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Abstract 
Background: Within young individuals, mood disorder onset may be 
related to changes in trajectory of brain structure development. To 
date, however, longitudinal prospective studies remain scarce and 
show partly contradictory findings, with a lack of emphasis on 
changes at the level of global brain patterns. Cross-sectional adult 
studies have applied such methods and show that mood disorders are 
associated with accelerated brain aging. Currently, it remains unclear 
whether young individuals show differential brain structure aging 
trajectories associated with onset of mood disorder and/or presence 
of familial risk. 
Methods: Participants included young individuals (15-30 years, 53%F) 
from the prospective longitudinal Scottish Bipolar Family Study with 
and without close family history of mood disorder. All were well at 
time of recruitment. Implementing a structural MRI-based brain age 
prediction model, we globally assessed individual trajectories of age-
related structural change using the difference between predicted 
brain age and chronological age (brain-predicted age difference 
(brain-PAD)) at baseline and at 2-year follow-up. Based on follow-up 
clinical assessment, individuals were categorised into three groups: (i) 
controls who remained well (C-well, n = 93), (ii) high familial risk who 
remained well (HR-well, n = 74) and (iii) high familial risk who 
developed a mood disorder (HR-MD, n = 35). 
Results: At baseline, brain-PAD was comparable between groups. 
Results showed statistically significant negative trajectories of brain-
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PAD between baseline and follow-up for HR-MD versus C-well (β = -
0.60, pcorrected < 0.001) and HR-well (β = -0.36, pcorrected = 0.02), with a 
potential intermediate trajectory for HR-well (β = -0.24 years, pcorrected 
= 0.06).   
Conclusions: These preliminary findings suggest that within young 
individuals, onset of mood disorder and familial risk may be 
associated with a deceleration in brain structure aging trajectories. 
Extended longitudinal research will need to corroborate findings of 
emerging maturational lags in relation to mood disorder risk and 
onset.
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article can be found at the end of the article.
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Any further responses from the reviewers can be found at 
the end of the article

REVISED

Introduction
Mood disorders are amongst the most common psychiatric  
disorders, with a life-time prevalence of around 15% (Kessler 
& Bromet, 2013). Globally, they are the greatest contributor 
to non-fatal ill-health (World Health Organization, 2017).  
However, underlying biological mechanisms remain unclear. 
It is known that mood disorders are highly heritable and 
share complex genetic architecture; individuals with a family  
history of Bipolar Disorder (BD) have >10-fold increased 
risk of developing BD or Major Depressive Disorder (MDD)  
(Smoller & Finn, 2003). Mood disorders often manifest  
during adolescence and young adulthood (de Girolamo et al., 
2012). During these life stages, age-related changes in brain 
structure contribute to cognitive development but also increase 
vulnerability to mental illness, including mood disorders  
(Andersen, 2003; Dahl, 2004).

From adolescence onward, decreases in brain grey matter 
and fine-tuning/stabilisation of synapses parallel changes in  
cognition and affect regulation (Giorgio et al., 2010; Spear,  
2000). For higher-order cortical areas these structural trajectories  
extend into young adulthood (Gogtay et al., 2004; Wierenga 
et al., 2014; Wierenga  et al., 2016). Previous prospective  
longitudinal studies including young individuals have shown  
inconsistent findings with regard to brain structure changes and 
mood disorder onset (Bos et al., 2018; Ducharme et al., 2014; 
Papmeyer et al., 2015a; Papmeyer et al., 2016; Whittle et al.,  
2014). The most consistent results suggest that the frontal  
cortex (Ducharme et al., 2014; Papmeyer et al., 2015a) and  
subcortical volumes (Whittle et al., 2014) show decelerated 
brain structure aging trajectories. Theoretically, decelerated  
trajectories may contribute to vulnerability to mood disorders, 
particularly when frontal-limbic brain systems of cognitive  
control and emotional stability are affected. Previous studies 
in this field mostly focused on specific regions of interest, so 
that spatially unbiased comprehensive approaches investigating  
global patterns are currently lacking. We were therefore  
interested in determining from longitudinal prospective data 
of young individuals, whether a comprehensive and spatially  
unconstrained measure of brain structure aging trajectory  
across the brain was related to concurrent mood disorder onset  
and/or to familial risk.

A new framework that allows for global assessment of  
age-related patterns of structural change in the brain involves 
the estimation of an individual’s “biological brain age” from 
an MRI scan. Subsequent comparison with chronological age 
provides the brain-predicted age difference (brain-PAD) as a  

cross-sectional measure of brain aging. Conceptually, when 
brain aging trajectories that shape cognition and behaviour 
show individually different temporal dynamics, brain-PAD is  
expected to relate to relevant outcomes. Indeed, previous  
cross-sectional research with adults in their mid-later life  
showed that older appearing brains were associated with 
age-related diseases and mental illness (for overview see  
Cole et al., 2019), including mood disorders (Han et al., 2019; 
Koutsouleris et al., 2014; but no effect in Nenadić et al., 2017), 
and were furthermore predictive of mortality (Cole et al., 2018). 
Interestingly, accelerated brain aging in mood disorders is in 
accordance with accelerated biological aging (Rizzo et al.,  
2014; Sibille, 2013; Wolkowitz et al., 2011) as well as increased 
risk of age-related disease and mortality (e.g., Mezuk et al., 2008; 
Osby et al., 2001; Pan et al., 2011).

