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Human genetic determinants 
of the gut microbiome and their 
associations with health 
and disease: a phenome‑wide 
association study
Hilde E. Groot1, Yordi J. van de Vegte1, Niek Verweij1, Erik Lipsic1, Jacco C. Karper1 & 
Pim van der Harst1,2*

Small-scale studies have suggested a link between the human gut microbiome and highly prevalent 
diseases. However, the extent to which the human gut microbiome can be considered a determinant 
of disease and healthy aging remains unknown. We aimed to determine the spectrum of diseases 
that are linked to the human gut microbiome through the utilization of its genetic determinants as a 
proxy for its composition. 180 single nucleotide polymorphisms (SNPs) known to influence the human 
gut microbiome were used to assess the association with health and disease outcomes in 422,417 
UK Biobank participants. Potential causal estimates were obtained using a Mendelian randomization 
(MR) approach. From the total sample analysed (mean age was 57 ± 8 years), 194,567 (46%) subjects 
were male. Median exposure was 66-person years (interquartile range 59–72). Eleven SNPs were 
significantly associated with 28 outcomes (Bonferroni corrected P value < 4.63·10−6) including food 
intake, hypertension, atopy, COPD, BMI, and lipids. Multiple SNP MR pointed to a possible causal 
link between Ruminococcus flavefaciens and hypertension, and Clostridium and platelet count. 
Microbiota and their metabolites might be of importance in the interplay between overlapping 
pathophysiological processes, although challenges remain in establishing causal relationships.

It has been suggested that different diseases may share more pathophysiological mechanisms than initially 
assumed1–6. An enhanced understanding of these complex shared disease causing mechanisms is of paramount 
importance to further improve our strategies to study, prevent and treat diseases.

One of the possible shared systems is the human gut microbiome, which has been suggested as a key inter-
player in a variety of individual disease entities7. For example, the gut microbiome has been linked to immune 
system activation, inflammatory processes and metabolic phenotypes. Moreover, it has been associated with 
thrombosis and the development of cardiovascular disease (CVD)8–17, Alzheimer’s disease, and cancer18–20. 
Human genetic variants have been linked to the microbiome composition21–23 and with this knowledge, rather 
than actual measurements of the microbiome itself, human genetic variants can be used as a proxy to inform 
about human gut microbiome composition. This is of interest because large cohorts in which genetic information 
is available can be studied even if the microbiome itself has not been measured. In addition, the use of genetic 
determinants can be useful to study the potential long-term health effects of having increased or decreased levels 
of specific gut microbiota.

Although several associations between the human gut microbiome and individual diseases have been 
reported, a broad characterization of a large spectrum of health and disease states is lacking but is highly desired 
as it may help identify potentially common mechanistic pathways17,24,25. Hence, this study aimed to explore the 
associations between known genetic determinants of the human gut microbiome and the presence of health 
and its determinants (absence of disease, vital and blood biomarkers and food intake) and disease states in a 
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very large and comprehensive population cohort and investigate possible causal mechanisms using a Mendelian 
randomization (MR) approach.

Results
Population characteristics.  We studied 422,417 unrelated individuals with a mean age of 57 ± 8 years, of 
which 194,567 (46%) were male (Table 1). Figure 1 presents a flowchart of the study sample selection. Median 
follow-up was 6 years (interquartile range (IQR) 5–7) and the median total exposure was 66-person years (inter-
quartile range (IQR) 59–72).

Phenome‑wide scan on outcomes.  A total of eleven microbiome SNPs was associated with 28 outcomes 
after a stringent Bonferroni correction (P value < 4.63·10−6) (Fig. 2). The strongest associations with binary traits 
were observed with diseases related to the following general ICD-10 categories: circulatory system, respira-
tory system, and respiratory/skin. Complementary information on associations between the SNPs, bacteria, and 
clinical outcomes is provided in Supplementary Table 1.

An even large number of significant associations with linear traits was discovered; especially health-related 
measurement including food intake, hemodynamic parameters, anthropometric and laboratory measurements 
were highlighted (Fig. 2). Extended information on the associations between the SNPs, bacteria, and continu-
ous outcomes is provided in Supplementary Table 2. We identified no significant interactions between sex and 
genetically determined changes in microbiome.

