho appear to be more consistently estimated by LCModel, Tarquin and Osprey, mI and 

Glx estimates agree less well, most likely due to different baseline estimation strategies 

(Zöllner et al., 2020). The influence of critical experimental parameters and analysis settings 

that critically affect performance and results of different modeling algorithms also remain 

under-studied, for example the influential ‘DKNTMN’ parameter that determines the degree 

of spline baseline flexibility in LCModel (Bhogal et al., 2017; Marjanska and Terpstra, 

2019), or interactions of metabolite estimates with linewidth or SNR (Near, 2014). For 

difference-editing experiments, there is currently no consensus on optimal linear-

combination strategies. In particular, co-edited macromolecular signals are difficult to 

simulate appropriately, since the spin systems of the contributing molecules are poorly 

characterized. Currently, co-edited signals representing the MM09, MM12 and MM14 

resonances are therefore empirically parametrized in Osprey as Gaussian-shaped. Using 

Osprey, advanced modeling strategies for edited experiments can be explored, most notably 

for GABA editing experiments with unresolved macromolecular contamination issues, e.g. 

whether to include macromolecular and homocarnosine basis functions (Deelchand et al., 

2019b), whether to impose soft constraints on co-edited macromolecules (Murdoch and 

Dydak, 2011), whether to increase baseline stiffness, whether to constrain the model by 

incorporating fit information from the sum spectrum (Oeltzschner et al., 2019a, 2019b), how 

to perform appropriate GABA-specific tissue correction strategies (Harris et al., 2015) etc. 

Osprey facilitates methodological investigations like these through its job system that allows 

many datasets to be batch-processed by modifying a single text file. While large-scale 

repositories of MRS data are still rare, projects like Big GABA (https://www.nitrc.org/

proiects/biggaba/) already provide publicly available datasets that can be easily deployed to 

benchmark the performance of analysis methods with high statistical power.

Many other MRI modalities suffer from susceptibility to ‘processing bias’, and their 

communities have developed and adopted de-facto-standardized data processing and 

analysis toolboxes. Notable examples are, among others, SPM (Friston, 2007) and FSL 

(Jenkinson et al., 2012) for fMRI analysis, BART (Uecker et al., 2014) for parallel imaging 
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reconstruction, and the Spinal Cord Toolbox (De Leener et al., 2017). In contrast, no such 

common framework currently exists for MRS, but rather a diverse field of tools mostly 

dedicated to modelling or visualization. LCModel continues to be the most widely used 

spectral analysis tool, despite its current cost of 13,300 USD, restrictive licensing, limited 

ongoing development by a single software engineer, and lack of built-in pre-processing 

functions. jMRUI offers basic functions to manipulate spectra and a variety of time-domain 

modelling algorithms (AMARES, QUEST, AQSES), but requires a high degree of user 

interaction and expertise, making it less suitable for novice researchers and reproducible 

processing of large datasets. Tarquin supports automated processing, but, like jMRUI, 

requires pre-processed spectra to model, and leaves a lot of freedom in choosing modelling 

options to the user. Gannet is an open-source toolbox with a similar all-inclusive workflow 

as Osprey, but is limited to simple peak integration of spectral-edited data. The MATLAB 

toolbox OXSA (Purvis et al., 2017) is conceptually similar to Osprey, but currently limited 

to processing DICOM data, and implements the AMARES algorithm (Vanhamme et al., 

1997), which fits spectra in the time-domain using series of singlets with user-imposed prior 

knowledge, an approach notably different from linear-combination modelling of simulated 

metabolite basis functions. SIVIC (Crane et al., 2013) does not offer data pre-processing or 

linear-combination modelling at all, and is primarily dedicated to visualizing MRSI data and 

interfacing with radiological PAC systems. INSPECTOR (Juchem, 2018) offers automated 

analysis, but has not been peer-reviewed and is only distributed as closed-source obfuscated 

MATLAB executable code, as is the more interactive MRspa (Center for Magnetic 

Resonance Research, University of Minnesota, 2018).

