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FastClone is a probabilistic tool for deconvoluting
tumor heterogeneity in bulk-sequencing samples
Yao Xiao1,4, Xueqing Wang1,4, Hongjiu Zhang1,3,4, Peter J. Ulintz 2, Hongyang Li1 & Yuanfang Guan 1,2✉

Dissecting tumor heterogeneity is a key to understanding the complex mechanisms under-

lying drug resistance in cancers. The rich literature of pioneering studies on tumor hetero-

geneity analysis spurred a recent community-wide benchmark study that compares diverse

modeling algorithms. Here we present FastClone, a top-performing algorithm in accuracy in

this benchmark. FastClone improves over existing methods by allowing the deconvolution of

subclones that have independent copy number variation events within the same chromosome

regions. We characterize the behavior of FastClone in identifying subclones using stage III

colon cancer primary tumor samples as well as simulated data. It achieves approximately

100-fold acceleration in computation for both simulated and patient data. The efficacy of

FastClone will allow its application to large-scale data and clinical data, and facilitate per-

sonalized medicine in cancers.
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Targeted therapy, a widely adopted cancer treatment1, might
have the potential to elicit promising initial responses, but
many patients develop drug resistance during treatment2,3.

Tumor heterogeneity is a major contributor to the development
of drug resistance1–4. This heterogeneity is both spatial and
temporal3,5–7. Spatial heterogeneity refers to the phenomenon
that a tumor is composed of subclones of different genetic
background5,6, and temporal heterogeneity refers to the dynamic
evolution of the tumor genomes through the disease course7.
Therefore, when targeted therapy exerts its selection pressure,
subclones with drug-resistant mutations would gradually dom-
inate due to selective advantage8. Hence, dissecting the clonal
composition of a tumor not only helps us to understand its
biology and evolution but also guides the design of combinatorial
therapies2.

One strategy to deconvolute spatial and temporal tumor het-
erogeneity is to perform multiregional and longitudinal sam-
pling2. However, this strategy may not be suitable under all
circumstances because of the ethics of carrying out unnecessary
invasive procedures as well as the practicality of longitudinal
sampling for solid tumors, since the majority of cancer samples
are obtained from surgical procedures, and if a tumor has been
removed at the one-time point, it will not be available for sam-
pling at a later time point3. In recent years, strategies have been
developed by combining deep whole-genome sequencing (WGS)
or whole-exome sequencing (WES) with novel statistical and
computational methods. The workflow generally consists of two
parts. First, bulk sequencing provides mixed information about
genetic alterations for all subclones in the tumor, including allele
frequency for single-nucleotide variations (SNVs) and copy
number alteration (CNA). Then, machine learning models are
used to cluster the SNVs into subclones and reconstruct the
tumor phylogenetic trees9. A number of pioneering models
based on the SNV and CNA profiles have been developed since
201310–27. While applauding for these pioneer works including
but not limited to PyClone, PhyloWGS, and SciClone, the field
needed a standard for evaluating these algorithms28. This need
was addressed by the DREAM Somatic Mutation Calling-
Heterogeneity Challenge (DREAM SMC-Het Challenge), which
evaluated the models on three aspects28: (1) evaluating each
model’s ability in predicting global traits, including tumor purity,
the number of subclones, and the proportion of each subclone;
(2) assessing each model’s ability to assign SNVs to each sub-
clone; (3) assessing each model’s accuracy in inferring phyloge-
netic relationships28. This carefully designed evaluation scheme
provides a solid benchmark for tumor heterogeneity modeling
algorithms.

Here, we present FastClone, a probabilistic model for inferring
tumor heterogeneity, which ranks as a top algorithm in the
DREAM SMC-Het Challenge. In addition, FastClone excels in
inference speed: it takes only a few seconds for inferring a tumor
with tens of thousands of mutations. In this study, FastClone is
applied to both computationally simulated data and deep
sequencing stage III colon tumor samples acquired at Michigan
Medicine. The efficiency and accuracy of the algorithm will allow
FastClone to be applied in clinical research and very large-scale
datasets.

Results
Overview of FastClone algorithm. FastClone uses the bulk
DNA-sequencing data of a single tumor sample as the input
(Fig. 1). Information includes the copy number profile and allele
frequencies of SNVs. FastClone starts by inferring the prevalence
of cells that contain a certain SNV in the tumor sample (ρ). For
each SNV, FastClone calculates ρ based on the observed allele

frequencies (β), the major and the minor copy numbers of CNA
(denoted as Nmajor and Nminor, respectively). In this regard, Fas-
tClone shares some similarities with previous work, such as
PyClone11, SciClone15, and PhyloWGS17. The major differences
between FastClone and other algorithms lie in the following two
aspects: (1) greatly accelerating the inference process, and (2)
improving the generalizability of the method to the scenario
where CNV happened independently on the same section of
chromosomes in different subclones (denoted as “2-state” or
“multistate” below). This was achieved by first identifying sub-
clones based on SNVs on nonambiguous chromosome sections,
and then assigning all SNVs, regardless of the CNA status, to the
subclones by maximal likelihood. Lastly, the phylogeny tree of the
tumor is inferred by exhaustively listing out all possibilities and
selecting the structure with the highest likelihood (Fig. 1). Sup-
plementary Table 1 summarizes all the symbols used in the fol-
lowing equations.