Mendelian randomization analyses.  Single SNP.  Single SNP Mendelian randomization (MR) analyses 
using the Wald estimate were performed for all 28 outcomes. All Wald estimates of all 28 exposure-outcomes 
were significant (highest P value 4.4·10−6). Results are shown in Fig.  3A, are schematically depicted in Sup-
plementary Figure 1 and full results can be found in Supplementary Table 3. F-statistics were all higher than 
10, indicating little chance of weak-instrument bias based on the summary statistics. MR-steiger filtering indi-
cated reversed causation to be likely in the association between Clostridium cellulolyticum and platelet count (P 
steiger < 5.6·10−119).

Under the ideal scenario that all MR assumptions are met, one could cautiously conclude the following based 
on these results. Genetically determined higher levels of Clostridium cluster IV were associated with a decreased 
risk for COPD (β − 0.34, SE 0.05, P = 1.96·10−10) and a decreased risk for atopy (β − 0.54, SE 0.04, P = 1.45·10−37). 
Genetically determined higher levels of the species Ruminococcus flavefaciens were associated with an increased 
risk for hypertension (β 0.05, SE 0.01, P = 4.97·10−7).

Genetically determined higher levels of the genera Slackia and Pseudobutyrivibrio were associated with 
an increase in eosinophil count. Higher levels of the species Clostridium xylanovorans were associated with a 
decrease in resting heart rate and body mass index (BMI). An increase of the genus Desulfovibrio was also asso-
ciated with a decrease in resting heart rate. Genetically determined higher levels of Methanobacteria on family 
level were associated with an increase in alcohol intake frequency. Conversely, it was associated with a decrease in 
mean arterial blood pressure, systolic blood pressure, diastolic blood pressure, BMI, waist hip ratio, reticulocyte 
count, and erythrocyte count. Interestingly, genetically determined higher levels of the genus Bifidobacterium 
were associated with increased levels over cholesterol, apolipoprotein A1, HDL, and grip strength. This might 
seem paradoxical to previous findings in animals and human studies in which a favourable effect of specific 
Bifidobacterium strains on obesity and cholesterol levels was observed26–28.

Table 1.   Baseline characteristics. SD standard deviation, IQR interquartile range.

Characteristic No

Total, no 422,417

Male 194,567 (46.1%)

Age, mean (SD), y 57 (8)

Years of exposure, median (IQR), y 66 (59–72)

Body mass index (kg/m2) 27.4 (4.8)

Systolic blood pressure (mmHg) 133 (20)

Diastolic blood pressure (mmHg) 82 (9)

Smoking behaviour

 Active daily 32,829 (8.0%)

 Active occasionally 11,545 (2.8%)

 Stopped ≤ 12 months 1,961 (0.5%)

 Stopped > 12 months 131,800 (32.0%)

 Never or < 100 cigarettes 233,186 (56.7%)

Medical history

 Hypertension 125,243 (29.6%)

 Diabetes Mellitus type 2 16,815 (4.0%)

 Hyperlipidemia 80,712 (19.1%)
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A genetically increase in the genus Shigella was associated with an increase in reticulocyte count. Higher levels 
of Clostridium cluster IV were associated with a decrease in eosinophil count. Genetically determined higher 
levels of the species Ruminococcus flavefaciens were associated with an increase in systolic blood pressure and 
mean arterial pressure. Lastly, genetically determined higher levels of the species Lactivibrio alcoholicus were 
associated with a decrease in lymphocyte count.

Combined SNPs.  To investigate whether the MR assumptions were truly met, we increased the amount of SNPs 
to assess the exposure-outcome association (Supplementary Table 3).

