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ABSTRACT
Introduction  Diabetic nephropathy (DN) is the leading 
cause of chronic kidney disease worldwide. The Janus 
kinase/signal transducers and activators of transcription 
(JAK/STAT) pathway participates in the development and 
progression of DN. Among the different mechanisms 
involved in JAK/STAT negative regulation, the family of 
suppressor of cytokine signaling (SOCS) proteins has been 
proposed as a new target for DN. Our aim was to evaluate 
the effect of SOCS1 mimetic peptide in a mouse model of 
obesity and type 2 diabetes (T2D) with progressive DN.
Research design and methods  Six-week-old BTBR 
(black and tan brachyuric) mice with the ob/ob (obese/
obese) leptin-deficiency mutation were treated for 7 weeks 
with two different doses of active SOCS1 peptide (MiS1 
2 and 4 µg/g body weight), using inactive mutant peptide 
(Mut 4 µg) and vehicle as control groups. At the end of the 
study, the animals were sacrificed to obtain blood, urine 
and kidney tissue for further analysis.
Results  Treatment of diabetic mice with active peptide 
significantly decreased urine albumin to creatinine ratio 
by up to 50%, reduced renal weight, glomerular and 
tubulointerstitial damage, and restored podocyte numbers. 
Kidneys from treated mice exhibited lower inflammatory 
infiltrate, proinflammatory gene expression and STAT 
activation. Concomitantly, active peptide administration 
modulated redox balance markers and reduced lipid 
peroxidation and cholesterol transporter gene expression 
in diabetic kidneys.
Conclusion  Targeting SOCS proteins by mimetic peptides 
to control JAK/STAT signaling pathway ameliorates 
albuminuria, morphological renal lesions, inflammation, 
oxidative stress and lipotoxicity, and could be a therapeutic 
approach to T2D kidney disease.

INTRODUCTION
Among the tissue-specific manifestations of 
type 2 diabetes (T2D), diabetic nephropathy 
(DN) is a global public health problem, being 
the main cause of end-stage renal disease, with 
rising economic and social costs.1 Although 
currently available treatments slow the evolu-
tion of the disease, it is necessary to establish 
new therapeutic strategies in different stages 

of the disease in order to promote renopro-
tection and delay renal replacement thera-
pies.2 3

Although genome association studies have 
strongly associated an inherited burden 
on the development of the disease,4–6 the 

Significance of this study

What is already known about this subject?
►► Overactivation of Janus kinase/signal transducers 
and activators of transcription (JAK/STAT) signaling 
pathway plays a role in chronic complications of 
diabetes.

►► Therapeutic benefit from the negative JAK/STAT 
regulators suppressors of cytokine signaling (SOCS) 
has already been established in preclinical models 
of type 1 diabetes.

What are the new findings?
►► In the BTBR (black and tan brachyuric) ob/ob (obese/
obese) mouse model of type 2 diabetes (T2D) and 
obesity that recapitulates renal lesions observed in 
humans, administration of a cell-permeable peptide 
mimicking SOCS1 significantly improves albumin-
uria (>50% reduction on average) and reduces mor-
phological kidney lesions.

►► This beneficial effect is mediated by changes in 
STAT activation, inflammatory gene expression, re-
dox balance and lipotoxicity.

How might these results change the focus of 
research or clinical practice?

►► Currently, strict metabolic control is the main reno-
protective action in the progression of diabetic 
nephropathy.

►► Our study proposes that targeting SOCS proteins 
by mimetic peptides to control JAK/STAT signaling 
pathway ameliorates albuminuria, morphological 
renal lesions, inflammation, oxidative stress and 
lipotoxicity, and could be a therapeutic approach 
to T2D kidney disease, independent of glycemic 
management.
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progression of diabetic kidney disease is mainly due to 
the presence of a renal inflammatory milieu and oxida-
tive stress due to the metabolic and hemodynamic effects 
of hyperglycemia and hypertension that activate signaling 
pathways responsible for the remodeling of renal archi-
tecture.7 8 Several studies have implicated the Janus 
kinase/signal transducers and activators of transcription 
(JAK/STAT) signaling pathway in chronic complications 
of diabetes.9–12 The JAK/STAT pathway is negatively regu-
lated by the suppressors of cytokine signaling (SOCS) 
proteins. In this regard, the delivery of SOCS1 gene or 
peptide therapies in mice with type 1 diabetes (T1D) did 
mitigate the clinical and pathological features of DN, 
contributing significantly to the modulation of kidney 
inflammatory and oxidative stress.13 14 These early exper-
imental data, along with recent clinical studies, support 
the hypothesis that interfering the JAK/STAT pathway 
by either SOCS proteins or small-molecule inhibitors of 
JAK (JAKinibs) could be clinically relevant for therapeutic 
intervention in chronic inflammatory diseases, including 
diabetic complications.15 16