Estimating the prevalence of cells with a specific SNV. The
prevalence of cells that contain a specific SNV (ρ) can be directly
calculated from the allele frequency of the SNV (β). However, the
existence of CNA events complicates the situation. Thus, the
calculation of ρ is discussed under two situations—with or
without CNA events. Sex chromosomes of males, since they only
have one X chromosome, are discussed separately in both situa-
tions (Fig. 2).

When there is no CNA event (Fig. 2a-(1), b-(1)), the mutated
allele would randomly appear in either one of the pair of
autosomes or the sex chromosomes of a female (Fig. 2a-(1)). We
denote the total cell number by ncell. Then, the number of
mutated alleles can be calculated as ncell × ρ × 1, and the total
number of alleles is 2ncell. Therefore, β equals the proportion of
mutated alleles in all alleles (Eq. (1)). To calculate ρ from β, we
inverted the function (Eq. (2))

β ¼ n cell ´ ρ ´ 1=2 n cell ¼ ρ=2; ð1Þ

ρ ¼ 2β: ð2Þ
For male’s sex chromosomes (Fig. 2b-(1)), the allele frequency

directly equals the proportion of tumor cells (Eqs. (3) and (4))

β ¼ n cell ´ ρ ´ 1=n cell ¼ ρ; ð3Þ

ρ ¼ β: ð4Þ
In the below calculation, we will not repeat the process of

division of ncell in both denominator and numerator.
When there are CNA events, they can happen only in one

subclone (represented by 1-state below), or happen in both one
parent and its child subclones, or happen in two independent
subclones (represented by 2-state below). Along this line, CNA
events could be more than 2-state. In the CNA data, we have a list
of chromosome sections and their CNA values in each state. The
relationship between the prevalence of cells that contain an SNV
to the observed frequency is highly affected by CNA events. Our
approach estimates the prevalence of the cells based on SNVs
with no CNA or with 1-state CNA events to identify the number
of subclones. We do not know the relative ratios of the subclones
if the chromosome segment were 2-state or multistate and thus
unable to infer the ρ associated with the SNV event. Then, we
assign each SNV to a subclone no matter which CNA states they
are associated with by maximal likelihood.

CNA events can happen multiple times to the chromosome loci,
and the order of occurrence of SNV and CNA events is not fixed. 1-
State CNA events can thus be further divided into several situations.
For these situations that the order of SNVs and CNA events are
mixed together, we also consider whether the SNV is located on the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18169-2

2 NATURE COMMUNICATIONS |         (2020) 11:4469 | https://doi.org/10.1038/s41467-020-18169-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


major copy (Fig. 2a-(2)) or the minor copy number (Fig. 2a-(3)). As
one cannot directly determine the order of occurrence of genomic
events and decide which set of equations to use, FastClone
calculates the ρ value of every possible scenario. Then, the
association scores between SNVs and subclones for all scenarios
are calculated separately, and the SNVs are assigned to the subclone
with the highest association score among all scenarios. This
association score will be different for each scenario, because if the
scenario is correct, the ρ will be more likely to be assigned to that
peak (Fig. 1d). During the estimation of the number of clones, if

there are enough SNVs on the chromosome sections without CNV
(>100), we use these SNVs to estimate the number of clones.
Otherwise, all scenarios get votes in the estimation of the number of
subclones, because we do not know the exact ordering of SNV and
CNV events. Although individually some of the scenarios are
wrong, statistically across many SNVs, this can help us to generate
the correct number of clones, especially together with the SNVs on
chromosomes without CNAs. The steps of estimating subclone
numbers and assigning SNVs to subclones would be described in
detail in the next two sections.
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Fig. 1 Overview of the FastClone algorithm. a The tumor sample is heterogeneous, composed of both normal cells and tumor subclones (top panel). The
tumor dynamically evolves throughout the disease course, generating subclones with different genotypes (bottom panel). The dots in different colors
represent different SNVs. b DNA-sequencing of the bulk tumor provides information about (1) allele frequency of each SNV (β), that is, the observed allele
occurrence among all cells (top panel); (2) a CNA profile in the form of Nmajor and Nminor (bottom panel). Each of the yellow dots represents a copy of the
allele with a certain SNV. c FastClone model. First, we calculated the proportion of cells that carry each SNV (ρi for SNVi). This calculation is discussed in
two situations: with and without CNA events. Multiple possibilities are further discussed (see Fig. 2). Blue spheres represent normal loci, and red spheres
represent mutated loci that contain SNVs. Then, subclone numbers, subclone proportions, and tumor purity are determined from the distribution of ρ. After
that, SNVs are assigned to subclones. Finally, the putative evolutionary relationship of the subclones is established. d The workflow of FastClone algorithm.
The workflow starts with sequencing information as input, which includes allele frequency (β) and CNA profile (Nmajor and Nminor). Since we do not know
the order of occurrence of genomic events, all possible scenarios are discussed, and ρ value for each scenario is calculated separately. The number of
possible scenarios equals the value of Nmajor. Then, KDE is used to determine the distribution of ρ. Each peak in the ρ distribution indicates a subclone. After
that, association scores between each SNV–subclone pair are calculated. Then, the SNV is assigned to the subclone with the highest association score. If
there are several ρ values associated with one SNV, then the ρ that provides the highest association score is used to assign the SNV to the subclone (in this
case, ρ2 that assigns this SNV to the green subclone is considered the correct solution). Finally, the most likely phylogeny tree of the subclones is
constructed.
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When the CNA event happens to the chromosome section that
is already with an SNV (Fig. 2a-(2)), the SNV will be duplicated.
The relationship between β and ρ can be calculated in a similar
way as in Eqs. (1) and (5). Depending on the ordering
relationship between the CNA events and the SNV, the equation
for ρ can be obtained by taking the inverse of Eqs. (5) and (6):