We were able to pool SNPs for a total of 26 exposure-outcome associations (Supplementary Table 4). Hetero-
geneity was indicated using Cochran’s Q statistic for all exposure-outcome associations (P < 0.05, Supplementary 
Table 5), except for the Clostridiaceae family and Clostridium genus with platelet count and the genus Rumi-
nococcus with hypertension. This indicates at least balanced pleiotropy to be affecting the results. Given that 
assumptions of inverse variance weighted (IVW) effects model are violated under this scenario, we took forward 
the IVW random effects model as most liberal model (Fig. 3B, Supplementary Table 4). Compared to 27 causal 
estimates provided by the Wald ratio (one excluded by MR-Steiger filtering), now only 3 exposure-outcome 
associations remained suggestively significant [i.e. P < 0.05, but not significant for multiple testing (0.05/28)]. 
These were the causal estimates of the Clostridiaceae family and Clostridium genus with platelet count (β 0.43, 
SE 0.16, P = 7.28·10−3 and β 0.43, SE 0.19, P = 1.99·10−2; respectively) and the genus Ruminococcus with hyper-
tension (β 0.45, SE 0.18, P = 1.11·10−2).

Intriguingly, the association between Clostridiaceae/Clostridium and platelet count remained significant 
considering the main driver (rs58368959, associated with Clostridium cellulolyticum) was removed as a result 
of MR-steiger filtering. The results were also robust to several sensitivity analyses, including MR-PRESSO and 

Figure 1.   Flowchart for the selection of the analysed study sample from the UK Biobank Study.
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MR-Lasso, which are more outlier-robust, and the “unweighted” MR, which corrects for potential differences 
in effect size units as effect sizes depict relative abundance (Supplementary Table 4). The Rucker model showed 
no differences between the heterogeneity estimates of Cochran’s Q and Rucker’s Q, indicating at the absence of 
unbalanced horizontal pleiotropy and thus an inverse variance weighted model to be preferred (Supplementary 
Table 5). The results were not robust to MR-Egger, weighted median and weighted mode analyses (Supplemen-
tary Table 4). A forest and scatter plot of the MR between Clostridiaceae/Clostridium and platelet count can be 
found in Supplementary Figures 2–5.

The association between the genus Ruminococcus with hypertension was also robust to the “unweighted” MR, 
as expected considering the 2 SNPs included in the MR were obtained from the same study. Further sensitivity 
analyses could not be performed considering the amount of SNPs. One taxonomic level higher, 11 SNPs were 
pooled for the Ruminococcaceae family and hence more sensitivity analyses could be performed. The IVW 
random effect estimate was already insignificant (β = 6.94·10−3, SE = 6.63·10−3, P = 0.29). This suggests that, if 
the association between genus Ruminococcus and hypertension is true, it is specific for that genus within the 
Ruminococcaceae family. A forest and scatter plot of the MR between Ruminococcaceae/Ruminococcus and 
hypertension can be found in Supplementary Figures 6 and 7.

To investigate whether estimated effects of the Methano- and Bifidobacterium on associated outcomes were 
consistent when considering a community effect of the combined pool of gut bacteria, additional sensitivity anal-
yses were performed (Supplementary Table 6). The results remained similar to the initial single SNP estimates.

Lastly, we performed a look-up in MR-Base, a platform for Mendelian randomization analysis, to explore 
whether the eleven SNPs were associated with other traits (P-value significance threshold of 5.00·10−8) in other 
studies than UK Biobank. The variant rs4548017 (Methanobacteria) was associated with ulcerative colitis, inflam-
matory bowel disease, and psoriasis29,30. The variant rs1446585 (Bifidobacterium) was associated with height31. 
We additionally performed a look-up in GeneCards for extra information about the genes related to the eleven 
significantly associated SNPs (Supplementary Table 7).

Discussion
In the present study, we used a data-driven approach to identify human health and diseases parameters that 
are associated with genetic variants thought to influence the microbiome and identified 28 associations with 11 
genetic variants. We found relevant associations with food intake, hypertension, BMI, lipids, atopy, and COPD. 
The possibility of a causal nature of these associations was tested using a MR approach. Although 27 out of 28 
associations were indicated to be causal using a single SNP approach, only three of these associations were con-
sistent across some, but not all sensitivity analyses.

Figure 2.   Manhattanplot for associations between microbiome SNPs and health and disease outcomes and 
continuous outcomes. On the x-axis, the health and disease outcomes (according to the ICD 10 code), and 
continuous are shown. On the y-axis, the P-value is shown. The red line indicates the significance threshold 
using Bonferroni correction.
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Our findings highlight diseases that have been investigated in previous observational studies32–41. However, 
contrary to earlier observational research on the human gut microbiome and CVD, associations with CAD and 
MI did not reach statistical significance in our phenome-wide scan of microbiome associated SNPs8,34. While 
this might be due to a lack of study power or a small effect size of the evaluated genetic variants, associations 
with pathways via which the human gut microbiome may influence the development of CAD or MI (i.e. inflam-
mation, arterial blood pressure, and circulating lipoproteins) were documented. As these factors are strongly 
related to CVD development, it is highly interesting to further unravel their, by microbiome influenced, effect 
in the long-term.