Within longitudinal designs including younger individuals,  
brain-PAD has potential to show the temporal origin of acceler-
ated brain aging trajectories that have been observed in adult  
samples. Importantly, the brain-PAD approach has previously 
been applied and validated within samples of children and  
adolescents (Franke et al., 2012). Furthermore, a previous  
cross-sectional study did not find differences in brain-PAD  
between young adults at high familial risk with mood disorder  
diagnosis, those at high familial risk who were well, and 
control subjects (Hajek et al., 2019). To our knowledge,  
however, the current study is the first longitudinal study to apply 
brain-PAD methods within a sample of young individuals to 
investigate associations between mood disorder risk and onset,  
and age-related changes in brain structure.

Specifically, the current study investigated divergence of  
normative brain structure aging trajectories in young individu-
als by applying the brain-PAD framework within a prospective  
longitudinal design, starting before mood disorder onset. We 
used data from the Scottish Bipolar Family Study (SBFS),  
which included young individuals who were all initially well 
and some of whom had a close family history of BD. Within  
this cohort, our group previously identified differences in cortical  
thickness trajectories associated with high risk and mood  
disorder onset, including increased thickness of the left infe-
rior frontal gyrus and left precentral gyrus in those at high risk 
who subsequently developed mood disorder versus cortical  
thickness reductions in those who remained well (Papmeyer  
et al., 2015a). By contrast, no subcortical volume markers of 
risk and illness were found (Papmeyer et al., 2016). Investiga-
tion of white matter structure at baseline furthermore revealed  
reduced white matter integrity associated with familial risk 
(Sprooten et al., 2011), and follow-up data suggested that this  
finding was related to sub-clinical symptoms rather than  
predictive of clinical outcome (Ganzola et al., 2018). The  
current study builds on previous research within the BFS 
cohort, which identified differences in specific grey matter 
regions and white matter abnormalities, by investigating global  
trajectories of grey matter structure associated with familial  
risk and onset of mood disorder.

Recognising similarities between BD and MDD in symptoma-
tology and genetic architecture, as well as the difficulty of  
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defining a definitive stable diagnosis at young age, early-onset 
mood disorder was defined as having an onset of MDD or 
BD during adolescence or young adulthood. The longitudinal 
character of the study enabled the investigation of brain-PAD  
over two years, to assess differential brain structure aging  
trajectories for those who were at high risk for mood disorder  
and/or subsequently developed illness.

Based on previous research, we predicted that mood disorder 
onset in youth would be associated with differential trajecto-
ries of brain structural change, without a specific hypothesis 
relating to the direction of this effect. Previous results from  
longitudinal developmental studies are inconclusive, but show 
weak evidence of decelerated trajectories, which also corre-
sponds to theoretical developmental perspectives. Conversely,  
early adulthood may represent the temporal origin of the  
accelerated brain aging observed in older adults, in which 
case we would expect an effect of mood disorder in this  
direction instead. We also hypothesised that the presence of 
familial risk would be associated with differences in brain-PAD  
trajectory.

Methods
Participants
Participants were adolescents and young adults (N = 283, age 
15–30 years) recruited as part of the Scottish Bipolar Family 
Study (SBFS) (Chan et al., 2016; Ganzola et al., 2018; Sprooten 
et al., 2011; Whalley et al., 2015). Participants at high familial  
risk of mood disorder (HR-participants) had at least one  
first-degree relative or two second-degree relatives with BD  
type-I, and were thus at increased risk of developing a mood 
disorder (i.e., over 10-fold increased risk for both BD and  
MDD) (Smoller & Finn, 2003). Unrelated control participants 
without family history of BD or other mood disorder were  
recruited from the social networks of HR-participants, and were 
matched to the HR-group by age and sex. Details of familial  
structure within the groups are described in the Extended  
data, which are available online (de Nooij, 2020). Exclusion  
criteria ensured that, at the time of recruitment, all participants 
had no personal history of MDD, mania or hypomania,  
psychosis, or any other major neurological or psychiatric  
disorder, substance dependence, learning disability, or head  
injury that included loss of consciousness, and that they were 
without contraindications to MRI. Therefore, all individuals  
(HR and control) were considered well at the baseline imaging 
assessment.

The following additional exclusion criteria were applied in 
the context of the current study: (i) missing MRI or age data  
(n = 40), (ii) scans of insufficient image or segmentation  
quality (n = 15) (iii) unclear or other psychiatric diagnosis  
without mood disorder (n = 5) (see Extended data (de Nooij, 
2020)), and (iv) high familial risk for mood disorder without 
follow-up measurement (n = 9). These criteria excluded 69 
participants, reducing the sample size to a total of 214 par-
ticipants at timepoint 1 (108 HR-participants), with follow-up  
timepoint 2 data available for 133 of these participants (78  
HR-participants).