β ¼ ½1; 2; :::;Nmajor� ρ
ðNmajor þ NminorÞρþ 2ð1� ρÞ ; ð5Þ

ρ ¼ 2β
½1; 2; :::;Nmajor� þ 2β� βðNmajor þ NminorÞ

: ð6Þ

When the target allele has fewer copies than the other allele
(Fig. 2a-(3)), then in Eq. (5), the ρ at the numerator position
should be multiplied by the minor copy number instead of the
major copy number (Eq. (7)). We inverted Eq. (7) to obtain the
formula of ρ (Eq. (8)):

β ¼ ½1; 2; :::;Nminor� ρ
ðNmajor þ NminorÞρþ 2ð1� ρÞ ; ð7Þ

ρ ¼ 2β
½1; 2; :::;Nminor� þ 2β� βðNmajor þ NminorÞ

: ð8Þ

Of note, Nminor can also be more than one. Nminor can also be
zero, that is, deletion, in which case, the conditions of Eqs. (7) and
(8) are not considered. For the situation where the CNA event
happens before an SNV (Fig. 2a-(4–1,2)), it does not matter
whether the target allele has a major copy number (Fig. 2a-(4–1))
or a minor copy number (Fig. 2a-(4–2))—the resulting frequency
would be the same in these two situations. Here, the mutation
would only happen to one allele, so the ρ in the numerator
position of Eq. (5) should be multiplied by the constant value one,

which is simplified in the formula (Eqs. (9) and (10)):

β ¼ ρ

ðNmajor þ NminorÞρþ 2ð1� ρÞ ; ð9Þ

ρ ¼ 2β
1þ 2β� βðNmajor þ NminorÞ

: ð10Þ

Finally, for the sex chromosomes of males (Fig. 2b), we
removed Nminor variant alleles and half of the normal alleles from
the denominator of Eqs. (5) and (11). Then, we again calculated ρ
in two situations—the mutation occurs before a CNA event
(Fig. 2b-(2), Eq. (12)) or after a CNA event (Fig. 2b-(3), Eq. (13))

β ¼ ½1; 2; :::;Nmajor� ρ
Nmajorρþ ð1� ρÞ ; ð11Þ

ρ ¼ β

½1; 2; :::;Nmajor� þ β� β ´Nmajor
; ð12Þ

ρ ¼ β

1þ β� β ´Nmajor
: ð13Þ

The above analysis is a comprehensive analysis of different
scenarios. It is possible that an inferred ρ is >1, when the scenario
is an incorrect one. In such cases, the inferred value is discarded
as it is impossible to have a prevalence bigger than one.

Estimating the number of subclones and tumor purity. We
then identified the number of subclones based on all inferred
prevalence values. First, we used Gaussian kernel density esti-
mation (KDE) to reconstruct the distribution of allele frequency.
From the reconstructed distribution, we extract the initial guess of
the clusters by identifying local maxima in the distribution, which
will be refined by more accurate probabilistic distributions.
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Fig. 2 Calculating the prevalence of cells with target SNV (ρ) and predicting phylogenetic trees. a, b Gray bars represent maternal chromosomes and
brown bars represent paternal chromosomes, blue spheres represent normal loci, and red spheres represent mutated loci that contain SNVs. c The
distribution of peaks’ location on the ρ spectrum (left panel) will allow the identification of subclones (right panel). Dots in different colors represent the
SNVs that are assigned to the peaks. Intuitively, an SNV being assigned to a peak indicates this SNV occurs in the subclone that is related to this peak. The
ith peak’s location ρi indicates that ρi percent of the cells contain the SNVs assigned to this peak. Since all child subclones contain the SNVs inherited from
their parent subclones, the ρ value of child subclones should be smaller than their parent subclones. Therefore, a subclone with a smaller peak location in
the ρ spectrum cannot be the parent of a subclone associated with a peak of larger ρ. However, each subclone’s fraction in the sample is not strictly related
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Although this is a rough approximation, assuming Gaussian
results in substantial acceleration in computation compared to
alternatives such as beta distribution. This roughness is alleviated
by the assignment of the SNVs later, which is modeled with the
binomial distributions. Additionally, beta distribution tends to
overestimate the number of clones, and tends to identify sub-
clones where there is no separate peak15. For example, it is
possible to generate clones with only one or two variants, which
takes sophisticated methods to prune15 and potentially leads to
overestimation of the number of clones. While in our KDE
estimation, we utilized Scott’s rule to derive the number of clones
and controls such overestimation.