The use of transcriptional inhibitory peptides has 
gained great notoriety as a therapeutic tool, mainly due 
to their high specificity, good tolerance and safety.17 For 
this reason, the present work proposes a cell-permeable 
peptide mimicking SOCS1 (MiS1) as potential therapy 
for DN in a mouse model of T2D and obesity with great 
translational power to humans, as is the black and tan 
brachyuric (BTBR) obese/obese (ob/ob) mouse.18 19 
Due in large part to the fact that metabolic, hemody-
namic and inflammatory changes occur prematurely in 
this murine model of T2D and obesity, the efficacy of 
the MiS1 peptide in modulating the inflammatory and 
oxidative microenvironment of renal damage was also 
evaluated.

RESEARCH DESIGN AND METHODS
Ethical considerations
For this study, male BTBR ob/ob diabetic mice (BTBR.
Cg-Lepob/WiscJ; RRID:IMSR_JAX:004824, RRID:IMSR_
JAX:004824) and BTBR wild type (WT) non-diabetic 
controls were used. Breeding pairs BTBR heterozygotes 
(BTBR ob+/−) were purchased from Jackson Labora-
tories (Bar Harbor, Maine) and housed at a density of 
four animals per cage in a temperature-controlled room 
(20°C–22°C) with 12-hour light–dark cycles. Standard 
food and water were available ad libitum.

For the realization of animal sacrifice, the mice were 
anesthetized with 2% 2,2,2-tribromoethanol (Sigma-
Aldrich) dissolved in 2-methyl-2-butanol (Sigma-
Aldrich). After the corresponding anesthetic evaluation, 
a blood sample was taken for serum collection and both 
kidneys were removed and decapsulated, and a sagittal 
section was made in the perihilar area in order to obtain 
two halves of each kidney. Half of each kidney (right and 
left) was fixed in 4% formaldehyde. A small portion of 
the renal cortex was embedded in 2% glutaraldehyde 

for the study by transmission electron microscopy. The 
remaining portion was stored immediately in liquid 
nitrogen and processed for RNA extraction.

Characterization of kidney early changes in BTBR ob/ob 
model
BTBR ob/ob and BTBR WT mice were sacrificed every 
2 weeks, starting from week 4 through week 12 of age 
(n=5–6 mice/group). The measurement of glycemia 
and body weight was made every week using a glucom-
eter Accu-Chek Performa (Roche) and digital balance, 
respectively. Serum and urine creatinine levels were 
measured by Jaffé reaction (LiquiColor, HUMAN Diag-
nostics, Germany). Urine spot samples were collected 
once a week and albuminuria analyzed by ELISA (Mouse 
Albumin, ALPCO, USA).

Peptidomimetic SOCS1 (MiS1) synthesis and treatment
Palmitoylated peptides derived from mouse SOCS1 
kinase inhibitory region sequence residues 53–68 and 
mutant inactive (F→A) were synthesized by Proteogenix 
(Schiltigheim, France), then dissolved in 100% dimethyl 
sulfoxide (DMSO) in saline solution (NaCl 0.9%). Male 
BTBR ob/ob mice at 6 weeks of age (hyperglycemia 
onset) were randomized to receive three intraperitoneal 
injections per week of (1) active peptidomimetic SOCS1 
(MiS1 group) at two different doses of 2 µg/g and 4 µg/g 
(n=7 for each group); (2) inactive mutated peptidomi-
metic SOCS1 (Mut group) at a dose of 4 µg/g (n=7); and 
(3) vehicle (Veh group) at a dose of DMSO <0.2% in 
saline solution (n=6). After 7 weeks of intervention, all 
groups were analyzed and euthanized.

