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Abstract

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80–

85% of cases. Epidermal growth factor receptor (EGFR) mutations are observed in approximately 

40% and 20% of patients with NSCLC in Asian and non-Asian populations, respectively.

First-generation (gefitinib, erlotinib) and second-generation (afatinib, dacomitinib) EGFR-tyrosine 

kinase inhibitors (TKIs) have been standard-of-care (SoC) first-line treatment for patients with 

sensitizing EGFR mutation positive advanced NSCLC following Phase III trials versus platinum-

based doublet chemotherapy. However, most patients treated with first-line first- or second-

generation EGFR-TKIs develop resistance. Osimertinib, a third-generation, central nervous system 

active EGFR-TKI which potently and selectively inhibits both EGFR-TKI sensitizing (EGFRm) 

and the most common EGFR T790M resistance mutations, has shown superior efficacy versus 

first-generation EGFR-TKIs (gefitinib / erlotinib). Osimertinib is now a treatment option for 

patients with advanced NSCLC harboring EGFRm in the first-line setting, and treatment of choice 

for patients with T790M positive NSCLC following disease progression on first-line EGFR-TKIs. 

The second-generation EGFR-TKI dacomitinib has also recently been approved for the first-line 

treatment of EGFRm positive metastatic NSCLC.

There remains a need to determine appropriate sequencing of EGFR-TKIs in this setting, 

including EGFR-TKIs as monotherapy or in combination with other TKIs / signaling pathway 

inhibitors. This review considers the evolving role of sequencing treatments to maximize benefits 

for patients with EGFRm positive advanced NSCLC.
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Classification:

systemic treatments

1. Introduction

Lung cancer is the leading cause of cancer-related mortality globally, with approximately 1.7 

million deaths attributed to the disease each year [1]. Non-small cell lung cancer (NSCLC) 

is the most common type of lung cancer, accounting for approximately 80–90% of all lung 

cancers [2]. Historically, first-line treatment for advanced NSCLC was broadly confined to 

platinum-based chemotherapy. The discovery of targetable oncogenic mutations 

revolutionized treatment choices for NSCLC, yet refinement of NSCLC classification by 

biomarker target is still developing. ASCO recommends that all patients with advanced lung 

adenocarcinoma be screened for EGFR, ALK, ROS1 and BRAF mutations irrespective of 

clinical characteristics. Patients with advanced lung adenocarcinoma should also be screened 

for RET, HER2, KRAS, MET, and NTRK by multiplex genetic sequencing (next-generation 

sequencing) wherever feasible, which is quickly becoming a standard approach to screening 

for oncogenic targets [2,3].

Epidermal growth factor receptor (EGFR) mutations are observed in approximately 40% and 

20% of patients with NSCLC in Asian and non-Asian populations, respectively [4]. EGFR 

mutations are located in the tyrosine kinase domain and result in increased kinase activity of 

the EGFR, leading to sustained activation of signaling pathways and continued cell 

proliferation [5]. The most common EGFR mutations are deletions in exon 19 (Ex19del) or 

exon 21 L858R point mutation [5].

Phase III trials comparing first-generation (gefitinib, erlotinib) and second-generation 

(afatinib, dacomitinib) EGFR-tyrosine kinase inhibitors (TKIs) with platinum-based doublet 

chemotherapy established first- and second-generation EGFR-TKIs as standard-of-care 

(SoC) for patients with EGFR-mutated advanced NSCLC [6-14]. More recently, osimertinib, 

a third-generation, central nervous system (CNS)-active EGFR-TKI which potently and 

selectively inhibits both EGFR-TKI sensitizing (EGFRm) and EGFR T790M resistance 

mutations [15-19], has shown superior progression-free survival (PFS) compared with 

standard EGFR-TKI (gefitinib / erlotinib) [19], resulting in osimertinib becoming an 

additional first-line treatment option for EGFRm positive advanced NSCLC [2,3,20,21]. In 

the second-line setting, following disease progression on first- or second-generation EGFR-

TKIs, osimertinib is treatment of choice for patients whose tumors harbor acquired EGFR 

resistance mutation T790M [2,16,20].