Below, we show the KDE function of the distribution of ρ,
where n is the total number of SNVs, βj is the allele frequency of
the jth SNV, Z is the normalization constant to ensureRþ1
�1 f̂ ðβÞdβ ¼ 1, and ℎ is the bandwidth for smoothing density

estimations to make it as close as possible to the true density
(Eq. (14)). Here, we applied Scott’s rule29 to estimate the
bandwidth ℎ with d-dimensional data (d indicates the number of
samples) (Eq. (15))

f̂ ðβÞ ¼ 1
nZ

Xn

j¼1

e
β�βj
h

� �2

; ð14Þ

h ¼ n�
1

dþ4: ð15Þ
FastClone then enumerates all local maxima of the density

function f̂ . It creates a grid over the coordinate space with a
resolution of 0.001, picks up any local maxima, and further
optimizes the maxima locations through Nelder–Mead simplex
algorithm. FastClone uses these local maxima to specify
individual subclones.

Furthermore, based on the fact that all tumor cells inherit the
mutations from their previous generations, there should be at
least one SNV that exists in all tumor cells. Therefore, we use the
biggest local maximum-associated ρ value as the tumor purity.

Assigning SNVs to subclones. To further match the SNVs with
each subclone, we calculated subclones’ weights, which reflect the
prevalence of the subclones in the tumor sample and the asso-
ciation score between each mutation and each subclone. The
rationale behind calculating the weight of the subclone can be
explained by a simple scenario where the prevalence of SNV lies
in exactly the middle of two local maxima. Then, this SNV should
be assigned to the cluster whose prevalence is higher.

The weight and the scores are estimated by optimizing the log-
likelihood function (Eq. (16)). In Eq. (16), C is the total number
of peaks or subclones, wj is the proportion of the jth subclone,
and Ljk is the probability of the kth mutation associated with the
jth subclone. Note that wj is different from ρj, which is defined as
the proportion of cells that contain the jth SNV, because a
subclone may contain several SNVs,

λ ¼
XC

j¼1

ln
Xn

k¼1

wjLjk: ð16Þ

For each mutation, its probability of being associated with
subclones is modeled by several binomial distributions (Eq. (17)),

Ljk ¼ Binomðmk; rk; β̂jkÞ: ð17Þ
Here, Ljk is the probability of the kth mutation associated with

the jth subclone, mk is the observed reads that carry the kth
mutation, β̂jk is the expected allele frequency of the kth mutation
if it is associated with the jth subclone, and rk is the total number
of reads that cover the locus of the kth mutation and pass the

quality filter. Given the proportion wj of the jth subclone, the
expected allele frequency of a mutation (β̂jk) can fall into the
following two cases: SNV located on autosomes or female X-
chromosomes or the SNV located on the male sex chromosomes.
In addition, as we do not know the exact number of alleles that
contain the SNV, we iterate through all possible situations and
choose the one that results in the highest likelihood Ljk.

If the SNV is located on an autosome or female X-chromosome,
there are three possibilities:

(1) If the mutation occurs on the major copy either before or in
the middle of a sequence of CNA event, then,

β̂jk;major ¼
½2; :::;Nmajor� ρj

ðNmajor þ NminorÞρj þ 2ð1� ρjÞ
: ð18Þ

(2) If the mutation occurs on the minor copy before the CNA
event, in several potential cases where there is or there is an
absence of CNA on this minor copy, then,

β̂jk;minor ¼
½1; 2; :::;Nminor� ρj

ðNmajor þ NminorÞρj þ 2ð1� ρjÞ
: ð19Þ

If Nminor is zero (deletion), then this situation is not
considered, because SNV will no longer exist.

(3) If the mutation occurs on either copy after the CNA event,
β̂jk;after ¼

ρj
ðNmajor þ NminorÞρj þ 2ð1� ρjÞ

: ð20Þ

Then, β̂jk will be the most likely value among the above cases
(some of them are overlapping),

β̂jk ¼ argmaxβ̂2fβ̂jk;major;β̂jk;minor;β̂jk;aftergBinomðmk; rk; β̂Þ: ð21Þ
If the SNV is located in a male sex chromosome region, the

case will be similar to the calculation above but with Nminor = 0.
There is no mutation occurring on the minor copy, and thus β̂jk
will be the most likely value between (1) if the mutation takes
place after copy number variation:

β̂jk;major ¼
ρj

Nmajor ´ ρj þ ð1� ρjÞ ð22Þ

or (2) the mutation takes place before copy number variation:

β̂jk;major ¼
½1; 2; :::;Nminor�ρj

Nmajor ´ ρj þ ð1� ρjÞ
: ð23Þ

Then, β̂jk will be the most likely value among these two:

β̂jk ¼ argmaxβ̂2fβ̂jk;major;β̂jk;aftergBinomðmk; rk; β̂Þ: ð24Þ

Reconstructing the phylogeny tree. The phylogeny construction
is done by iterating through all possible tree structures and
excluding the structures that are not possible. To this end, we
must first differentiate two concepts: subclone proportion and its
associated peak location in the ρ spectrum (Fig. 2c). While the
proportion of a parent subclone could be bigger or smaller than
its children, the parent–child relationship for the associated peak
locations must follow this rule: a subclone with a smaller peak
location in the ρ spectrum cannot be the parent of a subclone
with a larger peak location.