Histological analysis and immunohistochemistry
The kidneys were fixed in 4% formaldehyde, embedded 
in paraffin and cut in 4 µm tissue sections for histochem-
ical stain (periodic acid Schiff/Masson’s trichrome) 
and immunohistochemistry. The glomerular and tubu-
lointerstitial lesions were classified according to a semi-
quantitative histopathological score damage, giving a 
score of 0–4 as previously described.20 The primary anti-
bodies for immunodetection were sourced as follows: 
phosphorylated (p-) STAT3 serine 727 (Cell Signaling 
Technology Cat# 9134, RRID:AB_331589, dilution 
1:100), p-STAT1 tyrosine 701 (Cell Signaling Technology 
Cat# 7649, RRID:AB_10950970, dilution 1:50), p-p65 
subunit of nuclear factor-κB (NF-κB) serine 536 (Santa 
Cruz Biotechnology Cat# sc-33020, RRID:AB_2179018, 
dilution 1:100), p-nuclear factor erythroid 2-related 
factor 2 (NRF2) serine 40 (Abcam Cat# ab76026, 
RRID:AB_1524049, dilution 1:2000), SOCS1 (Abcam 
Cat# ab62584, RRID:AB_956316, dilution 1:1000), 
SOCS3 (Abcam Cat# ab16030, RRID:AB_443287, dilu-
tion 1:200), F4/80 monocytes/macrophages (Bio-Rad 
Cat# MCA497, RRID:AB_2098196, dilution 1:70), CD3 
T lymphocytes (Agilent Cat# M7254, RRID:AB_2631163, 
dilution 1:100), Wilms tumor protein-1 (WT-1; Agilent 
Cat# M3561, RRID:AB_2304486, dilution 1:100), 
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perilipin-1 (sc-390169, dilution 1:50, Santa Cruz Biotech-
nology, USA) and 4-hydroxy-2-nonenal (4-HNE; Abcam 
Cat# ab46545, RRID:AB_722490, dilution 1:200). All 
primary antibodies were assessed by indirect immunop-
eroxidase, except for WT-1 and p-NRF2, which were incu-
bated with the M.O.M. Immunodetection Kit (Vector 
Laboratories Cat# BMK-2202, RRID:AB_2336833) and 
Vectastain Elite ABC HRP Kit RTU (Vector Laboratories 
Cat# PK-7100, RRID:AB_2336827), respectively. Sections 
were revealed with ImmPACT DAB Peroxidase Substrate 
(Vector Laboratories Cat# SK-4105, RRID:AB_2336520) 
and counterstained with Carazzi’s hematoxylin for later 
evaluation by optical microscopy. Intracellular superoxide 
anion in paraffin renal sections was visualized using the 
oxidation-sensitive fluorescent probe dihydroethidium 
(DHE; 2 μmol/L; Life Technologies, USA) followed by 
DAPI (4′,6-diamidino-2-phenylindole) nuclear coun-
terstain. The samples were visualized by fluorescence 
microscopy (λEXC=488 nm and λEM=585 nm), mounted 
in aqueous medium (FluorSave Reagent, Millipore) and 
examined by a Leica TCS SP5 confocal microscope. Posi-
tive staining was quantified using Image-Pro Plus soft-
ware and expressed as percentage of the total area and 
number of positive cells (per glomerular cross section or 
tubular field).

For analysis by electron microscopy, the kidney tissue 
was fixed in 2% glutaraldehyde (Merck, Germany), post-
fixed with 1% osmium tetroxide (Ted Pella, USA) and 
observed under a Philips Tecnai 12 electron microscope 
(Philips Eindhoven, The Netherlands) operated at 80 kV.

mRNA expression
Total RNA from renal tissue was isolated with TRIzol 
reagent (Ambion, USA). Complementary DNA (cDNA) 
was synthesized by a High Capacity cDNA Archive Kit 
(Applied Biosystems) using 2 µg total RNA primed with 
random primers. For the analysis of gene expression, 
commercial primers were used from the Applied Biosys-
tems database and non-commercial probes designed 
through Primer-BLAST software and synthesized by 
Thermo Fisher Scientific (online supplementary table 
1). Quantitative gene expression analysis was performed 
by real-time PCR 7500 Applied Biosystems, using 7500 
System SDS software V.1.2b1c3. The expression of target 
genes was analyzed in duplicate and normalized to house-
keeping 18s transcripts.

Statistical analysis
The data are presented as scatter dot plots with 
mean±SD of the total number of animals. Graphs and 
corresponding statistical tests were carried out with the 
GraphPad Prism V.6 software. Statistical analyses were 
performed using non-parametric Mann-Whitney U test 
for comparison between two groups and one-way anal-
ysis of variance with Bonferroni post-hoc for multiple 
comparisons, considering differences to be statistically 
significant at p<0.05.

RESULTS
Treatment with MiS1 significantly reduces albuminuria and 
kidney lesions in the BTBR ob/ob mouse model
Our characterization of BTBR ob/ob mice showed early 
and progressive development of obesity, hyperglycemia, 
renomegalia, albuminuria, podocytopenia, inflammatory 
infiltrate and histopathological changes of renal damage 
(figure 1A–D, online supplementary figure 1 and online 
supplementary table 2), which is in line with previous 
studies.18 21 Interestingly, and compared with BTBR WT 
mice, kidneys from BTBR ob/ob mice showed a marked 
overactivation (phosphorylation) of three key transcrip-
tion factors involved in inflammation and oxidative stress, 
namely p-STAT3, p-p65 NF-κB and p-NRF2 (figure 2A). 
Furthermore, SOCS1 and SOCS3 protein expression 
was substantially increased in tubular cells of diabetic 
BTBR ob/ob mice, with a similar pattern as p-STAT3 and 
p-NRF2 staining (figure 2B).