Treatment of EGFRm positive advanced NSCLC has more therapeutic options than ever 

before, particularly with regards to choice of first-line EGFR-TKI. Herein, we review first- 

and second-generation EGFR-TKIs, including acquired resistance mechanisms, and consider 

the evolving role of third-generation EGFR-TKIs, and other emerging therapeutic 

approaches in order to optimize the sequencing of EGFR-TKIs.
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2. First- / second-generation EGFR-TKI therapy and resistance

2.1 Efficacy of first- and second-generation EGFR-TKIs

In patients diagnosed with EGFRm positive NSCLC, first-generation reversible EGFR-TKIs 

provide superior efficacy versus platinum-based doublet chemotherapy (Figure 1; Table A.1) 

[6-11]. Despite initial responses, most patients treated with first-generation EGFR-TKIs 

eventually develop resistance [22,23]. The second-generation EGFR-TKIs, afatinib and 

dacomitinib have shown, in vitro, that they bind selectively and irreversibly to the tyrosine 

kinase domain of EGFR (HER1), HER2, and HER4 receptors, and certain EGFR mutants 

(including, Ex19del, L858R and T790M) to inhibit proliferation and induce apoptosis in 

tumor cells that overexpress these receptors [24-26]. Afatinib has also demonstrated efficacy 

in patients with the uncommon EGFR mutations G719X, L861G and S768I [27,28]. As with 

first-generation EGFR-TKIs, afatinib treatment showed superior efficacy versus platinum-

based doublet chemotherapy in patients with EGFRm positive advanced NSCLC (Figure 1; 

Table A.1) [13,29]. In head-to-head trials versus gefitinib, second-generation EGFR-TKIs 

showed improved PFS (Figure 1; Table A.1), and in the case of dacomitinib, improved 

overall survival (OS; median 34.1 months versus 26.8 months; hazard ratio [HR] 0.76, 95% 

confidence interval [CI]: 0.58–0.99; p = .044); OS was not considered to be statistically 

significant in this case due to the hierarchal approach to hypothesis testing in the study 

design, meaning that no formal testing of OS was conducted since the formal comparison of 

ORR between the treatment arms was not statistically significant [30,31]. However, the 

irreversible binding of second-generation EGFR-TKIs has led to increased toxicity, with 

dose reductions occurring in 39–52% and 66% of patients treated with afatinib and 

dacomitinib, respectively [14,32,33]. Despite exhibiting promising anti-EGFR T790M 

activity in vitro, afatinib and dacomitinib are unsuccessful in overcoming T790M-mediated 

resistance in the clinical setting [34-36] because the therapeutic threshold for clinical 

efficacy is unachievable in humans due to dose-limiting toxicity associated with non-

selective inhibition of wild-type EGFR [15]. In line with resistance to first-generation 

EGFR-TKIs, T790M is the most common resistance mechanism, present in approximately 

50% of progressive cases [32,37-44].

2.2 Mechanisms of resistance to first- and second-generation EGFR-TKIs

Acquired mutations in the EGFR tyrosine kinase domain, the activation of bypass signaling 

pathways, and phenotypic or histologic transformation have been identified as mechanisms 

of acquired resistance to first- and second-generation EGFR-TKIs [45,46]. Of the acquired 

EGFR mutations that can desensitize tumors to erlotinib, gefitinib, afatinib and dacomitinib, 

the EGFR T790M mutation is the most common, ranging from 36–69% in resistant cases 

[22,38,45,47-50]. T790M mutation results in the substitution of threonine to methionine at 

the “gatekeeper” amino acid position 790 on exon 20 of EGFR, causing conformational 

change, which leads to steric hindrance and reduces the binding activity of first- and second-

generation EGFR-TKIs [23,51]. Furthermore, the T790M mutation of EGFR may restore the 

affinity of the mutant receptor for ATP, thus reducing the potency of competitive EGFR-

TKIs [52].
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De novo T790M mutations have been found to co-exist at a low frequency in EGFR-TKI 

treatment-naïve patients with EGFRm positive NSCLC [53,54]; these are rarely seen by 

standard genotyping methods, occurring in 3.5% of patients [55]. However, with the 

introduction of highly sensitive assays, the frequency of de novo T790M mutation in EGFR-

TKI-naïve patients has been shown to range from 22% to 80% [56-60]. In a meta-analysis of 