Up until this point, we only obtained the number of subclones
and their associated peak locations, as well as their associated
SNPs. We do not yet know the tree structure (see example in
Fig. 2d). Thus, in order to establish a valid tree, we enumerated all
possible structures by examining the peak spectrum. Then, the
associated proportion of each subclone is assigned. With all the
possible tree topologies enumerated, FastClone attempts to rank
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the topologies based on the predefined beta distribution prior that
was explained above, assuming the clones containing more SNVs
will be at lower (towards the child node direction) in the tree
hierarchy. This assumption has its biological reason that as cancer
progresses, the mutation rate is likely to be accelerated due to
accumulated mutations in key genome stability pathways, such as
DNA repair and replication pathways or cell-cycle
checkpoints30,31. However, without other information, often
multiple candidate topologies are valid. This selection was done
with brute-force search of tree structure and comparison.

FastClone achieved the highest accuracy on simulated data. To
test the performance of FastClone, we first applied it to the
simulated benchmark data provided by the SMC Tumor Het-
erogeneity Challenge. Compared to tumor subclone data from
databases and single-cell sequencing data, simulated bench-
mark data are a complementary approach to provide a gold
standard for the reconstruction of subclones28. The SMC
Tumor Heterogeneity Challenge generated the simulated data
based on the BAMSurgeon tool32,33, which generates synthetic
tumors by adding mutations to existing reads, and added
phasing of mutations, large-scale CNA, translocations, trinu-
cleotide SNV signatures, and replication timing effects28. This
design ensures that not only SNVs are created but complicated
features in the real-world data are also represented in the
simulated data28. We used eight simulated samples (Tumors 1,
2, 3, 4, 6, 7, A, and B) to test the accuracy of FastClone, ranging
from 1 to 5 subclones. These simulated samples were based on
the already-sequenced tumor cell line, which is sequenced by
SAMtools34, and their chromosome copy number variations
were obtained by Nexus Copy Number software v7.5. The
performance of the model was evaluated from three aspects: (1)
the ability to predict overall properties of the bulk tumor,
including tumor purity, number of subclones, and the cellular
proportion of each subclone; (2) the ability to accurately match
SNVs with subclones; (3) the ability to determine the phylo-
genetic order of the subclones.

Below, we will present the performance of the model through
each sub-challenge. First, we present the best performances we get
from the model that we further improved after the challenge.
These scores are calculated using all the eight simulated tumor
samples and the evaluation code provided by the challenge. Then,
we compared the performance of FastClone against other
programs.

Sub-challenge 1A evaluates accuracy in predicting tumor
purity. Intuitively, it measures the absolute difference between
the true and the estimated purity. Thus, a perfect prediction will
achieve a score of one, and a random prediction will result in
zero. The median score FastClone achieved on eight samples was
0.988 (Fig. 3a-1A). On the challenge leaderboard, we procured the
same best result with another algorithm with a median
performance score of 0.99, which is an excellent performance
for simulated tumor samples (Supplementary Fig. 1). The
performance scores of all other four software range from 0.37
to 0.89, with a median score of 0.77 (Fig. 3b)35. Sub-challenge 1B
evaluates the accuracy in predicting the number of subclones, the
performance is reflected by a score that is calculated as one minus
the absolute difference between the true and the estimated
number of subclones, divided by the maximal value of the
prediction and the gold standard, so a score of one indicates a
perfect prediction. The median score FastClone achieved on eight
samples was 1 (Fig. 3a-1B). On the leaderboard, FastClone ranked
second place among all software with a median score of 0.75
(Supplementary Fig. 1), and the scores of the other five software
range from 0.38 to 1, with a median score of 0.67 (Fig. 3b)35.

1C evaluates the accuracy in predicting the proportion for each
subclone. The score is calculated by one minus the mean absolute
difference between the true and the estimated distribution of
cellular prevalence. In this part, a median score of 0.974 shows
that the prediction we gave was very close to a perfect result
(Fig. 3a-1C). On the leaderboard, FastClone obtained a score of
0.97 (Supplementary Fig. 1). The scores of the other five software
range from 0.6 to 0.89, with a median score of 0.74 (Fig. 3b)35.
These results suggest a robust performance of the model across a
wide range of scenarios.

Sub-challenge 2 evaluates the performance of the algorithm on
determining mutation assignments to subclones. The scoring
metric is a mean of the correlations between the true and
estimated co-clustering matrix of pairwise SNVs that are
calculated by two different measures, and here, a random
correlation is zero. Two different correlation measures were
applied: first for the binary assignment accuracy and the second
one for the adjacency matrix (i.e., probabilistic assignment where
each SNV is associated with each subclone with a probability).
We obtained median scores of 0.662 and 0.738 on eight tumor
samples, respectively (Fig. 3a-2A, 2B). The leaderboard median
scores of 0.47 and 0.6 place FastClone at the top in this sub-
challenge (Supplementary Fig. 1)35, and the scores of the other
five software (for both sub-challenge 2A and 2B) range from 0.09
to 0.47, with a median score of 0.21 (Fig. 3b).