Procedure
Participants of the SBFS were invited every two years for a 
total of four assessments over six years (Whalley et al., 2015).  
Participants were interviewed and screened with the Struc-
tured Clinical Interview for DSM-IV Axis-I Disorders (SCID)  
(First et al., 2002) by two trained psychiatrists at timepoint  
1 to ensure that they were all initially well, and at timepoint 
2 to determine the presence of any mood disorder meeting  
diagnostic criteria since the previous assessment. Timepoint 
2 clinical information was available for 93% of the included  
control participants, and for all included HR-participants. Of 
note, control participants with missing clinical information at  
timepoint 2 (7%) also had missing timepoint 2 MRI data, but 
their baseline data was retained to increase the training sample  
size and contributed to statistical modelling of the mean 
brain-PAD at baseline. Using the same procedure as previous  
studies on this cohort (Chan et al., 2016; Whalley et al., 2015), 
participants were categorised as well or diagnosed with  
mood disorder according to available clinical information.  
Individuals with well outcomes at the earlier two assessments  
were assumed to have remained well in the absence of further  
clinical information to the contrary at timepoint 3 (see  
Appendix A.3, Table S1 in Extended data (de Nooij, 2020)). 
Additionally, however, if individuals were subsequently 
found to have been diagnosed with mood disorder at further  
assessments (n = 13), they were then categorised in the  
mood disorder group. Including these participants in the mood  
disorder group enables the investigation of early disease  
mechanisms, while keeping the well-groups as pure as possible. 
Group categorisation resulted in the following groups:  
control participants who remained well (C-well, n = 93),  
HR-participants who remained well (HR-well, n = 74), and 
HR-participants who developed a mood disorder (HR-MD,  
n = 35, including 6 BD). Thus, for the control group, indi-
viduals were included if they had remained without being  
diagnosed with any psychiatric disorder throughout the period 
of the study (via assessments and/or GP records). Those that 
did become unwell were a small group (n=12, including 2 
BD) and are not included in the current analysis. This approach 
was used to reduce heterogeneity in the control group. For the  
high-risk group, none met clinical criteria for any mood  
disorder at baseline. If at any assessment they did meet  
criteria for a mood disorder (at the time of assessment or over 
the intervening period since the earlier assessment) they were 
considered as being in the HR-MD group. So, once someone 
had a diagnosis, even though they may not have been actively 
symptomatic at the time of the assessment, they were still  
considered as being in the mood disorder group. This  
approach was based on the premise that once an individual 
had met diagnostic criteria at any time over the course of the 
study, they were no longer ‘high risk’ for mood disorder, but 
actually a ‘case’. The sample for our main analysis therefore  
consisted of 202 participants at baseline and 124 participants at  
follow-up.

The National Adult Reading Test (NART) (Nelson &  
Willison, 1991) and Hamilton Rating Scale for Depression  
(HRSD) (Hamilton, 1960) were administered at the time of  
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scanning. Mania was also determined at every assessment  
using the Young Mania Rating Scale (YMRS, ref), however 
previous studies indicated that there were no significant  
differences between the three groups in terms of the YMRS  
cross-sectionally or over time, and the median and interquar-
tile ranges were low, hence we did not specifically examine 
mania ratings in the current analysis (Papmeyer et al., 2015b; 
Papmeyer et al., 2016; Young et al., 2000). The participant’s  
age at the time of each assessment was registered in years with a 
precision of two decimals. Assessments at timepoint 1, timepoint 
2 and timepoint 4 included an MRI session, although only MRI  
measurements at timepoint 1 and timepoint 2 were considered  
within this study to restrict to a single scanner. The SBFS 
was approved by the Research Ethics Committee for Scotland  
(reference number 06/MRE00/9), and written informed consent 
including consent for data linkage via medical health records 
was acquired from all participants. The authors assert that all  
procedures contributing to this work comply with the ethical 
standards of the relevant national and institutional committees on  
human experimentation and with the Helsinki Declaration of  
1975, as revised in 2008.

MRI acquisition and pre-processing
Timepoint 1 and timepoint 2 MRI sessions, approximately 
two years apart, were carried out on a 1.5 T Signa scan-
ner (GE Medical, Milwaukee, USA) at the Brain Research 
Imaging Centre in Edinburgh and included a structural T1 
weighted sequence (180 contiguous 1.2 mm coronal slices;  
matrix = 192 × 192; fov = 24 cm; flip angle 8°).

Pre-processing of T1 weighted scans was done in Statistical  
Parametric Mapping (SPM) version 12. The Computational Anat-
omy Toolbox (CAT) toolbox (version CAT12.3 (r1318)), which 
runs on SPM12 software, was used to segment T1-weighted 
MRI scans into different tissue types (for details see Appendix 
A.4 in Extended data (de Nooij, 2020)). A cross-sectional  
segmentation approach was utilised in order to maximise the 
size of our training sample, and the longitudinal aspect of 
our data was handled with repeated measures linear mixed  
modelling (see Comparison of brain maturation trajectories). 
This approach avoided the exclusion of participants with  
incomplete MRI data. CAT12 Quality Assurance metrics 
were used in combination with manual checks to achieve an  
objective and comprehensive procedure to exclude scans with 
artefacts or of otherwise insufficient quality (see Appendix A.4 
in Extended data (de Nooij, 2020)). Subsequently, modu-
lated grey matter maps (GMM) were smoothed with a Gaussian  
kernel (FWHM = 8 mm). After loading the smoothed GMM 
(sGMM) into Python version 3.5.4, voxels were resampled 
into voxels of double the original voxel size, i.e. 3 × 3 × 3 mm3.  
This reduced the number of voxels without further loss of  
spatial information. The sGMM were then masked with a  
threshold of 0.01 to ensure that voxels outside the brain were 
represented by value zero. The resulting sGMM were used as  
input for the brain-PAD model.