Real-time PCR analysis of genes associated with JAK/
STAT, inflammatory and redox balance pathways 
revealed significant increases in STAT members (Stat1 
and Stat3), cytokines (Tnfα), chemokines (Cxcl10, Ccl2 
and Ccl5) and oxidative stress-activated molecules (Nrf2, 
HO-1, Nox1 and Nox4), and downregulation of SOCS 
genes (Socs1 and Socs3) and antioxidant enzymes (Cata-
lase and Sod1) in BTBR ob/ob mice (figure  2C). Sche-
matic protein–protein interaction prediction of these 
markers in Mus musculus was performed with STRING 
software (figure 2D).

After establishing that the expression/activation profile 
of JAK/STAT/SOCS axis is altered in BTBR ob/ob mice, 
we further explored the therapeutic potential of its 
targeting in the context of T2D. Administration of MiS1 
peptide to BTBR ob/ob mice significantly decreased 
albuminuria by 57%–67% (figure 3A) and kidney weight 
(figure  3B) relative to vehicle control group. Histolog-
ical and ultrastructural analyses of diabetic kidneys 
revealed that MiS1 treatment ameliorated glomer-
ular and tubulointerstitial lesions, including glomeru-
lomegaly, mesangial expansion, arteriolar hyalinosis, 
focal inflammatory infiltrate and tubular flattening, and 
also prevented pedicelar effacement (figure  3C). Addi-
tionally, total podocyte count was significantly increased 
following MiS1 administration, reaching values similar 
to those of non-diabetic mice (figure 3D), as assessed by 
WT-1 immunostaining. These functional and structural 
modifications at the renal level were not associated with 
changes in metabolic and biochemical parameters such 
as glycemia, body weight and serum creatinine (online 
supplementary table 2).

MiS1 therapy inhibits JAK/STAT pathway and reduces 
markers of inflammation, oxidative stress and kidney damage 
in diabetic mice
Administration of MiS1 peptide caused a potent inhibi-
tion of the nuclear translocation of transcription factors 
p-STAT1 and p-STAT3, at both glomerular and tubuloint-
erstitial levels (figure 4A), which is in agreement with our 

https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
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previous studies in T1D models.13 14 In addition, a reduc-
tion in gene expression of both transcription factors was 
observed, explaining the marked downregulation of 
STAT activity (figure 4C).

In order to study the cellular and molecular mecha-
nisms underlying the beneficial therapeutic effects of 

MiS1 on albuminuria and renal lesions, we focused mainly 
on inflammation and oxidative stress, two phenomena 
closely linked to chronic hyperglycemia. Immunohisto-
chemical analysis of renal infiltrating cells showed that 
treatment with MiS1 peptide at both doses reduced the 
number of F4/80+ monocytes/macrophages and CD3+ 

Figure 1  Kidney damage markers in BTBR ob/ob model. BTBR ob/ob diabetic mice (orange dots) and their respective 
control, BTBR WT non-diabetic mice (purple dots), were studied from 4 to 12 weeks old. (A) Progression of urinary albumin to 
creatinine ratio (UACR) from 6 weeks old. (B) Progression of kidney weight in BTBR WT and BTBR ob/ob mice at 12 weeks. 
(C) Evolution of kidney damage in BTBR ob/ob was measured starting from week 6 to week 12 by histopathological kidney 
score. Shown are representative images of histopathological features observed in kidney tissue sections with periodic acid 
Schiff (PAS) staining in 12-week-old mice. Magnification ×100, ×400 and ×630. (D) Representative images of thickening of the 
glomerular and tubular basal membrane by transmission electron microscopy (TEM) and quantified by 100 measurements 
in each representative animal of renal damage, BTBR WT and BTBR ob/ob at 6 and 12 weeks old. Magnification ×9900. 
Data are shown as scatter dot plots and mean±SD of each group (n=5–7 mice/group); *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 versus BTBR WT control. a.u., arbitrary units; BTBR, black and tan brachyuric; GBM, glomerular basal membrane; 
ob/ob, obese/obese; TBM, tubular basal membrane; WT, wild type.
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Figure 2  JAK/STAT, inflammatory and oxidative stress pathways in kidney tissue of BTBR ob/ob model. (A) Representative 
images of phosphorylated (p-)STAT3, p-p65 NF-κB and p-NRF2, and quantification of positive cells in glomerular and tubular 
fields of BTBR WT and ob/ob mice. Magnification ×400 and ×630. Arrows indicate positive stained cells. (B) Representative 
images of SOCS1/SOCS3 proteins and quantification of positive stained area per tubular field. Magnification ×200. (C) Real-
time PCR analysis of JAK/STAT, inflammatory and oxidative stress genes. Values normalized by endogenous control gene 
18s are expressed as n-fold of the average value from BTBR WT. Data are shown as scatter dot plots and mean±SD of each 
group (n=5–7 mice/group); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus BTBR WT control. (D) Schematic protein–protein 
interaction prediction of JAK/STAT, inflammatory and oxidative stress markers in Mus musculus according to STRING software. 
More information can be found at https://string-db.org/. a.u., arbitrary units; BTBR, black and tan brachyuric; GCS, glomerular 
cross section; JAK/STAT, Janus kinase/signal transducers and activators of transcription; NF-κB, nuclear factor-κB; NRF2, 
nuclear factor erythroid 2-related factor 2; ob/ob, obese/obese; SOCS, suppressor of cytokine signaling; WT, wild type.