1462 patients with EGFRm positive advanced NSCLC across 22 studies, pre-treatment de 
novo T790M mutation-positive status in TKI-naïve patients, was associated with decreased 

PFS (HR 2.23, p < .001) and OS (HR 1.55, p = .003) with EGFR-TKI therapy (erlotinib or 

gefitinib) compared with pretreatment T790M mutation-negative status [61]. There is 

evidence that germline T790M mutations may be present in up to 50% of all patients with de 
novo T790M [62]. This has implications both around appropriate treatment sequencing and 

the screening of family members, but must also be considered with the caveat that false 

positive results may occur [63]. The prevalence of germline T790M mutations is currently 

being studied in the INHERIT trial (NCT01754025) [64].

Bypass resistance mechanisms utilize alternative cellular pathways and activating 

downstream signal transduction, thereby facilitating tumor cell growth and survival. MET 
gene amplification, HER2 gene amplification, and PI3KCA gene mutations are most 

frequently observed [22,38,65,66]. Changes in tumor phenotype at disease progression have 

also been reported, with up to 14% of EGFR-TKI resistant tumors showing transformation 

to small-cell lung cancer (SCLC) [22]. Rarely, epithelial-to-mesenchymal transition can 

occur [67]. Other rare mechanisms of resistance to EGFR-TKIs include acquired receptor 

tyrosine kinase fusions and BRAF kinase fusions [68-70].

Yu and colleagues performed targeted next-generation sequencing in EGFR-TKI-naïve 

EGFRm positive lung cancer. Concurrent HER2 amplification, MET amplification, or TP53 
mutations were associated with a shorter time to progression and OS on EGFR-TKI therapy 

[71]. Thus, identification of these concurrent mutations early in the treatment pathway may 

help tailor personalized treatment options for these patients by adopting new therapeutic 

strategies from the outset to overcome primary resistance.

3. Third-generation EGFR-TKI therapy at acquired resistance

3.1 T790M resistance mutation

Third-generation EGFR-TKIs can effectively target both EGFRm and T790M resistance 

mutations, while sparing activity of wild-type EGFR [15,17-19,72-80]. Osimertinib is now 

globally recommended for the treatment of patients with T790M NSCLC following disease 

progression on EGFR-TKI [20,21]. Table A.2 summarizes third-generation EGFR-TKIs that 

are approved and in clinical development.

In the AURA program of clinical trials, once-daily dosing of 80 mg osimertinib consistently 

showed clinical benefit in patients with T790M NSCLC following disease progression on 

first or second-generation EGFR-TKIs [47,79,81]. In the Phase III AURA3 trial, objective 

response rate (ORR) by investigator assessment was 71% (95% CI: 65–76) and median PFS 

was significantly longer with osimertinib (10.1 months) than platinum-based doublet 

chemotherapy (4.4 months) (HR 0.30, 95% CI: 0.23–0.41; p < .001) [79]. These clinical trial 
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data are supported by a large, global observational study of more than 3000 patients with 

T790M NSCLC and disease progression on prior EGFR-TKI (ASTRIS), in which 

osimertinib treatment showed an ORR of 57% (95% CI: 55–58) and a median PFS of 11.0 

months (95% CI: 10.6–11.1). Furthermore, in AURA3, osimertinib demonstrated clinically 

meaningful and durable CNS responses; CNS ORR 54–70% [17,82].

3.2 T790M testing and failure rates

Current guidelines recommend T790M testing at clinical progression on a first-line EGFR-

TKI, using tissue biopsy, plasma circulating tumor DNA (ctDNA) testing or both [3,21]. 

Because successful tissue biopsy is often not feasible, plasma testing should be considered a 

viable approach as the method is time effective and has little impact on patient morbidity. 

Unlike conventional tissue biopsies, liquid biopsies can circumvent tumor heterogeneity and 

quantify the proportion of mutated gene copies, which can be beneficial when monitoring 

disease response and in predicting early treatment failure [83,84]. However, T790M 

detection rates are often lower with plasma samples than with adequate tissue or cytology 

samples as ctDNA testing relies on DNA being shed from the tumor [85-88]. Indeed, high 

rates of false negative ctDNA T790M have been observed across the AURA clinical trial 

program: positive percentage agreement (PPA) was 51% in AURA3 [44,79,89,90]. This 

highlights the need for high DNA concentrations in plasma samples and for assays with 

greater sensitivity when analyzing plasma ctDNA samples for T790M, such as droplet 

digital polymerase chain reaction assay [91]. For patients with a negative plasma T790M 

result, it is recommended to reflex test a tissue-based specimen [92].