Brain-PAD model
To initially train the brain age prediction model, the training  
sample included all control and HR-participants that remained 

well (n = 167) in order to maximise the healthy sample size  
(a model including control participants only was considered  
underpowered, see Appendix A.5 in Extended data (de Nooij, 
2020)). The current model was equally balanced across  
timepoint 1 and timepoint 2 measurements in order to maximise 
the age range. Specifically, each well-group participant  
provided one scan for the training sample: 48 timepoint 1 scans 
and 46 timepoint 2 scans (i.e. all available scans) for C-well,  
together with 37 scans per timepoint for HR-well. HR-well time-
point 2 scans were selected based on the highest chronological 
ages at follow-up so that the age range covered by the  
training sample was maximal (M

age
 = 22.37, SD

age
 = 2.94, age 

range = 15.2–28.1 years; for age distributions see Figure S1 in  
Appendix A.6 in Extended data (de Nooij, 2020)). Specifically, 
each well-group participant provided one scan for the training  
sample; this was a timepoint 2 scan for all 46 C-well participants 
with follow-up scan and the 37 HR-well participants with the  
highest chronological ages at follow-up.

Similar to previous studies (see Cole et al., 2019), the sGMM 
and corresponding chronological ages of the training sample  
were used to train a brain age prediction model. This model 
was implemented in Python (version 2.6.6). Corresponding 
to recent recommendations (Smith et al., 2019), this model  
initially consisted of dimension reduction of all sGMM voxels  
to 73 brain components (based on eigenvalue > 1) using princi-
pal component analysis (PCA) based on singular value decom-
position (SVD) from scikit-learn (Pedregosa et al., 2011). We 
subsequently used these brain components (X) and chronologi-
cal age (y) as input for estimating a Relevance Vector Regression  
(RVR) model with linear kernel (Tipping, 2001); this was imple-
mented using the publicly available scikit-rvm package (ver-
sion 14 May 2017). The RVR algorithm was chosen because 
kernel-based methods have been most commonly implemented 
in brain age models (Cole  et al., 2019), because linear RVR 
was found to be the favourable algorithm in a previous brain-
PAD study (Franke et al., 2010) and because RVR does not 
require estimation of hyperparameters using cross-validation (a  
procedure that would limit our sample size).

The trained model was then applied to each participant’s  
sGMM to predict their brain age, ensuring that the participant 
for whom the brain age was being predicted was left out of the  
training sample to prevent bias (leave-one-out cross-validation). 
A residuals approach was used to regress out chronological 
age and gender, and subsequently calculate brain-PAD (for 
details see Appendix A.7 in Extended data (de Nooij, 2020)),  
i.e. the gap between brain age prediction and chronological 
age. This residuals based approach is typically used to derive  
measures of accelerated aging (e.g. epigenetic aging; Chen et al., 
2016; Horvath, 2013) and is recommended for the brain-PAD 
approach (Smith et al., 2019).

Regarding brain development, a positive brain-PAD reflected 
a brain-predicted age older than the chronological age of 
the participant, while a negative brain-PAD indicated a  
brain-predicted age younger than the participant’s chronologi-
cal age. Changes in brain-PAD over time indicated a relative 
acceleration in brain maturation if brain-PAD became more 
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positive (or less negative), or a relative deceleration in brain  
maturation if brain-PAD became more negative (or less positive).

Given the aim of the current study to specifically investigate 
brain structure aging trajectories within the SBFS cohort, as 
well as the demographics of our cohort (particularly the nar-
row age range, also including late adolescence), we achieved  
within-sample model evaluation based on the brain age predictions 
for the training sample, using leave-one-out cross-validation.

Comparison of brain maturation trajectories
Since the objective of this study was to investigate deviation  
of brain maturation trajectories in young individuals at high 
risk for mood disorder and the association with illness onset,  
participants were divided in three groups based on clinical 
information as described above. Clinical information from all  
available assessments was considered in group categorisation as 
described above.

In order to compare brain structure aging trajectories between 
groups, we applied a linear mixed model (LMM) to the  
brain-PAD measures, taking into account loss to follow-up as 
well as individual and family-related effects (Gueorguieva &  
Krystal, 2004). This was modelled using R (version 3.2.3)  
package nlme (version 3.1-122) with the formula: ‘Brain-PAD 
~ Timepoint × Group, random = ~1 | FamilyID / SubjectID’.  
Within this single pre-defined LMM model, we were inter-
ested in the following contrasts: group differences in brain-PAD 
at baseline (group effect), differential trajectories of brain-PAD 
between groups (group by timepoint interaction effect), and 
group differences at follow-up. For these contrasts we tested 
all three pairwise comparisons, and we multiple comparison  
corrected results (n = 3 pairwise comparisons) with the  
Holm-Bonferroni method (Holm, 1979) using R package emmeans  
(version 1.3.5.1).

Exploratory analyses were conducted to further explore group 
differences in Brain-PAD trajectories. Firstly, we tested a  
longitudinal model that considered the interaction effect  
between age (at baseline) and group on the difference in  
brain-PAD between baseline and follow-up; this was modelled  
in R using the formula: ‘Brain-PAD_difference ~ Age_baseline 
× Group, random = ~1 | FamilyID/SubjectID’. A second 
exploratory analysis also modelled the brain-PAD trajectory 
for the group of control participants who developed a mood 
disorder (C-MD) within the LMM of the main analysis,  
considering the pairwise comparisons with control group  
C-well. In all of the analyses described above, continuous  
variables (brain-PAD, age) were transformed to Z-scores to  
retrieve standardised β-coefficients.

Results
Demographic and clinical variables
Sample sizes, demographic information and clinical measures 
are presented in Table 1. There were no significant differences  
between groups with regard to age at either timepoint, and 
no differences in gender, handedness and NART intelligence  
quotient score. Aggregate information is available for each  
participant as Underlying data (de Nooij, 2020).