Sub-challenge 3 focuses on evaluating the prediction accuracy
of subclone phylogeny, and the result is measured by a score that
reflects the mean of the symmetric pseudo-V-measure correlation
between the true and predicted ancestor-descendant matrix. For
sub-challenges 3A and 3B, we achieved median scores of 0.851
and 0.875 on eight simulated tumors (Fig. 3a-3A, 3B). For sub-
challenge 3A, we obtained a median score of 0.69, being the only
team with a final submission on the leaderboard. There are no
entries on the leaderboard for sub-challenge 3B.

Overall, FastClone has an excellent performance in predicting
the tumor purity, the number of subclones, and the proportion of
each subclone. In almost all sections, FastClone had the highest
median score among all the models participated (Supplementary
Fig. 1 and Fig. 3b)35, and by visualizing the comparison between
the ground truth and FastClone’s prediction on one of the
simulated samples, we can more clearly see this outstanding
performance as the predictions are almost the same as the ground
truths across all the sub-challenges (Fig. 3c). This outstanding
performance in SMC-Het Challenge suggests that FastClone is a
state-of-the-art model in the field of tumor subclone
reconstruction.

To investigate whether the number of SNVs would affect
FastClone estimation, we randomly subsampled the SNVs of the
eight simulated tumor samples, and observed the changes of
the predictions for purity and number of clones. For each tumor,
we randomly sampled SNVs for 99 times: from 1 to 9% of the
original number of SNVs. Overall, we found errors are rare for
most tumors even with only dozens of SNVs (Supplementary
Fig. 2). For the two tumors (Tumor 7 and Tumor B), which we
did find a change in the predicted number of clones, the clones
that were dropped off are the ones containing the least SNVs, for
which the sampling was not sufficient. For example, Tumor 7,
with a total of 2834 SNVs, had a clone of only 89 SNVs (3% of the
total population). When we subsampled it to 200 SNVS, we had
only about nine SNVs left, and this number was not statistically
strong enough to support a separate clone. In conclusion,
FastClone’s predictions are mostly robust across a wide range
of SNVs in tumor samples. Furthermore, we assessed how the
number of subclones and the number of SNVs affect FastClone’s
accuracy of estimating the number of subclones through
simulation experiments. As expected, the accuracy drops as the
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number of clones increases, and improves as more SNPs are
included. However, the percentage of error is in general small.
The error rate is only 0.13 when there are four subclones with
only 500 total SNPs, 0.03 when 10,000 SNPs are available, and
almost never wrong when there are only one or two subclones
(Supplementary Fig. 3).

Comparison of FastClone with PyClone on colon cancer data.
We next investigated the behavior and performance of FastClone
compared to the current field standard. We applied both Fas-
tClone and PyClone11 to data generated from a cohort of seven
independent colon cancer tumors, each with one to three spatially
distinct samples, for a total of 15 primary tumor samples31

(Table 1). We will present the results of 14 samples (denoted as
CP and their corresponding biological replicates denoted with T),
as deep sequencing failed for the CP11 T1 sample. All the tumor

samples we collected are at stage III cancer, which indicates that
the cancer might have started to spread into the surrounding
tissues and cancer cells already exist in the lymph nodes of that
region. We found that 50% of the 14 primary tumor samples have
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Fig. 3 FastClone’s performance on simulated data in DREAM challenge. a Evaluation of prediction accuracy for 1A. Tumor purity, 1B. Number of
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Table 1 Summary of tumor samples.

ID Stage Tumor location # Tumor samples

CP08 T3N1M0 Transverse colon 2
CP11 T3N2M0 Cecum 2
CP14 T2N2M0 Cecum 3
CP15 T3N1M0 Cecum 2
CP17 T3N2M0 Sigmoid 2
CP18 T4N2M1 Sigmoid 2
CP19 T3N1M0 Sigmoid 2
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multiple subclones (≥2 subclones), and only 7.1% of the 14 sam-
ples have more than two subclones (Fig. 4a).

We experimented with PyClone, a pioneering and field-
standard software, on this dataset for comparison. PyClone
predicted one more subclone for CP08 T1, CP08 T2, CP11 T2,
and CP14 T1, as well as CP15 T1, and it predicted one less
subclone for CP14 T3 as well as CP18 T1. For CP17 T1 and T2
and CP19 T1 and T2, PyClone returned many more subclones
than FastClone (Fig. 4b and Supplementary Figs. 4–12). PyClone
returned the same number of subclones as Fastclone for only
CP14 T2, CP15 T2, and CP18 T2.

In addition, we have also compared the behaviors of FastClone
and Pyclone’s accuracy for each of the evaluation aspects using the
eight simulated tumor data that we know the ground truth (Fig. 3d).
One of the tumors (Tumor 6) did not finish estimation within a
reasonable time (over a week) and thus was discarded from the
analysis. Based on these comparisons, we clarified several
differences between PyClone and FastClone: (1) PyClone does not
estimate tumor purity; instead, it uses the tumor purity from other
programs’ output. (2) PyClone tends to estimate more subclones
than FastClone. For example, there was one sample (simulated
Tumor 1) that was predicted to have 233 subclones by PyClone
using the default parameter, while the ground truth was 4. We also
tuned the precision parameter of Gamma proposal function for
Metropolis Hastings step to see if we could get fewer subclones, and
that tumor eventually ended up with 40 subclones, but this effect
was not consistent across all the samples. Some samples resulted in
more subclones. Thus, we conclude that PyClone tends to predict
more subclones than FastClone in general.