The association between a genetically determined increase of Bifidobacterium and elevated lipids is notable, 
since Bifidobacterium is considered to exert beneficial effects in human health42. Small sample sizes (n = 19–32 
humans), differences in microbiome behaviour between obese and lean individuals, and the hypothesis that 
probiotic supplements may disturb the original composition of the microbiome could be possible explanations 
for this discrepancy43–45. In fact, a previous MR between genetically determined Bifidobacterium and HDL and 
LDL also found a positive causal estimate46. It is likely that total composition of the gut microbiome and bacteria 
ratios may eventually tell us more than single particular increases or decreases.

Strengths and limitations.  This study is the first to investigate the association between previously estab-
lished microbiome SNPs and a wide variety of health and disease states simultaneously. The major strengths are 
the considerable sample size, the variety of explored outcomes without an a priori hypothesis, the prospective 
design of the UK Biobank study. This study could lead other researchers in certain directions to further explore 
the role of the gut microbiome in health and disease. In addition, we performed a large amount of MR sensitivity 
analyses (when enough SNPs were available). Another strength is that the MR was performed at different taxo-
nomic levels. This allowed for the investigation of specific strains (species level) while also being able to increase 
the number of instruments when investigating at genus or family level. The potential importance was illustrated 
by the consistent estimates between Clostridiaceae family and Clostridium genus with platelet count, and the 
inconsistent estimates between the family Ruminococcaceae and genus Ruminococcus with hypertension. We 
believe this might provide insights how to perform and interpret MR estimates within the microbiome research.

We first address limitations most pertinent to a MR approach within microbiome research. It is of impor-
tance to note that the human gut microbiome is shaped for a large part by environmental factors47. However, the 
importance of a genetic component has been established as well23,48. In addition, the genetic approach allowed 
us to identify new pathways that are interesting to further unravel in the large cohort of the UK Biobank without 
real stool samples. A second limitation includes the lack of reliable SNPs associated with the gut microbiome. 
Although we adapted a fairly stringent P value threshold (5.00·10−8) for inclusion criteria and all F statistics were 
larger than 10, our results could still influenced by weak-instrument bias. “Winner’s curse”, i.e. overestimation 
of genetic associations within the dataset in which the SNPs were first identified, is likely considering the failure 
of replication of previously established SNPs21,48–51 in newer MWAS47,52. Since a two-sample approach was used 
without sample overlap, any bias due to weak instruments is directed to the null and therefore does not lead to 
false positive findings53. Another limitation is that the biological function through which the SNPs influence the 
gut microbiome is unsure and complex, especially considering the possible bilateral nature of the association 
within the GWAS exposure (i.e. the human microbiome influencing health status and health status influencing 
the human microbiome). We therefore performed an array of sensitivity analyses to assess whether the results 
of the single SNP estimates were robust to pleiotropic effects; this was not the case for most exposure-outcome 
associations. However, whether associations in multiple SNP MR analyses due to pleiotropic effects or weak 
instrument bias through the “winner’s curse” cannot be differentiated with the current set of analyses. In addi-
tion, we applied MR-Steiger filtering to evaluate potential reversed causation. We were unable to validate that the 
traits investigated share the same causal variant at a particular locus for both the exposure and outcome using 
colocalization methods, as we did not have the full Linkage Disequilibrium structure of the SNPs investigated. 
We did use MR-Base to check whether the SNPs were already known to be associated with other traits.

Considering the drawbacks of the current approach, we are very cautious in labelling the associations as 
“causal”. The current study should be considered as a broad hypothesis free scan in which causality of some 
associations is strengthened by contextualisation with previously described possible mechanisms (for example, 
the known risk factor hypertension in the development of CVD). In addition, it highlights the need for strict 
MR analyses in the microbiome context, as more extensively discussed previously54.