However, HR-MD participants reported greater depression 
symptomatology on the HRSD as compared to the groups of  
participants who remained well (C-well and HR-well) at both  
timepoints (Table 1). At baseline, seven HR-MD participants 
(20%; M

HRSD
 = 11.4) reported subclinical symptoms of depres-

sion (defined as HRSD score > 7). At timepoint 2, ten HR-MD 
participants reported symptoms of depression (defined as 
HRSD score > 7). For two of these participants depression  
symptoms were at subclinical level, as they were not yet  
diagnosed with a mood disorder. In contrast, there was a very  
low prevalence of subclinical depression symptomatology  
within the well-groups: two participants at timepoint 1 (1.2%;  
M

HRSD
 = 9.0) and two other participants (with included follow-up 

scans) at timepoint 2 (2.6%; M
HRSD

 = 9.0).

Participants did not report any use of psychotropic medication 
at baseline. At follow-up, six included HR-MD participants  
reported the use of psychotropic medication, whereas none of 
the well-group participants received medication for the treatment  
of psychiatric symptoms.

HR-MD showed lower attrition (11.4%) than C-well (50.5%;  
χ2(1) = 14.6, p < 0.001) and HR-well (36.5%; χ2(1) = 6.2,  
p = 0.01), with no significant difference between C-well 
and HR-well (χ2(1) = 2.8, p = 0.10). None of the clinical or  
demographic variables at baseline differed between those  
individuals with and without a follow-up scan (see Table S2,  
Appendix B.1 in Extended data (de Nooij, 2020)).

Model evaluation
Our model showed a significant positive Pearson correla-
tion between predicted brain age and chronological age  
(r(165) = .40, p < 0.001), and a mean absolute error (MAE) of  
2.21 years (scaled MAE = MAE / age range = 0.17; see  
Appendix B.2 in Extended data (de Nooij, 2020)) within the 
training sample. For a discussion on model evaluation within  
the context of the current study, see Discussion and Appendix  
B.2 in Extended data (de Nooij, 2020).

The 73 brain components that were used as input for the brain 
age prediction algorithm indicated a mean total explained  
variance of 84.0% (SD = 0.0004) for all (leave-one-out)  
training sample dimension reduction iterations. These brain 
components showed loadings distributed across the brain, 
because dimension reduction was spatially unconstrained. 
This complicated unbiased interpretation (Smith et al., 2019), 
and therefore, also given our aim to comprehensively assess  
global patterns of brain structure aging trajectories, these  
components were not further explored. However, we do present 
visualisation of these brain components in order to illustrate 
the method (Figure S3 in Appendix B.3 in Extended data  
(de Nooij, 2020)).

Comparison of brain maturation trajectories
Comparison at baseline
Group allocation based on diagnostic information resulted in  
mean brain-PADs of +0.04 (SD = 1.14, n = 93) for C-well,  
-0.36 (SD = 1.22, n = 74) for HR-well, and -0.01 (SD = 1.39,  
n = 35) for HR-MD. Results of the LMM (Table 2) suggested 
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Table 1. Demographic and clinical characteristics.

C-well HR-well HR-MD p-value

n, timepoint 1 93 74 35

n, timepoint 2 46 47 31

Age, timepoint 1a 21.6 (3.8) 21.6 (4.9) 21.4 (5.2) 0.82

   Age range 16.3-25.6 15.2-26.6 16.0-30.0

Age, timepoint 2a 23.4 (3.6) 23.8 (5.2) 23.7 (5.0) 0.45

   Age range 18.3-27.6 17.6-28.1 18.1-28.1

Genderb 0.51

   Male 42 (45.2%) 38 (51.4%) 14 (40.0%)

   Female 51 (54.8%) 36 (48.6%) 21 (60.0%)

Handednessb 0.32

   Left 5 (5.4%) 7 (9.5%) 2 (5.7%)

   Right 86 (92.5%) 65 (87.8%) 33 (94.3%)

   Mixed 0 (0%) 2 (2.7%) 0 (0%)

   Unknown 2 (2.2%) 0 (0%) 0 (0%)

NART scorea 111 (9.0) 111 (10.7) 107 (8.9) 0.15

HRSD, timepoint 1a 0 (1.0) 0 (2.0) 2 (5.5) <0.001***α

HRSD, timepoint 2a 0 (2.0) 0 (1.0) 5 (8.0) <0.001***α

***p < 0.001
Note: Individual NART scores were averaged over all completed assessments (max. 4).
a Medians and interquartile ranges for variables not normally distributed (Kruskal-
Wallis test)
b Frequency and percentages for categorical variables (Chi-squared test).
α HR-MD vs. C-well and HR-MD vs. HR-well (Kruskal-Wallis test, followed by Dunn’s 
test for pairwise comparisons)
C-well, group of participants without family history who remained well; HR-MD, 
group of participants at high familial risk who developed a mood disorder; HRSD, 
Hamilton Rating Scale for Depression; HR-well, group of participants at high 
familial risk who remained well; NART, National Adult Reading Test.

Table 2. Fixed effects of linear mixed model applied to 
investigate group differences in the brain-predicted age 
difference (brain-PAD).