https://string-db.org/
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Figure 3  MiS1 treatment reduces kidney damage markers in BTBR ob/ob model. Graphs and images represent the 
changes observed in diabetic mice treated with active MiS1 (2 µg and 4 µg) and inactive mutated peptide (Mut 4 µg) compared 
with vehicle controls (Veh). (A) Urinary albumin creatinine ratio (UACR). (B) Kidney weight. (C) Representative images of 
light microscopy of glomerular and tubular fields stained with PAS and the quantification of histopathological total score. 
Magnification ×200 and ×630. Additionally, TEM of glomerular filtration barrier was observed. Magnification ×9900. Arrows 
indicate areas of mesangial expansion (PAS images) and pedicelar effacement (TEM images). (D) Immunohistochemistry 
against WT-1 protein, used as podocyte marker. Graphs represent the average number of WT-1+ cells per glomerular cross 
section (GCS) in BTBR WT and ob/ob (vehicle and treatments). Magnification ×630. Data are shown as scatter dot plots 
and mean±SD of each group (n=5–7 mice/group); #p<0.05 versus BTBR WT; *p<0.05, **p<0.01, ****p<0.0001 versus diabetic 
vehicle control. a.u., arbitrary units; BTBR, black and tan brachyuric; ob/ob, obese/obese; PAS, periodic acid Schiff; TI, 
tubulointerstitial; TEM, transmission electron microscopy; WT-1, Wilms tumor protein-1.
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Figure 4  MiS1 treatment inhibits kidney JAK/STAT activation and renal microinflammatory milieu in the BTBR ob/ob model. 
(A) Graphs and images represent the changes observed in JAK/STAT activation (p-STATs) in diabetic mice treated with active 
MiS1 (2 µg and 4 µg) and inactive mutated peptide (Mut 4 µg) compared with vehicle controls (Veh), quantified per number 
of positive cells p-STAT1+ and p-STAT3+, both at the glomerular and tubular fields. Magnification ×630. (B) Representative 
images of immunohistochemistry against F4/80 and CD3. Magnification ×200 and ×630. Graphs represent the quantification 
of average number of monocytes/macrophages F4/80+ and CD3+ T lymphocytes, both at the glomerular and interstitial fields. 
Arrows indicate positively stained cells. (C) Gene expression analysis of mRNA related with JAK/STAT pathway (Stat1, Stat3, 
Socs1 and Socs3), inflammatory cytokines (Tnfα and Il-12) and chemokines (Mcp-1 and Rantes), and kidney damage markers 
(Kim-1 and Ngal) were evaluated by real-time PCR, being normalized in each sample by endogenous control gene 18s and 
expressed as n-fold the average value obtained in the vehicle group (Veh). Data are shown as scatter dot plots and mean±SD 
of each group (n=6–7 mice/group); *p<0.05, **p<0.01, ****p<0.0001 versus diabetic vehicle control. BTBR, black and tan 
brachyuric; GCS, glomerular cross section; JAK/STAT, Janus kinase/signal transducers and activators of transcription; ob/ob, 
obese/obese.
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T lymphocytes in both glomerular and tubulointersti-
tial compartments (figure  4B). Furthermore, kidneys 
from MiS1-treated mice exhibited a decrease in the 
gene expression of inflammatory cytokines (Tnfα, Il-12), 
chemokines (Ccl2, Ccl5) and renal damage markers (Kim-
1, Ngal) (figure 4C). These data suggest that the reduc-
tion of early renal damage observed in this model is due, 
at least in part, to the reduction of inflammation.

We next examined changes in NRF2 pathway, an essen-
tial endogenous antioxidant mechanism activated in 
response to stress signals, including oxidative damage 
in DN.22 23 Remarkably, MiS1 treatment caused a dose-
dependent reduction of NRF2 and its target gene heme-
oxygenase-1 (HO-1) in diabetic kidneys, as assessed by 
immunohistochemistry (figure 5A,B) and mRNA expres-
sion (figure  5D). Concomitantly, a reduction of genes 
encoding pro-oxidant enzyme nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase (Nox1 and 
Nox4 subunits) and increased antioxidant enzymes super-
oxide dismutase-1 (Sod1) and catalase were also observed 
in MiS1-treated mice (figure  5D). Confocal micros-
copy with DHE fluorogenic probe further confirmed a 
lower production of superoxide anion in MiS1-treated 
mice compared with control mice, particularly at the 
glomerular level (figure 5C). These results suggest that 
regulation of redox-sensitive signaling pathways could 
be responsible for the clinical and histopathological 
improvement by MiS1 therapy in this preclinical T2D 
model.