We believe that current study is of additive value to the multi-omics approach required to further dissect the 
role of the human microbiome in human health and disease55.

Future perspectives.  Our study could constitute a useful tool to identify bacteria of interest in order to 
thoroughly investigate the mechanisms between these bacteria and clinical outcomes; not only in the field of 
cardiology, but also in other fields. Second, the human gut microbiome might be used as a biomarker in disease 
risk stratification. Third, the observed associations can point towards new possibilities for therapeutic treatment. 
Furthermore, the abundance of particular bacteria or their metabolites could influence therapeutic treatment 
efficacy, as recently demonstrated in the treatment of Parkinson’s disease56.

Conclusions
Human genetic determinants of the gut microbiome are associated with 28 specific health and disease outcomes 
including hypertension, atopy, COPD, lipids, and BMI. Multiple SNP MR pointed to a possible causal link 
between Ruminococcus flavefaciens and hypertension, and Clostridium and platelet count. Microbiota and their 
metabolites might be of importance in the interplay between overlapping pathophysiological processes, and could 
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serve as potential therapeutic targets for the maintenance of health and prevention and treatment of diseases. 
However, many challenges remain in establishing causal relationships using current genetic data and approaches.

Methods
Study population.  Data from the UK Biobank was accessed and analysed under an approved research 
proposal (application ID: 12006). The UK Biobank is a large community-based prospective study in the United 
Kingdom that recruited approximately 500,000 participants aged 40 to 69 years old with the general objective 
to improve the prevention, diagnosis, and treatment of diseases. All methods were performed in accordance 
with the relevant guidelines and regulations.The study design and population have been extensively described 
elsewhere57. All participants provided informed consent to participate58. The UK Biobank obtained approval 
from the relevant institutional review boards, that is, the North West Multi-centre Research Ethics Committee 
for the UK, the National Information Governance Board for Health and Social Care for England and Wales, and 
the Community Health Index Advisory Group for Scotland59.

Identification of single nucleotide polymorphisms.  Single nucleotide polymorphisms associated 
with the gut microbiome were collected from 6 previous GWASes21,22,50–52,60, using a genome-wide significance 
threshold of P < 5 × 10−8 for their inclusion in the current study. If the same SNPs and effect sizes were found 
across different taxonomic level within a single study, we took forward the association with the most differenti-
ated taxonomic level to reduce multiple testing burden. SNPs were clumped within study per bacterium (on the 
lowest taxonomic level available) using the PLINK (version 1.961) clumping procedure to prune genetic variants 
at a stringent linkage disequilibrium (LD) of R2 < 0.005 within a five megabase window. We did not clump the 
25 SNPs from Goodrich et al. due to the character of the study (twin study instead of GWAS). In the end, this 
resulted in a total of 180 SNPs associated with the gut microbiome. For more information on the SNP selection, 
please see Table 2.

Genotyping and imputation.  The genotyping process and arrays used in the UK Biobank study have been 
previously described59. Briefly, participants were genotyped using the custom UK Biobank Lung Exome Vari-
ant Evaluation Axiom (Affymetrix; n = 49,949), which includes 807,411 SNPs, or the UK Biobank Axiom array 
(Affymetrix; n = 452,713), which includes 820,967 SNPs59,62. The arrays share over 95% of insertion and deletion 
markers59,62. Imputed genotype data were provided by the UK Biobank, based on merged UK10K and 1000 
Genomes phase 3 panels63. Participants were excluded in case of missing genotype or sex mismatch (n = 378). 
Participants with high missingness or excess heterozygosity were also excluded (n = 963). Furthermore, 64,535 
participants were excluded because of familial relatedness and being of non-Caucasian British descent. Lastly, 
participants without information available on the previously reported SNPs associated with the composition of 
the gut microbiome were also excluded (n = 14,243)21,22. Figure 1 presents a flowchart of the study sample selec-
tion.