There is some preliminary evidence to suggest that T790M detection may be lower in the 

real-world setting compared with the clinical setting [93], possibly due to poor quality 

specimens, pre-analytical issues or limited access to liquid biopsies. Further research and 

development are therefore required to improve the quality and utility of liquid biopsies in 

clinical practice.

Tissue re-biopsy is not feasible for up to 20% of patients with progression on an EGFR-TKI, 

due to the risk of complications, lack of consent for the procedure, poor performance status 

of the patient or inaccessibility of the tumor [94-96]. In patients for whom T790M testing 

(plasma or tissue) is performed, not all will receive a result for reasons such as insufficient 

tissue, false-negative on plasma test or test limitations [97]. Recently, in a prospective 

Japanese study in 236 patients with EGFRm positive NSCLC and disease progression on 

first- or second-generation EGFR-TKI, 13% of patients (n = 31) had not been tested for 

T790M mutations after disease progression. Of the 199 patients who were tested for T790M, 

31% of patients tested positive. Of note, 50 patients underwent second re-biopsy and eight 

had third re-biopsy, which led to T790M mutation detected in an additional 12 patients [93]. 

In line with these findings, a US study of electronic health records showed that following 

first- or second-generation EGFR-TKIs, only 28% of those tested for EGFR mutations had a 

T790M positive status [98]. In both of these studies, the majority (>90%) of patients who 

were T790M positive, received osimertinib as their subsequent treatment [93,98]. There 

remains limited evidence to guide treatment for patients who are T790M negative, or do not 

receive a valid result and therefore their T790M status remains unknown.
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3.2 Uncommon EGFR mutations

Uncommon EGFR mutations in exons 18, 20 and 21, including L861X, G719X and S768I, 

represent approximately 10% of EGFR mutations [99]. In an open-label Phase II study (n = 

35), osimertinib demonstrated efficacy in patients with NSCLC with uncommon EGFR 
mutations other than exon 19 deletion, L858R, T790M and insertion in exon 20; partial 

responses were reported in seven (78%) patients with L861Q mutation, ten (53%) patients 

with G719X mutation and three (38%) patients with S768I mutation [100].

3.3 Proportion of patients who receive second-line treatment after first- / second-
generation EGFR-TKIs

We reviewed the rates of subsequent therapies following discontinuation reported in 

randomized control trials (RCTs) of EGFR-TKIs in the first-line EGFRm positive advanced 

NSCLC setting (Table A.1).

For first-generation EGFR-TKIs (gefitinib / erlotinib / icotinib), the second-line systemic 

treatment rate was 47–82% (Table A.1). For second-generation EGFR-TKIs (afatinib / 

dacomitinib), the rate was 58–78%. Among RCTs that reported the types of subsequent 

treatment received, the majority received chemotherapy after EGFR-TKI therapy 

[6,7,10-13,101-103]. In the NEJ002 trial, 20 of 114 patients did not receive any subsequent 

regimens after first-line gefitinib due to a poor performance status, interstitial lung disease, 

exacerbation of co-morbidities, and patient preference [7]. There were very limited reports 

of T790M testing rates.

RCTs provide a good indicator of the rate of subsequent treatment for patients who 

discontinue first-line EGFR-TKIs. However, these are not representative of the real world, as 

patients enrolled into RCTs are usually healthier (performance status <2 and good organ 

function), do not have symptomatic brain metastases and are monitored well as per protocol. 

As a result, in real-world practice, the proportion of patients receiving second-line treatment 

can be lower. In a German study investigating patients with EGFRm positive advanced 

NSCLC, 30% of patients did not reach second-line therapy [104]. However, in a US study 

only 38% of patients with NSCLC treated with a first- or second-generation EGFR-TKI 

received a subsequent treatment [98]. In a recent analysis of treatment patterns from the US 

Flatiron Electronic Health Record-derived database, 44% of patients with EGFRm positive 

advanced NSCLC received second-line treatment [55].