MiS1 reduces tubular and vascular lipid peroxidation in 
kidneys of BTBR ob/ob mice
Recent evidence indicates that lipotoxicity is a mech-
anism of kidney damage in the context of obesity, with 
cytoplasmic accumulation of fatty acids being one of 
the most relevant findings.24 25 In line with this, a large 
amount of visceral fatty tissue was observed in BTBR ob/
ob mice (online supplementary figure 2). At kidney level, 
positive staining for perilipin-1, a marker of mature lipid 
droplets, was observed in the mesangium, tubulointersti-
tium and infiltrated cells (figure  6A). The lipid perox-
idation marker 4-HNE was also abundantly detected in 
the periglomerular tubular cells and in the middle layer 
of the arterial vessels (figure  6A). Furthermore, real-
time PCR showed overexpression of scavenger recep-
tors associated with the uptake of fatty acids (Cd36 and 
Cd204), but no significant changes in cholesterol efflux 
genes (ATP bind cassette transporter (ABC) A1 and G1) 
(figure 6B). Notably, and compared with diabetic control 
mice, MiS1-treated animals depicted a significant reduc-
tion in lipid peroxidation at both tubular and vascular 
cells (figure  6C). Moreover, MiS1 peptide downregu-
lated the renal gene expression of scavenger receptors 
(Cd36, Cd204) and upregulated the reverse cholesterol 
transporter Abcg1 without changes in Abca1 transporter 
(figure  6D). These findings uncover the antilipotoxic 
effects of the JAK/STAT inhibition in diabetic kidneys, 

therefore adding another potential beneficial effect of 
SOCS mimetic peptide.

DISCUSSION
Our study demonstrates that targeting JAK/STAT/SOCS 
axis exerts a marked beneficial effect on albuminuria 
and renal lesions in experimental T2D. The BTBR ob/
ob mouse model was chosen for its recapitulation of 
clinical and morphological renal lesions in patients with 
T2D.18 26 Indeed, our preclinical evaluation of MiS1, a 
cell-permeable peptide mimicking SOCS1, demonstrates 
a potent inhibition of renal inflammation, oxidative stress 
and lipotoxicity, underlying the mechanisms of its reno-
protective actions in T2D. The reduction of proteinuria 
observed after MiS1 treatment could be attributed to its 
pleiotropic effect in improving the glomerular filtration 
barrier through several mechanisms: (1) modulation of 
the local JAK/STAT pathway; (2) reduction of inflamma-
tory and oxidative state in resident and infiltrating kidney 
cells; (3) increase in podocyte number; and (4) reduc-
tion of kidney lipotoxicity (online supplemental figure 
3).

Following the detailed characterization of renal lesions 
in the BTBR ob/ob mouse model of T2D by Alpers 
group,18 as well as the potential reversibility of glomer-
ular damage after leptin administration, the BTBR ob/
ob model has been widely recognized as an excellent 
preclinical model to evaluate novel therapies in the 
progression of DN.19 26–28 Moreover, treatment with ther-
apeutic peptides to modify key transcriptional regula-
tory proteins involved in organ injury continues to be 
increasingly relevant, mainly due to its high specificity 
and safety, with reduced adverse or undesirable effects 
compared with the development of pharmacological 
active compounds.17 29 A good example about the thera-
peutic utility of mimetic peptides in the field of diabetes 
is the subcutaneous glucagon-like peptide-1 receptor 
agonists largely used in clinical practice to treat patients 
with diabetes with and without renal disease.30 31

The participation of JAK/STAT signaling in the devel-
opment and progression of DN has been validated 
as one of the main ways of eliciting the production of 
cytokines, chemokines, interferons, transcription and 
growth factors by kidney cells, and therefore responsible 
for maintaining the local proinflammatory state in the 
diabetic kidney.32–34 Transcriptomic analysis in human 
DN revealed a direct relationship between tubulointer-
stitial JAK1, JAK2 and JAK3 (mainly JAK2), STAT1-3 gene 
expression, and the progression of kidney failure.35 Our 
findings suggest an upregulation and compartmental 
activation of STAT1/3 in BTBR ob/ob diabetic kidneys, 
and a compensatory increase of SOCS1/3 proteins, which 
is in line with our previous findings in kidney biopsies of 
patients with T2D and experimental models.13 However, 
gene expression analysis showed downregulated expres-
sion of SOCS genes. This discrepancy between gene and 
protein expression could be attributed to several factors 

https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242
https://dx.doi.org/10.1136/bmjdrc-2020-001242