Definition of (cardiovascular) health, prevalent disease and new‑onset disease.  Two “health 
state” variables were generated. Cardiovascular health was defined as the absence of type 2 diabetes mellitus 
(DM2), stroke, and myocardial infarction (MI)64. Total health was based on the WHO top 10 causes of deaths 
in high-income countries. It was defined as the absence of coronary artery disease (CAD), stroke, Alzheimer’s 
disease, lung cancer, chronic obstructive pulmonary disorder (COPD), pneumonia, colon cancer, rectum can-
cer, DM, kidney diseases, and breast cancer at baseline and during follow-up65. The diseases was defined using 
self-reported diagnoses and medication (Hospital Episode Statistics data) as well as ICD-9 and ICD-10 codes as 
described previously66. Definitions of prevalent (established) and incident (new-onset) disease (outcomes) are 
shown in Supplementary Table 8.

Table 2.   Studies used for SNP extraction. N SNPs denotes number of SNPs, S denotes Supplementary Table, T 
denotes Table. Please note that the studies from Rothschild et al. was not taken forward in the current analyses 
since effect sizes for discovered SNPs were not provided in the manuscript.

Author (year) Table Cohort (N) Age range Method Unit
N SNPs (before 
clumping)

Clumped 
(lowest taxa)

N SNPs (after 
clumping) Note

Davenport et al.51 S7 Hutterites 
(n = 184) 18–75 16S rRNA Abundance 1 No –

Bonder et al.21 S3 LifeLines deep 
(n = 984) 18–84 Metagenomics 

sequencing Abundance 58 Yes 10
Allele frequencies 
obtained from 
HaploReg v3

Goodrich et al.48 S5 TwinsUK 
(n = 2,139) 18–89 16S rRNA Relative abun-

dance 25 No NB

Wang et al.49 T2 PopGen (n = 914), 
FoCus (n = 1,115) 25–83, 18–83 16S rRNA Relative abun-

dance 43 Yes –

Turpin et al.50 S6 GEM Project 
(n = 1,098) 6–35 16S rRNA Relative abun-

dance 58 Yes 56
Effect sizes 
obtained from 
log-normal model

Scepanovic et al.52 S13 Milieu Intérieur 
(n = 858) 20–69 16S rRNA Relative abun-

dance 188 Yes 48
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Figure 3.   (A) Heatmap showing the Wald β’s of the associations between microbiome SNPs and health and disease outcomes, 
and continuous outcomes. Only significant associations (P value < 4.63·10−6) are shown. BMI body mass index, COPD chronic 
obstructive pulmonary disease, HDL high density lipoprotein, MAF minor allele frequency. (B) Heatmap showing the inverse 
variance weighted random effects β’s of the associations between the genetically determined increase of bacteria (family, genus 
and species level if possible) and health and disease outcomes, and continuous outcomes. Please note that the inverse variance 
weighted random effects β’s are in some cases liberal, considering the Rucker framework indicated unbalanced horizontal 
pleiotropy in the estimates as indicated by a significant (P < 0.05) Q–Q′ (and thus the MR-Egger estimate to be a better fit, 
please see Supplementary Table 5 for these results). BMI body mass index, COPD chronic obstructive pulmonary disease. # 
indicates suggestively significant.
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Vital signs, blood count, and food intake.  Vital signs and biological samples were collected during the 
baseline visit together with data of self-completed questionnaires (including food questionnaires), interviews, 
and physical measurements. Blood pressure was measured twice for consistency and the average value was used. 
Automated measurements were corrected according to previously described methodology67.

Phenome‑wide scan on outcomes.  Outcomes with a prevalence of ≤ 1% were excluded from the analy-
ses. Logistic regression modelling was performed to assess the effect of microbiome SNPs on combined preva-
lent and new-onset diseases, and health outcomes in term of the resulting odds ratios (OR) and corresponding 
95% confidence intervals (CIs). Genotypes were coded according to a dose–response model (0, 1, 2), where 
the allele coded with a 2 corresponded with an increased abundance of a certain bacterium. Linear regression 
analyses were conducted to assess the effect of microbiome SNPs on continuous outcome measures (anthropo-
metric, hemodynamic and laboratory variables as well as longevity and food intake at baseline) in terms of the 
resulting β coefficients and associated standard errors (SE). Since sex differences exist regarding the human gut 
microbiome, we tested for sex-interactions in the association between the SNPs and all outcomes. All regression 
analyses were adjusted for age (at the moment of the last follow-up or age at baseline visit), sex (except when 
sex-interactions were tested), genotyping chip, and the first 30 principal components (to adjust for population 
structure) provided by the UK Biobank. A stringent Bonferroni correction was used to correct for multiple test-
ing (180 SNPs, 60 outcomes; 0.05/10,800 = P value < 4.63·10−6). Outcomes reaching statistical significance after 
Bonferroni correction were considered of interest for further analyses (see Mendelian randomization section 
below). Analyses described above are performed using Stata version 15 (StataCorp, Texas, United States).