Main model - Comparison to C-well

Fixed effect β-coefficient SE df t-value p-value

(Intercept) 0.09 0.10 174 0.84 0.55

Timepoint 2 0.37 0.09 121 4.10 <0.001***

HR-well -0.37 0.16 25 -2.33 0.03*

HR-MD -0.07 0.20 25 -0.35 0.72

Timepoint 2*HR-well -0.24 0.13 121 -1.93 0.06

Timepoint 2*HR-MD -0.60 0.14 121 -4.23 <0.001***

Main model - Comparison to HR-well

Fixed effect β-coefficient SE df t-value p-value

HR-MD 0.30 0.21 25 1.14 0.16

Timepoint 2*HR-MD -0.36 0.14 121 -2.52 0.01*

*p < 0.05, **p < 0.01, *** < 0.001
Note: β-coefficients are standardised following scaling of the outcome 
variable.
C-well, group of participants without family history who remained well; HR-MD, 
group of participants at high familial risk who developed a mood disorder;  
HR-well, group of participants at high familial risk who remained well.
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lower baseline brain-PAD for HR-well compared to C-well  
(-0.42 years; β = -0.37, p = 0.03, p

corrected 
= 0.08), but statis-

tical significance did not survive multiple comparison cor-
rection. There were no baseline differences in brain-PADs 
for HR-MD versus C-well (-0.05 years; β = -0.07, p

corrected
 

= 0.73) or HR-MD versus HR-well (0.35 years; β = 0.30,  
p

corrected
 = 0.24).

Brain structure aging trajectories
Results showed a statistically significant timepoint by group  
interaction effect for HR-MD compared to C-well (-0.70 years;  
β = -0.60, p

corrected
 < 0.001) and HR-well (-0.43 years; β = -0.36,  

p
corrected 

= 0.02), indicating decelerating brain structure aging 
trajectories. Besides that, HR-well showed an intermediate  
trajectory (-0.28 years; β = -0.24, p

corrected
 = 0.06) which was 

not statistically significant. Figure 1 displays brain maturation  
trajectories per group as modelled by unstandardised LMM  
fixed effects; for clarity, these trajectories are displayed  
relative to the control group following correction for the effects  
observed in C-well (i.e., intercept and the significant timepoint  
coefficient, see Table 2). Figure 2 shows the heterogeneity 
in observed brain maturation trajectories by displaying the  
participants’ individual changes in brain-PAD over time.

Comparison at follow-up
At follow-up, two years later, the mean brain-PADs were 
+0.36 (SD = 1.01) for C-well, -0.08 (SD = 1.04) for HR-well,  
and -0.30 (SD = 1.30) for HR-MD. Results indicated a  
statistical significant difference in brain-PAD between HR-MD 
and C-well (-0.69 years; β = -0.61, p = 0.02, p

corrected
 = 0.06),  

and between HR-well and C-well (-0.54 years; β = -0.48,  
p = 0.04, p

corrected
 = 0.06), although these results not survive 

multiple comparison correction. We found no evidence for a  
difference between HR-MD and HR-well at follow-up  
(-0.15 years; β = -0.13, p

corrected
 = 0.57).

Exploratory findings
Our exploratory longitudinal model showed similar group tra-
jectories as our main model. Furthermore, this model suggested  

Figure 2. Display of brain structure aging trajectories per participant, reflecting a changing brain-predicted age difference  
(brain-PAD) between timepoint 1 and timepoint 2 (two years apart). Each panel contains the trajectories of one group in thin line 
graphs, whereas the thicker line graph represents the average trajectory of that group (of complete cases). The star dots display the mean 
brain-PAD at each timepoint. Left panel, C-well; Middle panel, HR-well; Right panel, HR-MD. Brain-PAD, brain-predicted age difference; C-well, 
group of participants without family history who remained well; HR-MD, group of participants at high familial risk who developed a mood 
disorder; HR-well, group of participants at high familial risk who remained well.

Figure 1. Modelled fixed effects of the brain-predicted age 
difference (brain-PAD) per group, for clarity corrected for 
effects in C-well (i.e., the intercept and timepoint coefficients) 
as this group functions as control group. Shaded areas display 
standard errors of the timepoint by group interaction effects. Brain-
PAD, brain-predicted age difference; C-well, group of participants 
without family history who remained well; HR-MD, group of 
participants at high familial risk who developed a mood disorder; 
HR-well, group of participants at high familial risk who remained 
well.

that within our sample, younger individuals from the HR-
MD group showed greater deceleration in their structural  
brain trajectory than older HR-MD individuals (HR-MD,  
β = -0.90, p = 0.002; with Age × HR-MD, β = 0.53, p = 0.03), 
whereas no such effects were found for the HR-well group  
(HR-well, β = -0.38, p = 0.06; with Age × HR-MD, β = 0.53,  
p = 0.94) (see Figure S4 and Table S4, Appendix B.4 in  

Page 8 of 25

Wellcome Open Research 2020, 4:206 Last updated: 11 NOV 2020



Extended data (de Nooij, 2020)). Exploratory findings of the  
model including the C-MD group showed a non-significant 
negative trajectory of brain-PAD for this group (-0.42 years;  
β = -0.36, p = 0.11; see Table S5 and Figure S5, Appendix  
B.5 in Extended data (de Nooij, 2020)).

Discussion
The results of the current study showed that in young  
individuals at familial risk the onset of mood disorder was  
associated with differences in brain structure changes over 
time. Statistically significant reductions in brain-PAD indicated  
decelerated brain structure aging trajectories in young HR 
individuals who developed a mood disorder as compared to  
control and HR individuals who remained well. Intermediate 
effect sizes indicated that young individuals who were at risk 
but remained well showed intermediate trajectories. These  
preliminary findings suggest genetic predisposition to mood  
disorder is accompanied by changes in adolescent brain  
structural development trajectories that are increased with the  
onset of mood disorder.