9BMJ Open Diab Res Care 2020;8:e001242. doi:10.1136/bmjdrc-2020-001242

Pathophysiology/complications

Figure 5  MiS1 treatment modulates NRF2 activation, superoxide anion production and gene expression of redox balance 
markers in BTBR ob/ob model. (A) Graphs and images represent the changes observed in immunohistochemistry against 
heme-oxygenase-1 in BTBR WT, vehicle and each of the groups treated (2 µg, 4 µg and Mut 4 µg), quantified per analysis of 
percentage of the positive staining area per tubular field. Magnification ×400. (B) Graphs and images represent the changes 
observed in NRF2 activation (p-NRF2) in diabetic mice treated with active MiS1 (2 µg and 4 µg) and inactive mutated peptide 
(Mut 4 µg) compared with vehicle controls (Veh), quantified per number of positive cells p-NRF2+, both at the glomerular 
and tubular fields. Magnification ×200–×630. Arrows indicate positive staining. (C) Representative fluorescence images of 
superoxide anion (DHE, red), cell nuclei (DAPI, blue) and merge. Arrows show positive staining of superoxide anion at the 
glomerular level. Graph shows DHE-positive cells per glomerular field. Magnification ×630. (D) Gene expression analysis of 
mRNA related with Nrf2 pathway (Nrf2, HO-1), pro-oxidants enzymes (Nox1, Nox4) and antioxidants enzymes (Sod1, Catalase) 
was evaluated by real-time PCR. Values normalized by endogenous control gene 18s are expressed as n-fold of the average 
value obtained in the vehicle group (Veh). Data are shown as scatter dot plots and mean±SD of each group (n=6–7 mice/
group); *p<0.05, **p<0.01, ****p<0.0001 versus diabetic vehicle control. BTBR, black and tan brachyuric; DAPI, 4′,6-diamidino-
2-phenylindole; DHE, dihydroethidium; GCS, glomerular cross section; Mut 4 μg, inactive mutated peptide; NRF2, nuclear 
factor erythroid 2-related factor 2; ob/ob, obese/obese; WT, wild type.
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Figure 6  MiS1 treatment reduces tubular and vascular lipid peroxidation and modulates gene expression of scavenger 
receptors in BTBR ob/ob model. (A) Presence of intrarenal lipids was evidenced by immunohistochemistry against perilipin-1 
and 4-HNE in BTBR WT (purple dots) and BTBR ob/ob (orange dots) mice. Isolated specific perilipin-1 and 4-HNE positive 
cells were observed in non-diabetic BTBR WT mice (black arrow). Mesangial, tubular and vascular staining was observed in 
diabetic BTBR ob/ob mice (red arrow). Magnification ×400–×630. Quantitative analysis of percentage of the positive staining 
area per tubular field was determined in 12-week-old non-diabetic control and diabetic mice. (B) Gene expression analyses of 
scavenger receptors associated with fatty acid uptake (SR-B/Cd36, SR-A/Cd204) and reverse cholesterol transport (Abca1, 
Abcg1) were evaluated by real-time PCR. Values normalized by endogenous control gene 18s are expressed as n-fold of 
the average value obtained in the BTBR WT. (C) Images represent the changes observed in immunohistochemistry against 
4-HNE+ tubular and vascular area in vehicle and each of the groups treated (2 µg, 4 µg and Mut 4 µg), quantified per analysis 
of percentage of the positive staining area per tubular field. Magnification ×200 and ×400. (D) Gene expression analysis of 
indicated genes was evaluated by real-time PCR, and normalized values expressed as fold increase versus vehicle group 
(Veh). Data are shown as scatter dot plots and mean±SD of each group (n=5–7 mice/group); *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 versus BTBR WT or diabetic vehicle control. BTBR, black and tan brachyuric; 4-HNE, 4-hydroxy-2-nonenal; Mut 4 
μg, inactive mutated peptide; ob/ob, obese/obese; WT, wild type.



11BMJ Open Diab Res Care 2020;8:e001242. doi:10.1136/bmjdrc-2020-001242

Pathophysiology/complications

such as RNA binding proteins and microRNAs targeting 
SOCS mRNA, or post-translational modifications (eg, 
phosphorylation by Pim kinases) increasing the stability 
of SOCS protein.36

Recently, an experimental study conducted in podocyte 
JAK2-overexpressing Akita mice with angiotensin II infu-
sion demonstrated that the JAK1/2 inhibitors, tyrphostin 
and baricitinib, reduced proteinuria and glomerular 
kidney damage.37 In addition, a phase II trial on baric-
itinib has shown promise for high-risk patients with 
diabetic kidney disease.38 Our early studies have shown 
effective reduction of renal damage when using different 
SOCS delivery systems (adenovirus and cell-permeable 
peptide) in animal models of kidney disease, including 
T1D.13 14 So far, this is the first study in the context of 
T2D and obesity for successful improvement of protein-
uria (>50% reduction on average) and renal damage by 
SOCS1 mimetics. Carefully designed clinical studies will 
determine the viability of such strategy in humans.