It should be noted that when many of the RCTs listed here were undertaken, T790M testing 

was not routine and third-generation EGFR-TKIs were unavailable as a post-first-line 

EGFR-TKI treatment option. In fact, among patients in the RCT chemotherapy arms, a 

higher proportion received subsequent treatment, mainly cross-over to second-line EGFR-

TKI therapy [8-12,102,103].

In the best-case scenario, approximately 50% of patients with EGFRm positive advanced 

NSCLC who start with first- or second-generation EGFR-TKIs will be T790M positive at 

disease progression and eligible to receive second-line osimertinib. However, some of these 

patients would not receive valid results, which may reduce the T790M positive rate to as low 

as 30%, as reported by Seto and colleagues [93]. Furthermore, 18–53% of patients (based on 
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RCT data), may not receive any second-line treatment. A composite estimate of the 

proportion of patients who receive first- or second-generation EGFR-TKIs but do not receive 

osimertinib after progression could be as high as approximately 70%, meaning only 30% of 

patients with EGFRm positive advanced NSCLC may ever receive the clinical benefit of 

osimertinib if treated in the second line (Figure 2).

4. Third-generation EGFR-TKI therapy as first-line treatment

The selective nature of third-generation EGFR-TKIs, makes them an attractive therapeutic 

option in the first-line EGFRm positive NSCLC setting. The efficacy and safety of first-line 

osimertinib in advanced EGFRm positive NSCLC was recently assessed against the first-

generation EGFR-TKIs erlotinib or gefitinib (standard EGFR-TKI) in the global Phase III 

FLAURA trial [19]. FLAURA achieved its primary endpoint, with osimertinib 

demonstrating PFS superiority over standard EGFR-TKI (median PFS, 18.9 versus 10.2 

months, HR 0.46; 95% CI: 0.37–0.57, p < .001). The PFS benefit was consistent across all 

subgroups and was similar in patients with (HR 0.47) and without known CNS metastases 

(HR 0.46) at study entry. Response rates did not differ significantly between the treatment 

groups (80% with osimertinib and 76% with standard EGFR-TKI); however, the median 

duration of response was longer in patients treated with osimertinib (17.2 versus 8.5 

months). At data cut-off, OS data were immature (25%) and were not statistically 

significant; however, they suggest a favorable trend for patients treated with osimertinib (HR 

0.63, 0.45–0.88; p = .0068). PFS2 results are a good surrogate for OS and were non-

calculable (NC) (95% CI: 23.7–NC) for osimertinib versus 20.0 months (95% CI: 18.2–NC), 

HR 0.58 (95% CI: 0.44–0.78; p = .0004) for standard EGFR-TKI [19]. Based on these 

findings, osimertinib is approved in the US, EU and Japan for the first-line treatment of 

patients with EGFRm (Ex19del / L858R) positive advanced NSCLC [105,106].

At present, the optimal therapeutic strategy for osimertinib and its positioning within the 

current sequential treatment paradigm is not definitive. When considering a first-line EGFR-

TKI, several factors must be considered. Certainly, giving osimertinib in the first-line setting 

would provide every eligible patient with EGFRm positive NSCLC the chance to benefit 

from the improved efficacy (as shown in FLAURA) versus erlotinib or gefitinib, along with 

the known reduced risk of CNS progression associated with osimertinib treatment.

A second consideration would be that multiple exposures to systemic agents, as in the 

multiple EGFR-TKI sequencing strategy, can lead to increasing heterogeneity and genomic 

complexity in tumors, resulting in a poorer response with later lines of therapy [107]. 

Consequently, a patient may derive greater benefit from a more potent EGFR-TKI 

administered in the first-line setting rather than in the second-line or later.