Mendelian randomization analyses.  In order to explore the possibility of a causal relationship between 
the exposure (the gut microbiome) and the outcomes reaching statistical significance after Bonferroni correc-
tion, we first performed a single SNP Mendelian randomization (MR) using the Wald-estimate68. Weak instru-
ment bias was assessed per SNP using the F-statistic, calculated with the following formula: F = R2(n − 2)/(1 − R2). 
In this formula, n is the sample size of the exposure and R2 is the amount of variance of the exposure explained by 
the SNP69. R2 was calculated using a previously established formula70. Allele frequencies and SNP position were 
obtained for the SNPs obtained from the study of Wang et al.71. In order to explore the possibility of reversed 
causation to be a driver of the current results, we applied MR-Steiger filtering. MR-Steiger filtering calculates 
the R2 for the exposure and outcome and removes variants if the R2 of the exposure is significantly lower (P 
value < 0.05) than the R2 of the outcome72. R2 for linear traits was calculated as mentioned above70. R2 for binary 
outcomes was calculated on the liability scale according to previously established methods73. These results can 
be found in Supplementary Table 3.

Pleiotropy within MR analyses refers to a genetic variant having multiple effects and distorts MR estimates 
when genetic variants affect the outcome independently. Given the uncertainty of the biological mechanisms 
underlying the SNP-exposure association, and hence uncertainty on whether the genetic variants affect the 
outcome independently, we aimed to gain additional insight in pleiotropy by increasing the amount of SNPs to 
assess the exposure-outcome association. SNPs associated with the same exposure and their effect estimates on 
the outcome (possibly not reaching Bonferroni significance) were obtained from the pool of all 180 SNPs. This 
resulted in an additional 153 exposure-outcome associations, for which single SNP MR estimates, F-statistics69 
and MR-Steiger72 results can be found in Supplementary Table 3 as well. By definition, effect sizes used to obtain 
pooled estimates should reflect the same unit. We therefore only took forward SNPs with effect sizes reflecting 
relative abundance, given the fact that (a) only one SNP (rs4548017) reached statistical significance on the tested 
outcomes after Bonferroni correction, (b) 169 out of 180 SNPs reflected relative abundance and c) the relative 
effects better reflect the biology of the milieu intérieur. Due to difference in in-depth classification of the taxo-
nomic rank in the SNP-exposure association between and within study, SNPs were pooled on species, genus and 
family level. Again, SNPs were clumped (between-studies) for every bacterium per level. Detailed information on 
the amount of SNPs per bacterium per taxonomic level and the outcomes tested can be found in Supplementary 
Table 4. Three methods were applied based on the amount of genetic variants available: (a) if after pooling only 
one SNP remained available, only Wald ratio, MR-Steiger filtering72 and F-statistics69 were calculated as explained 
above (28 exposure-outcome associations, see Supplementary Table 3), (b) if two SNPs were available, inverse 
variance weighted fixed effects and random effects were calculated; I2- index74 and Cochran’s Q75were used 
to assess heterogeneity and differentiate between models (6 exposure-outcome associations) (Supplementary 
Tables 4 and 5) and (c) if more than two SNPs were available, a more extensive pallet of analyses was performed 
(22 exposure-outcome associations) (Supplementary Tables 4 and 5). First of all, this extended pallet included the 
Rucker framework. Heterogeneity was and thus potential pleiotropy was first assessed in the IVW effect estimate 
using Cochran’s Q statistic. A P value of < 0.05 was considered as an indication of at least balanced horizontal 
pleiotropy, indicating the IVW random effects model to be preferred over a fixed effects model. heterogeneity 
and, as a consequence, of pleiotropy. Next, the MR-Egger test was performed76. The MR-Egger relies on different 
assumptions than the IVW method, as it does not assume all instruments to be valid by allowing for a non-zero 
intercept. The intercept therefore represents unbalanced horizontal pleiotropy. The MR-Egger intercept, the 
standard error and p-value were therefore calculated. A MR-Egger intercept P value of < 0.05 was considered 
to be an indicator of unbalanced horizontal pleiotropy. Heterogeneity was assessed within the MR-Egger by 
calculating Rucker’s Q. A significant difference between these two heterogeneity statistics (Q–Q′, P < 0.05) was 
considered indicative of unbalanced horizontal pleiotropy as well and thus the MR-Egger test to be the preferred 
method over the IVW. I2