All these existing software solutions either run as compiled executables or closed-source 

MATLAB applications, and while the source code is publicly available for some (Tarquin, 

SIVIC, Vespa), community-sourced modifications are either impossible, or may require 

substantial modifications downstream and local recompiling. In contrast, the entire Osprey 

source code (written in MATLAB) is publicly available in a single repository at https://

github.com/schorschinho/osprey. At the time of writing, Osprey functions are primarily 

tailored to processing, modelling, and quantifying data from widely used single-voxel 1H 

MRS sequences designed to detect common metabolites in the human brain in-vivo. The 

modularity of the pipeline allows developers and users to implement analogous workflows 

for data acquired with different localization techniques, at different field strength, from other 

nuclei and body parts, animals, or phantoms, simply by branching out the workflow using ‘if 

statements and flags. Our group has previously disseminated the open-source processing 

toolkit Gannet (Edden et al., 2014), which has since been continuously developed in close 

interaction with its user base. We are confident that this pool of collaborators (and potential 

code contributors) will provide a solid foundation for continued development support for 

Osprey in the future.

5. Conclusions

Osprey is a new, open-source software environment for the pre-processing, linear-

combination modelling, quantification and visualization of magnetic resonance spectroscopy 

data. It is hoped that the availability of such a tool will improve the standardization and 
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accessibility of MRS data processing, while enabling further investigation and rapid 

adoption of new methodology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Osprey is an open-source analysis toolbox for magnetic resonance 

spectroscopy data.

• Includes pre-processing, linear-combination modelling, and quantification.

• Includes a graphical user interface for visualization of each analysis step.
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Figure 1: 
The Osprey workflow with the seven modules Job, Load, Proc(ess), Fit, Coreg(ister), 

Seg(ment), and Quant(ify).
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Figure 2: 
Results from the Osprey processing and modelling of PRESS data. (A) Individual spectra; 

(B) mean spectra (black) +/− SD (gray ribbons); mean fit (red), mean residual (above). (C) 

Example fit with contributions from individual metabolites (Asc ascorbate; Asp aspartate; Cr 

creatine; GABA y-aminobutyric acid; GPC glycerophosphocholine; GSH glutathione; Gln 

glutamine; Glu glutamate; mI myo-inositol; Lac lactate; NAA N-acetylaspartate; NAAG N-

acetylaspartylglutamate; PCh phosphocholine; PCr phosphocreatine; PE 

phosphoethanolamine; Scyllo scyllo-inositol; Tau taurine).
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Figure 3: 
Comparison of metabolite estimates (relative to tCr) for 12 PRESS datasets. (A) 

Distributions for each metabolite and software; (B) scatterplots for each metabolite and pair 

of software (upper row: LCModelvs. Osprey, middle row: Tarquin vs. Osprey, bottom row: 

LCModel vs. Tarquin). One asterisk indicates p < 0.05; two asterisks indicate p < 0.01; three 

asterisks indicate p < 0.001.
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Figure 4: 
Results from the Osprey processing and modelling of GABA-edited MEGA-PRESS data. 

(A) Individual spectra; (B) mean spectra (black) +/− SD (gray ribbons); mean fit (red), mean 

residual (above). (C) Example fit with contributions from individual metabolites.
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Figure 5: 
Results from the Osprey processing and separate-mode modelling of GABA/GSH-edited 

HERMES data. (A) Individual spectra; (B) mean spectra (black) +/− SD (gray ribbons); 

mean fit (red), mean residual (above). (C) Example fit with contributions from individual 

metabolites.
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Figure 6: 
The Osprey GUI with workflow buttons (left), list of datasets (bottom left), analysis stage 

selection tabs (top row), sub-spectrum selection tabs (bottom row), and data display panel. 

The figure shows a GABA-GSH-editedHERMES dataset, with sub-experiments A, B, C, 

and D.

Oeltzschner et al. Page 26

J Neurosci Methods. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Osprey visualization of the analysis of a HERMES dataset. (A) ‘Load’ visualization; (B) 

‘Proc ‘ visualization with individual transients and frequency drift plot before and after 

spectral alignment; (C) ‘Fit’ visualization of the GABA-edited HERMES difference 

spectrum; (D) ‘Coreg’ and ‘Seg’ visualization of voxel coregistration and segmentation, 

including display of tissue fractions.
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