A third consideration is the high risk of CNS metastases among patients with EGFRm 

positive NSCLC [108,109]. Thus, demonstrable efficacy and safety of EGFR-TKI therapy in 

patients with EGFRm positive NSCLC and CNS metastases is particularly relevant. Both 

AURA3 and FLAURA reported greater CNS efficacy with osimertinib versus platinum-

pemetrexed and standard EGFR-TKI (gefitinib / erlotinib), respectively [17,18]. In 

FLAURA, CNS PFS in patients with measurable and / or non-measurable CNS lesions was 
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not reached with osimertinib (95% CI: 16.5 months–NC) and was 13.9 months (95% CI: 8.3 

months–NC) with standard EGFR-TKI (HR 0.48; 95% CI: 0.26–0.86; p = .014 [nominally 

statistically significant]). Moreover, CNS ORR were significantly higher in patients with one 

or more measurable CNS lesions (91% versus 68%; odds ratio, 4.6; 95% CI: 0.9–34.9; p 

= .066) and in patients with measurable and / or non-measurable CNS lesions (66% and 

43%; odds ratio, 2.5; 95% CI: 1.2–5.2; p = .011) versus standard EGFR-TKI, and the 

probability of experiencing a CNS progression event was consistently lower with 

osimertinib [18].

Currently, no direct comparable data for second- versus third-generation EGFR-TKIs exists 

in the first-line setting. Moreover, OS data for both AURA3 and FLAURA are immature 

[19,79]. Interestingly, in the post-progression analysis of FLAURA, the PFS benefit with 

osimertinib versus standard EGFR-TKI was maintained throughout all time-to-event post-

progression endpoints: PFS HR 0.46, time to first subsequent treatment HR 0.51, PFS2 HR 

0.58, and time to second subsequent treatment 0.60 [110]. This step-wise increase of the 

statistically significant hazard ratios HRs provides confidence in the interim OS data. 

Nevertheless, the final OS results are eagerly awaited.

The position of osimertinib in the treatment pathway may also be dictated by the resistance 

mechanisms identified in the first-line setting and the available treatment options following 

progression. Very limited data are available for resistance mechanisms to osimertinib as 

first-line therapy but preliminary data from AURA (first-line cohort) and FLAURA suggest 

similar resistance mechanisms to those observed with osimertinib in the second-line T790M 

setting (Figure 3), and also to first- and second-generation EGFR-TKIs, with the exception 

of T790M mutation, of which there was no evidence [111,112]. Further research into 

resistance mechanisms to first-line osimertinib are ongoing with the ELIOS (NCT03239340) 

trial [113].

Given the dearth of post-osimertinib treatment options, there is an argument that greater 

survival benefit may be derived from the sequential initiation of EGFR-TKIs rather than 

initiating osimertinib in the first-line setting. However, the PFS benefit with osimertinib 

demonstrated as preserved throughout time-to-event post-progression endpoints versus 

standard EGFR-TKIs in the first-line setting must be noted. Furthermore, the majority of 

patients with progression on standard EGFR-TKIs receive chemotherapy.

5. Emerging approaches to targeting EGFR-mutant NSCLC

It is critical that we explore novel approaches to overcome acquired resistance mechanisms 

to EGFR-TKIs and to determine the appropriate sequencing of therapy to prolong patient 

survival.

The acquired C797S mutation, which blocks the covalent binding of second- and third-

generation EGFR-TKIs to the ATP-binding site, has been identified as a potential resistance 

mechanism for irreversible third-generation EGFR-TKIs. In the post-second-line T790M 

setting, data have indicated that the C797S mutation is acquired while retaining both 

EGFRm and T790M mutations [114-116]. The emergence of this tertiary acquired mutation 
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that mediates resistance to all known third-generation EGFR-TKIs is driving the 

development of fourth-generation EGFR-TKIs. EAI001, EAI045, and JBJ-04–125-02 are 

allosteric EGFR inhibitors that target T790M and C797S EGFR mutants, and have 

demonstrated initial efficacy in the preclinical setting [117-119]. Importantly, C797S 

acquisition after first-line osimertinib only co-exists with EGFRm (since osimertinib 

prevents T790M resistance). Moreover, in-vitro modelling supports the potential use of 

osimertinib in combination with first-generation EGFR-TKIs to target EGFRm / C797S 

resistance when T790M and C797S mutations occur in trans allelic context [120].