Further research will be necessary to disentangle the role of  
genetic predisposition and additional environmental risk factors 
(e.g. adverse life events) on global age-related brain structure 
changes. As development of mood disorder was associated 
with a more decelerating trajectory, differences observed for 
the mood disorder group may also partly reflect prodromal  
symptoms or early-disease mechanisms of psychological stress.  
Further, in the familial risk group who became ill, we cannot 
disentangle separate effects of risk and depressive symptoms.  
Notably, all groups showed considerable heterogeneity in the 
direction, size and emergence of the individual brain-PADs.  
Additional research is therefore required to substantiate the  
hypothesis that the emergence of a lag in brain structure 
aging in youth indicates mood disorder onset and familial  
risk.

The current findings correspond with previous neuroimaging  
studies using different methods that also indicated deceleration, 
in the same as well as independent prospective longitudinal  
cohorts (Ducharme et al., 2014; Papmeyer et al., 2015a; Whittle 
et al., 2014). According to empirical-based neural models,  
dysfunctions in medial prefrontal networks and limbic areas 
underlie disturbances in emotion regulation and cognitive control 
(e.g. Drevets et al., 2008) which are proposed to play a causal 
role in the development of mood disorder (Nolen-Hoeksema  
et al., 2008; Phillips et al., 2008). Correspondingly, previ-
ous findings within the same cohort have revealed that illness 
risk and onset were associated with differential cortical thick-
ness trajectories in prefrontal areas (Papmeyer et al., 2015a) as 
well as differential patterns of brain activation during emotional 
tasks in cortico-thalamic-limbic regions (Chan et al., 2016;  
Whalley et al., 2015), and neurocognitive performance was 
found to be a trait-marker of familial risk (Papmeyer et al., 
2015b). Although the current study adopted a global approach 
(thus refraining from investigation of regional brain structural or 
functional development), we speculate about a potential neural 
mechanism by which decelerated trajectories of brain structural 
change in young individuals potentially disrupt frontal and limbic  

brain networks that underly emotion regulation and cognitive  
control, consequently increasing vulnerability to mood dis-
order. Inferences of causality however should be drawn with  
caution. It is important to consider that though prospective longi-
tudinal studies are one approach to examining causal processes,  
interpretation is complex. In the current study for example, 
individuals who subsequently developed a mood disorder also 
showed higher mean subclinical depression symptomatology 
at baseline. This could be interpreted as a predictor of subse-
quent illness, or indeed as prodromal or early stages of the illness  
itself.

Importantly, our findings suggest disease-related brain aging 
deceleration may emerge in young individuals, in contrast to  
previous findings of accelerated aging in association with mood 
disorder (Koutsouleris et al., 2014; Sibille, 2013; Wolkowitz  
et al., 2011). However, we that note the majority of these studies 
are conducted in older adult samples, rather than younger  
adolescent cohorts. Given the non-linear trajectory of regional  
brain maturation / aging over the life-course, particularly 
over periods where there is significant developmental change  
(e.g. adolescence), it may not be the case that there is a simple  
retrospective linear trajectory of accelerated biological aging  
from these adult studies to periods earlier in life (Giedd et al.,  
1999; Scahill et al., 2003; Shaw et al., 2008; Tamnes et al.,  
2010; Wierenga et al., 2014). Further, this finding is  
consistent with wider theories of adolescent psychopathology, 
for example the ‘dual system’ model where delayed matura-
tion in higher order cortical regions in relation to limbic regions 
is proposed to underlie difficulties in emotional regulation,  
cognitive function and social behaviour, increasing vulnerability  
to mood disorder (Casey et al., 2011).

The current study applied a novel pattern recognition method 
that, to our knowledge, has not been previously applied to a 
longitudinal cohort of young individuals at risk of mood disor-
der. This approach derives a global measure of brain structure, 
which captures the complexity of spatial and temporal dynamics  
of brain aging. Challenges in collecting clinical data from 
young individuals mean that large cohorts are scarce; the SBFS  
provided a unique opportunity to investigate the dynamics of 
brain structure aging trajectories in relation to mood disorder. 
Development of mood disorder was found to be associated with 
decelerated age-related changes in brain grey matter, which 
could not have been identified within a cross-sectional design. 
Clinical information was also available for up to six years, which  
produced some heterogeneity in the HR-MD group, due to a 
range in times before onset, but also provided confidence that 
those classified as HR-well were not in the early stages of mood 
disorder at the time of imaging assessments. Overall, the cur-
rent study of the SBFS shows unique strengths for youth mental 
health research. Ongoing work on the sample seeks to imple-
ment data linkage at 10+ years to obtain more definitive, stable  
diagnoses.