GX was calculated to assess weak-instrument bias within MR-Egger estimates77. An I2
GX 

of >> 95% was considered to indicate a low risk of weak-instrument bias within the MR-Egger test. In addition, 
MR-Lasso78 and MR-PRESSO79 (the latter when 4 or more SNPs were available) were performed, two tests that 
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are robust to outliers due horizontal pleiotropy when the SNPs used are valid instrumental variables. Lastly, 
weighted median80 and weighed mode81 effect estimates were calculated. These methods allow for estimation 
of causal effect estimates when the majority (> 50%) or the plurality (no larger subset of invalid instruments 
estimating the same causal parameter) of SNPs are valid instruments.

Under scenario (b) and (c), we additionally performed an “unweighted” MR by calculated an inverse variance 
weighted fixed and random effects estimate after equally weighting all genetic instruments (i.e. negative and 
positive beta’s were set to − 1 and 1 respectively) and were assumed to be estimated with infinite precision (i.e. 
the stand error was set to 0). This was performed considering that relative abundance might still reflect different 
biological implications between studies/populations. We recalculated Cochran’s Q using these fixed weights to 
differentiate between the fixed and random effects model.

MR analyses were performed using R (version 3.6.3), the TwoSampleMR package 0.5.382, MR-PRESSO79 (ver-
sion 1.0), and the source code for MR-Lasso78 in a Two-Sample MR setting as proposed in the article of Rees et al.

Conditional analyses on the methano‑ and bifidobacterium.  To investigate whether estimated 
effects of the Methano- and Bifidobacterium on associated outcomes were consistent when considering a com-
munity effect of the combined pool of gut bacteria, we performed additional sensitivity analyses. First, we took 
forward SNPs containing (a) taxonomic information up to family level and (b) effect sizes depicting relative abun-
dance, totalling to 136 SNP. After clumping on family level, 32 unweighted GRS for 32 different bacterial fami-
lies were constructed. These families included the Acidaminococcaceae, Bacteroidaceae, Barnesiellaceae, Bifido-
bacteriaceae, Clostridiaceae, Coriobacteriaceae, Desulfovibrionaceae, Enterobacteriaceae, Erysipelotrichaceae, 
Eubacteriaceae, Firmicutes, Lachnospiraceae, Lactobacillaceae, Leuconostocaeae, Marinilabiliaceae, Micrococ-
caceae, Mogibacteriaceae, Moraxellaceae, Odoribacteraceae, Paenibacillaceae, Pasteurellaceae, Peptococcaceae, 
Peptoniphilaceae, Porphyromonadaceae, Rhodospirillaceae, Rikenellaceae, Ruminococcaceae, Streptococ-
caceae, Synergistaceae, Veillonellaceae, Victivallaceae and the Bifidobacteriaceae/Methanobacteriaceae family 
(for the association of the Methanobacteriaceae/Bifidobacteriaceae respectively). We opted for an unweighted 
GRS based on the same rationale as the choice for performing an “unweighted” MR as sensitivity analysis. These 
were subsequently used as covariates in the SNP (rs4548017 and rs1446585 for the Methano- and Bifidobacte-
riaceae, respectively)-outcome association in the UK Biobank.

Look‑ups.  We performed a look-up in MR-Base, a platform for Mendelian randomization analysis, to explore 
whether the SNPs would be associated with other traits in order to gain insights in potential pleiotropic effects82. 
Furthermore, we consulted GeneCards for extra information about the genes related to the analysed SNPs83.

Data availability
Data is available on request.
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