As new resistance mechanisms to EGFR-TKIs come to light, it is becoming clear that the 

inhibition of EGFR alone may not be sufficient for sustained antitumor activity. Combined 

MET and EGFR inhibition to target EGFR-TKI acquired resistance driven by MET 

amplification is a compelling therapeutic approach, with Phase Ib studies in patients with 

EGFRm positive NSCLC and MET positive acquired resistance demonstrating promising 

safety, tolerability, and preliminary activity of osimertinib (TATTON, NCT02143466) [121] 

or gefitinib (NCT02374645) [122] in combination with the MET-TKI savolitinib. This 

approach provided the basis for the ongoing Phase II SAVANNAH (NCT03778229) trial, 

which will investigate the efficacy of osimertinib in combination with savolitinib in patients 

with EGFRm and MET positive NSCLC, following progression on osimertinib treatment. 

Indeed, a multi-drug, biomarker-directed Phase II platform trial (ORCHARD; 

NCT03944772) is evaluating resistance mechanisms and combination treatment options for 

patients with EGFRm positive NSCLC whose disease has progressed on first-line 

osimertinib therapy. Preliminary results from an ongoing Phase I trial (NCT02609776) 

investigating the EGFR-cMET bispecific antibody JNJ-372 demonstrated a manageable 

tolerability profile [123]. Recently, several case reports have shown that the administration 

of crizotinib (an ALK / ROS1 / MET inhibitor) in combination with osimertinib is effective 

and well tolerated in patients with EGFRm positive NSCLC with acquired T790M and MET 

amplification resistance mutations [124]. Other MET plus EGFR combinations have been 

investigated, but showed discordant results, so the benefit of this approach remains to be 

fully elucidated [125-129].

Other potential combinations that target resistance mechanisms that are currently under 

investigation include EGFR-TKIs in combination with MEK1 / 2 inhibition [121], 

antibodies against EGFR [130], antibodies against vascular endothelial growth factor 

(VEGF; NCT02803203) and VEGF receptor (NCT02789345), mTOR inhibition 

(NCT02503722) and immunotherapy. Preclinical models have demonstrated that activation 

of the EGFR pathway induces PD-L1 expression, enhancing susceptibility of the lung 

tumors to PD-1 blockade [131]. This suggested that the combination of PD-1 blockade with 

EGFR-TKIs might be a viable therapeutic approach to extend duration of treatment response 

and delay development of resistance in the EGFRm positive NSCLC setting [131]. However, 

the combination approach of EGFR-TKIs with immunotherapy (gefitinib + durvalumab 

[132], erlotinib + atezolizumab [133], pembrolizumab + gefitinib [134]) yielded an 

unexpectedly high incidence of grade 3 / 4 adverse events. Thus, further development of this 

approach is considered controversial. However, other immunotherapy approaches may 

provide benefit as salvage treatment strategies following progression on EGFR-TKIs. For 

instance, in the Phase III IMpower150 study, atezolizumab in combination with 
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bevacizumab and chemotherapy has shown promising activity in patients with pretreated 

EGFRm positive NSCLC following progression on EGFR-TKIs [135]. This suggests that 

immunotherapy checkpoint inhibitors in combination with chemotherapy or other treatments 

may be a viable therapeutic approach following resistance to EGFR-TKIs. Furthermore, the 

ongoing KEYNOTE-789 trial (NCT03515837) is evaluating if chemotherapy combined with 

pembrolizumab improves outcomes in patients with EGFRm positive NSCLC and 

progression on an EGFR-TKI.

In addition to immunotherapy checkpoint inhibitors, other emerging immunotherapy 

strategies warrant investigation for treatment of resistance to EGFR-TKIs, such as 

combinations with anti-CD73 agents (for example oleclumab; NCT03381274).

The combination of EGFR-TKIs with chemotherapy is also under investigation for 

treatment-naïve patients where the availability of third-generation EGFR-TKIs is limited. 

The Phase III study NEJ009 evaluated the superiority of gefitinib in combination with 

pemetrexed-carboplatin versus gefitinib monotherapy in patients with newly-diagnosed 

EGFRm positive NSCLC. Although the combination did not demonstrate superiority in 

PFS2, the results reported a potential increase in long survivors [136]. Another Phase III 

study showed the addition of pemetrexed-carboplatin to gefitinib therapy significantly 

prolonged PFS and OS in patients with chemotherapy-naïve EGFRm positive NSCLC, albeit 

with increased toxicity [137].