We further evaluated the computing speed of the algorithms in
both experimentally collected tumors and simulated data. In the

real-world data collected at Michigan Medicine, FastClone
required no >3 s to process a single primary tumor sample
(Fig. 5a, b), while PyClone takes >4 min to handle a cancer
sample, which contains two or three primary tumor samples (it is
preferable that PyClone uses a set of inputs to produce a valid
result). Simulated data allow the number of variants to go up to
tens of thousands, and we observed that as the number of variants
increases, FastClone’s processing time increases linearly, which is
a good property for large-scale data processing (Fig. 5b). The
correlation between SNV number and processing time of
FastClone and PyClone is shown in Supplementary Fig. 13. This
significant improvement in computation speed promises large-
scale application of this software in data collections such as
CancerTracer36. Besides PyClone, we also compared the speed
and behavior of FastClone with CITUP37. CITUP took the
longest time to analyze samples, a potential reason is that
CITUP’s focus is not on speed optimization. The results of
CITUP show that the most likely subclonal composition of the
colon cancer samples are bi-subclones, as all samples’ phylogeny
trees with the highest likelihood contain only two nodes. These
results are more similar to the results given by FastClone than
that of PyClone, which tends to report more clones.

In addition, for demonstration purposes, we also tried to
extract the SNV-associated genes that only exist in multiple-
subclone samples for gene set enrichment analysis (Supplemen-
tary Tables 2–4 and Supplementary Fig. 14), and found shared
genes across seven multiple-subclone samples. It turns out that
two variant-associated genes KRAS and APC exist in five out of
seven primary tumor samples and six out of seven primary tumor
samples, respectively. Moreover, three variant-associated genes
CDK19, TP53, and NLRP10 each exist in four out of the seven
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primary tumor samples, with no intersection among all seven
primary tumor samples (Supplementary Fig. 15).

Discussion
In this work, we present FastClone, an algorithm for modeling
heterogeneity and phylogenetic trees in tumor samples. Com-
pared with current state-of-the-art methods, FastClone features
high accuracy and speed in estimating the proportion of cells with
SNV and the number of subclones and assigning the SNVs to
each subclone, using copy number profiles and allele frequencies
as inputs. The phylogenetic tree is reconstructed subsequently by
exhaustively exploring all branching possibilities. In addition,
FastClone can analyze a single sample with tens of thousands of
mutations within seconds, indicating that FastClone can poten-
tially be used to assist tumor heterogeneity inference in large
dataset collections.

We have demonstrated the vast reduction of runtime
requirement of such analysis. We attribute this improvement to
the initial approximation of the allelic frequency distribution. The
traditional sampling approach requires huge numbers of itera-
tions and often struggles to converge to agreeable clustering
results. The initial approximation of the allelic frequency dis-
tribution gives us a good guess to start with, which is refined later
by more precise statistical modeling.

We compared FastClone with PyClone, one gold standard
algorithm in tumor heterogeneity inference in colon cancer sam-
ples. In all but two instances, FastClone inferred fewer subclones
than PyClone. This does not conclude which one is better, but the
two algorithms do provide alternatives of different granularity of
subclone inference. FastClone evaluates tumor samples individually,
whereas methods like PyClone function best when multiple, distinct
but related samples are provided, such as spatially distinct samples
from the same tumor or temporally assayed samples. Tools like
PyClone rely on this inter-sample information when clustering
groups of variants to infer subclones, performing sub-optimally if
only single samples are available. We therefore view FastClone as
complementary to tools such as PyClone, by focusing on subclonal
inference of single samples and automatically inferring tumor
purity. Furthermore, like many other tumor heterogeneity tools,
since the estimation of FastClone depends on chromosomal copy

number estimations provided by upstream tools, its performance
would be affected if the inferred CNA profiles by these tools are
drastically different or mostly wrong across many chromosomes.
However, this is unlikely to happen and thus unlikely to affect
subclone identification as we are using clustering and majority vote.

Due to FastClone’s substantial improvement on the processing
speed, it will allow application to very large dataset to further
explore the genetic markers related to multiple subclones. In the
new era of precision and personalized medicine, a key question is
how to stratify patients based on their genomic profiles38–40. We
anticipate that the application of FastClone will not only benefit
large-scale mechanistic study of the development of tumor het-
erogeneity in cancer research, but also facilitate treatment stra-
tification in clinical settings.

Methods
Performance evaluation of the algorithm with in silico data. The benchmark
evaluation is performed using data from the recent ICGC-TCGA DREAM Somatic
Mutation Calling-Tumor Heterogeneity Challenge28. The challenge organizers
specified several tree structures and their subclonal compositions to represent a
diverse sampling of different scenarios of tumor heterogeneity. Briefly, they used
real-world sequencing data as the basis for the read generation. The reads were first
aligned using BWA41. The results were then analyzed using Battenberg to extract
the copy number profiles. The challenge organizers simulated a panel of mutations
for each simulated dataset and inserted them into the sequencing reads using
BAMSurgeon32. The modified reads were then processed using MuTect42 to call
somatic mutations. This process provides the MuTect reports and copy number
profiles to predict the subclonal structures.

