TABLE 3.
Performance matrix of the prediction models.
| Sensitivity | Specificity | Accuracy | AUC | 95% CI of AUC | ||
| Lower limit | Upper limit | |||||
| No-odor modela | 0.893 | 0.791 | 0.799 | 0.901 | 0.864 | 0.933 |
| Single-odor modelb | ||||||
| Orange | 0.880 | 0.791 | 0.798 | 0.901 | 0.867 | 0.933 |
| Leather | 0.880 | 0.804 | 0.810 | 0.905 | 0.870 | 0.935 |
| Cinnamon | 0.893 | 0.804 | 0.811 | 0.904 | 0.867 | 0.936 |
| Peppermint | 0.893 | 0.781 | 0.790 | 0.904 | 0.866 | 0.936 |
| Banana | 0.920 | 0.768 | 0.780 | 0.906 | 0.873 | 0.936 |
| Lemon | 0.920 | 0.749 | 0.762 | 0.902 | 0.869 | 0.933 |
| Licorice | 0.867 | 0.814 | 0.818 | 0.902 | 0.869 | 0.932 |
| Coffee | 0.893 | 0.786 | 0.794 | 0.900 | 0.867 | 0.932 |
| Cloves | 0.920 | 0.749 | 0.762 | 0.902 | 0.866 | 0.932 |
| Pineapple | 0.893 | 0.796 | 0.804 | 0.903 | 0.866 | 0.932 |
| Rose | 0.893 | 0.786 | 0.794 | 0.904 | 0.869 | 0.936 |
| Fish | 0.893 | 0.791 | 0.799 | 0.902 | 0.864 | 0.933 |
| OI | 0.933 | 0.751 | 0.766 | 0.904 | 0.869 | 0.935 |
| Full modelc | 0.907 | 0.828 | 0.834 | 0.916 | 0.882 | 0.945 |
| Stepwise modeld | 0.880 | 0.831 | 0.835 | 0.914 | 0.881 | 0.943 |
| Simple modele | 0.880 | 0.781 | 0.790 | 0.901 | 0.859 | 0.931 |
aPredictors: sex, age, body mass index (BMI), height, education, smoking, drinking, coronary artery disease (CAD), hypertension, diabetes, depression, stroke, apolipoprotein (APOE)-ε4, and Mini-mental State Examination (MMSE). bOther predictors are the same as in the no-odor model. cPredictors: sex, age, BMI, height, education, smoking, drinking, CAD, hypertension, diabetes, depression, stroke, APOE-ε4, MMSE, and the 12 odors. dPredictors: age, weight, education, depression, stroke, APOE-ε4, leather, peppermint, banana, lemon, pineapple, rose, and MMSE. ePredictors: MMSE, age, peppermint, stroke, and education.