At the core of future research will be the need to determine the appropriate sequencing of 

treatments for patients with advanced EGFRm positive NSCLC along with standard EGFR-

TKIs and, as the disease landscape evolves, with use of later-generation EGFR-TKIs in the 

first-line setting, such as osimertinib. This will ultimately require selected treatments for a 

given patient to be based on the results of comprehensive, sensitive molecular profiling 

throughout the treatment journey. In the first-line setting, this may include EGFR-TKIs 

administered either as monotherapy, or in combination with other mechanistic approaches, 

in order to improve benefit in molecularly identified high-risk patients or delaying 

resistance. Monitoring dynamic disease evolution using liquid biopsies is likely to play an 

important role in this setting, enabling clinicians to serially monitor changes in circulating 

tumor DNA, mutation burden, the appearance or disappearance of mutations during 

treatment, and as a predictor of response or progression. Finally, as our biological and 

translational understanding of acquired resistance continues to develop, this will inform 

specific treatments for subsequent lines of therapy in the second-line setting and beyond.

6. Conclusions

Advancements in the clinical development of EGFR-TKIs have led to evolving 

improvements in clinical outcomes for patients with EGFRm positive advanced NSCLC. In 

the first-line setting, osimertinib treatment provided superior efficacy to previous standard 

EGFR-TKI therapy with significantly longer PFS and improvements in time to treatment 

failure and time to second subsequent therapy or death. Furthermore, preclinical and clinical 

data indicate that osimertinib can cross the intact blood-brain barrier, and CNS efficacy has 

been demonstrated in patients with EGFRm positive advanced NSCLC. Acquired resistance 
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in patients receiving first-line osimertinib is currently being investigated but, encouragingly, 

preliminary data show that no new unexpected mechanisms of resistance have been so far 

identified. Due to the observed multifactorial resistance mechanisms, including EGFR 

mutations, activation of bypass signaling pathways, phenotypic and histologic 

transformation, new therapeutic strategies are needed to tailor personalized treatment 

options. Several clinical development programs are ongoing to investigate the role of 

combination approaches with osimertinib. Further understanding of these potential 

combinations will provide critical information to inform future treatment decisions.
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Figure 1. 
Median PFS with first-line EGFR-TKI treatment in EGFR mutation-positive NSCLC and 

the proportion of patients who received subsequent systemic treatment 

[6-12,19,29,32,33,102,103,138-142]

*As a proportion of patients who discontinued EGFR-TKI at data cut-off; treatment 

presumed systemic when details not provided; however, some references are not clear in this 

respect. Note, due to the differences in trial designs and patient populations, cross-trial 

comparisons should be interpreted with caution.
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Figure 2. 
Approximation of proportion of patients with EGFRm positive advanced NSCLC treated 

with first- / second-generation EGFR-TKIs and who go on to receive osimertinib as second-

line therapy [6-12,19,93,95,98,102,103,111,138-140,143-145]

*Based on the proportion of patients who discontinued first-line EGFR-TKIs in randomized-

controlled trials and who received subsequent systemic treatment: 47–82%

†Based on real-world evidence studies indicating the proportion of patients who received an 

EGFR T790M test: FLATIRON (30%) and REMEDY (97% of patients with samples 

collected)

¶Based on a meta-analysis of literature indicating a prevalence of 50% (Wang et al. BMC 

2018), and real-world evidence studies indicating a lower than expected T790M positive 

rate: FLATIRON (28%) and REMEDY (31%)

§Based on real-world evidence studies, the vast majority of patients who test positive for 

T790M receive osimertinib treatment: FLATIRON (96%) and REMEDY (90%)

FLATIRON: US Flatiron Electronic Health Record-derived database study

REMEDY: A prospective study of molecular testing status in the EGFR mutation positive 

NSCLC patients with disease progression during EGFR-TKI treatment
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Figure 3. 
A. Resistance mechanisms post ≥second-line osimertinib* [146-152]

Composite pie chart (range of data values correspond to the size of each segment)

*Resistance mechanism reported may overlap with another
†Resistance mechanisms in plasma; frequency of MET amplification is expected to be 

higher in tissue

B. Plasma-based resistance mechanisms post first-line osimertinib (FLAURA)* [112]

*Resistance mechanism reported may overlap with another

†Resistance mechanisms in plasma; frequency of MET amplification is expected to be 

higher in tissue
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