The predictions are then evaluated for the following aspects:

(1) Tumor purity, the proportion of tumor cells among all cells in the collected
sample. The accuracy of the prediction of tumor purity is evaluated by one
minus the absolute difference between true and inferred purity, a score of 1
indicates perfect performance.

(2) The number of subclones is evaluated based on relative error s as

s ¼ 1� jntruth � npredictionj
ntruth

; ð25Þ

where ntruth and nprediction are the simulated and predicted number of
subclones, respectively.

(3) Prediction of subclone proportions, which is measured by one minus the
mean absolute difference between the true and inferred distribution of
cellular prevalence, a score of 1 indicates perfect performance.

(4) The mutation assignment, which is evaluated based on the correlation of the
co-clustering matrices. The false-positive mutations called by MuTect are

a

–1

0

1

2

250 500 750 1000

SNV number

C
P

U
 ti

m
e 

(s
)

Single subclone Multiple subclones

1250

0

1000

2000

3000

4000

250 500 750 1000 1250
SNV number

C
P

U
 ti

m
e 

(s
)

FastClone
PyClone
CITUP

0

1000

2000

3000

Fas
tC

lon
e

PyC
lon

e

CIT
UP

C
P

U
 ti

m
e 

(s
)

FastClone
PyClone
CITUP

b c

Algorithms

Fig. 5 Computation time of FastClone, PyClone, and CITUP. a Running FastClone on the patient data. The SNV number barely affects computation time in
real-world data since FastClone removes noise from data first. b Running FastClone, PyClone, and CITUP on the patient data. Each dot at the right-bottom
section represents a primary tumor sample. In general, computation time increases as the sample involves more mutations. c Comparing FastClone to
PyClone and CITUP based on their computation time. In the box plot, center lines refer to median CPU time, bounds of box refer to the first quartile and the
third quartile of the data, and whiskers refer to min and max of the data.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18169-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4469 | https://doi.org/10.1038/s41467-020-18169-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


excluded from the assessment. The co-clustering matrix S of the remaining
mutations are calculated as

S ¼ PPT; ð26Þ

where P is the probability matrix of each mutation associated with each subclone
(n × C). The correlation between Sprediction and Struth is the score. The subclonal
composition is evaluated based on the correlation of the predicted and simulated
prevalence of cells carrying each mutation.

The phylogeny, which is evaluated based on the correlation of the ancestor
matrices. The false-positive mutations called by MuTect are excluded from the
assessment. The ancestry matrix M of the remaining mutations are calculated as

M ¼ PAPT; ð27Þ
where A is the asymmetric ancestor matrix of subclones (C × C).

Colon cancer tumor collection protocol. The data utilized were obtained from
Hardiman and co-workers43. Briefly, a total of 15 spatially distinct samples were
collected from seven primary stage III colon cancer tumors. Each cancer sample
provided two or three primary tumor samples, that is, at the origin of the cancers.
Illumina sequencing was performed in two rounds: first via WES (Roche/Nim-
bleGen SeqCap EZ v3), and second via custom gene panels (Agilent SureSelect XT)
targeting the somatic variants detected in the initial sequencing round for each
sample, the latter achieving an average read depth of 500×. The variant calls
utilized for analysis were generated by at least two-caller consensus between three
somatic variant callers: MuTect v.1.1.4, VarScan somatic v.2.3.7, and Strelka
v.1.0.14. Copy number profiles were generated for each of the samples using
Affymetrix (Thermo Fisher) OncoScan v3 SNP Arrays, resulting in profiles of
50–300-kb resolution across the genome for each tumor sample. Copy number data
were processed using the Nexus Copy Number software v7.5 (BioDiscovery, El
Segundo, California) using their SNP-FASST2 algorithm for analysis and seg-
mentation, generating a median Log 2 ratio and a median B-allele frequency for
each genomic segment. The segmented copy number data were additionally
translated into copy number genotypes (with major and minor allele counts) in a
semi-automated manner using the TAPS tool in the Patchwork software library44.

All the experiments that were performed with FastClone can be repeated by
downloading the colon data, and following the step-by-step “Supplementary
Note 1. Instruction of FastClone”.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulated tumor benchmark data are provided by the SMC Tumor Heterogeneity
Challenge. Data are available at https://guanfiles.dcmb.med.umich.edu/FastClone/. The
colon data we analyzed in the paper are available at https://github.com/GuanLab/
FastClone_GuanLab/tree/master/colon_data. The original colon tumor variant data are
available at the European Variation Archive [https://www.ebi.ac.uk/eva/?eva-
study=PRJEB23791], and the SNP array data are available at GEO [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE107225]. The remaining data are available in
Supplementary Information or from the authors upon request.

Code availability
The source is available at https://github.com/GuanLab/FastClone_Guanlab. To enable
the wide application of this tool, FastClone_Guanlab is integrated into pip standard
package installation in Python 3. FastClone code is included in Supplementary
Software 1.
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