Podocytopenia and pedicelar effacement are classically 
observed findings in DN.39 The reversibility of podo-
cyte damage observed in the BTBR ob/ob model may 
be mainly due to the restoration of the intraglomerular 
inflammatory and oxidative microenvironment, mobili-
zation of renal progenitor cells (CD133+ CD24+ cells) and 
JAK/STAT pathway inhibition.26 40 41

Our previous studies have established the pivotal role of 
JAK/STAT in regulating the inflammatory and oxidative 
microenvironment in experimental models of athero-
sclerosis and T1D kidney disease.42 43 The present data 
highlight the anti-inflammatory and antioxidant effect in 
the MiS1 peptide in T2D diabetic kidneys, as evidenced 
by the reduction of infiltrating cells (T lymphocytes 
and macrophages), cytokine/chemokine expression, 
and superoxide anion levels. In vitro, SOCS1 has been 
reported to reduce cell migration and proliferation, and 
to modulate the functional polarization of kidney macro-
phages from a proinflammatory state (M1) to an anti-
inflammatory phenotype (M2).13 14 Recently, our group 
demonstrated a reduction in the activation of STAT3 with 
a selective interleukin-17A (IL17A) antibody in BTBR 
ob/ob mouse model,21 potentiating possible additional 
effects of the JAK/STAT pathway inhibition in a subset 
of T cells, as it has been described in other inflammatory-
based diseases.44 This result is reminiscent of that noted 
in a mouse model of encephalomyelitis, in which the 
treatment with an SOCS1-derived peptide suppressed 
IL17A production, prevented infiltration of lymphocytes 
into the brain, and reversed the ongoing pathology.45

In the BTBR ob/ob mouse, treatment with MiS1 
peptide generates a reduction of the NRF2 phosphory-
lation at both glomerular and tubulointerstitial level. In 
turn, a modulation of the redox balance was also modi-
fied, with a reduction in superoxide anion and NADPH 
oxidase (Nox1/Nox4), as well as an increase in the anti-
oxidant enzymes Sod1 and catalase. Although the anti-
oxidant role of the NRF2/HO-1 pathway is significantly 
described, growing evidence demonstrates possible new 

effects of NRF2 signaling. Under physiological conditions 
NRF2 prevents oxidative damage; however, the overacti-
vation or maintenance of constitutive activity of NRF2 
could enhance the mechanisms of damage progression, 
as it has been observed in preclinical models and human 
renal cell carcinoma.46–48 Therefore, it is necessary to 
continue studying the role of NRF2 in the progression 
of the DN.

The cytoplasmic accumulation of fatty acids in ectopic 
tissues such as the muscle, heart, liver and kidney has 
been described as part of physiological processes such 
as intracellular signaling, vesicular transport, energy 
metabolism and structural functions.49 50 However, 
renal lipotoxicity is described as a toxic and dysfunc-
tional finding by the generation of reactive oxygen/
nitrogen species, mitochondrial dysfunction, alterations 
in intracellular signaling pathways, release of proin-
flammatory and profibrotic factors and lipid-mediated 
apoptosis (lipoapoptosis).51 Although the molecular 
mechanisms of lipotoxicity in DN remain unclear, the 
presence of lipids at glomerular and tubulointerstitial 
levels has been described as a factor promoting kidney 
damage.52 53 Conversely, the reduction of renal lipotox-
icity could potentiate the protective effects in DN. In the 
present work, treatment with MiS1 caused a reduction of 
lipid peroxidation and also altered the gene expression 
of scavenger receptors associated with uptake of fatty 
acids (Cd36 and Cd204) and efflux of cholesterol (Abcg1). 
Therefore, modulation of JAK/STAT activity by SOCS-
derived peptide provides a new mechanism of action 
to improve lipotoxicity and lipid metabolism dysregula-
tion in diabetic kidney damage associated with T2D and 
obesity.

In conclusion, in an experimental mouse model that 
recapitulates the lesions observed in patients with T2D 
patients with DN, the treatment with MiS1 peptide mark-
edly reduces albuminuria, morphological renal lesions, 
inflammation, oxidative stress and kidney lipotoxicity. 
Targeting SOCS proteins to control JAK/STAT signaling 
pathway could be a therapeutic approach to DN in 
humans.
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