One limitation of our study was the low correlation between  
brain age prediction and chronological age, reflecting  
suboptimal performance of the brain age prediction model,  
although this is probably also related to the tight age range of 
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our sample as well as individual differences within this life 
stage. Performance of the model was constraint by the limited 
cohort size, as for the purpose of the current study, we adopted 
a within-sample approach. In order to maximise the use of  
available data in building our brain age prediction model, 
we adhered to a cross-sectional segmentation approach and  
included all individuals who remained well, also those at high 
familial risk for mood disorder. Brain-PAD slightly increased 
over time within the control group, indicating that a brain-PAD 
of zero did not indicate normative brain maturation in the  
current study (for details see Appendix B.2 in Extended data 
(de Nooij, 2020)). This suggests that the brain age prediction  
model was biased by familial risk related structural differences 
following inclusion of HR-well participants within the train-
ing sample. Although this explanation would not invalidate our 
results, as it would suggest valid comparison of relative group  
differences in brain-PAD, it is considered a limitation that 
we cannot reliably tease apart the familial risk effect from  
the normative trajectory. Importantly, we directly addressed 
potential threats to the validity of the brain age prediction  
model, to the extent possible within the current sample, with a 
deliberate pre-defined approach consisting of dimension reduc-
tion, sparse RVR modelling and a residuals approach, in order 
to prevent overfitting and thereby optimise the overall model  
validity. However, our prediction model was not validated for 
generalisability to other samples because of challenges related 
to scanner heterogeneity, so that transferability of the model  
remains uncertain. Further limitations of the current study are 
that we were unable to investigate differences between MDD  
and BD, and that we cannot exclude the possibility of medi-
cation effects, although use of psychotropic medications was  
limited within the current sample (see Demographic and clinical 
variables). Additionally, out-of-sample predictions often show 
more prediction error than within-sample predictions achieved 
using cross-validation (Varoquaux et al., 2017). Although  
participants from all three groups belonged to the same 
cohort and were recruited and assessed according to the same  
procedures, brain age predictions for individuals with mood dis-
order onset (i.e., HR-MD) were out-of-training-sample pre-
dictions, whereas predictions for individuals who remained 
well (i.e., HR-well and C-well) required leave-one-out cross-
validation. Although these differential prediction proce-
dures may have led to increased prediction error for HR-MD, 
our finding of intermediate trajectories in the HR-well group 
suggests that results in HR-MD are unlikely to be driven  
entirely by increased random error. Further, additional testing 
of out of training sample scans of well-group participants  
indicated that prediction error was not significantly increased 
compared to within training sample estimates, conferring  
further confidence in our findings. However, taken together, 
the findings of the current study are considered preliminary as  
they should be interpreted in the context of these limitations. 
We also note that in the HR-MD group, the depression severity 
scores are relatively low. However, this group categorisation 
was based on the presence of a previous or current diagnosis, 
rather than on the severity of current symptoms at the time 
of the scan. One final limitation is the use of a 1.5T scan-
ner. Though this is not ideal given current technology, other  

studies had successfully applied similar methods to 1.5T brain 
MRI scans previous to the current study (Franke & Gaser, 2012;  
Gaser et al., 2013). Tthe choice of scanner strength was  
determined at the beginning of this 10 year prospective study. 
We considered the value of having prospective longitudinal 
data, and together with detailed QC this provided sufficient  
confidence in the quality of data used in the current study.

In order to resolve the above limitations, future research should 
aim to replicate our results within a larger sample (Button  
et al., 2013; Jollans et al., 2019). Large-scaled and extended 
MRI follow-up assessments would furthermore allow the  
application of a longitudinal brain age prediction model, which 
will provide a more nuanced understanding of individual  
developmental trajectories. A sufficient sample size would also 
allow for investigation of MDD and BD separately, and could 
account for potential medication effects. Spatial interpretability 
of the current model’s brain age prediction was limited, but 
with a larger sample methods such as orthonormal projective  
non-negative matrix factorisation (OPNMF) could provide 
information about specific regions or networks involved in  
associations between brain age and mood disorder (Sotiras et al., 
2015; Sotiras et al., 2017; Varikuti et al., 2018). Additionally, 
our exploratory findings suggest it may be useful to investigate  
associations between brain structure aging trajectories and 
mood disorder in younger samples. This along with leveraging  
opportunities from other statistical approaches to determine  
causal directionality, could be implemented to attempt to  
understand causal relationships between imaging findings and 
mood symptoms. For now, the present study lays a theoretical 
and empirical foundation for the field to build upon, and will  
hopefully encourage further longitudinal studies of clinical  
youth cohorts. In the future, replication and further investiga-
tion of the association between mood disorder and decelerated  
brain structure aging trajectories may provide important  
insights into the prediction of mood disorder onset in young  
individuals.

Data availability
Underlying data
Open Science Framework: Brain age trajectories and mood 
disorders (SBFS). https://doi.org/10.17605/OSF.IO/QKCYD  
(de Nooij, 2020).

This project contains the following underlying data:
•     �SBFS_Data (containing raw demographic information  

and brain ages for all participants)

For reasons of confidentiality, we are unable to openly share  
underlying MRI data. Specifically, Research Ethics Committee 
approval for this project requires raw MRI data to remain stored 
within the computer system of University of Edinburgh. MR 
images and other types of data from the SBFS cohort can only 
be shared in anonymized form, and only with other organisa-
tions within the European Union, using a secure data transfer.  
For this reason, directly accessible underlying data provided  
via OSF only consists of the unidentifiable underlying data that 
is needed to reproduce the results of this manuscript, including 
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the intermediate brain age prediction imaging phenotype.  
Access to MR images and other data requires the arrangement 
of a data access contract, please contact data holder Dr Heather  
Whalley (Heather.Whalley@ed.ac.uk) for more information and 
arranging access.

Extended data
Open Science Framework: Open Science Framework: Brain age 
trajectories and mood disorders (SBFS). https://doi.org/10.17605/
OSF.IO/QKCYD (de Nooij, 2020).

This project contains the following extended data:

•     �Supplementary information

      °Appendix A: Supplementary Methods.

      °Appendix B: Supplementary Results.

      °Appendix C: Supplementary References.

      ° Supplementary figures and corresponding code1.

•     �SBFS_Code (containing annotated Python code for  
derivation of brain ages, R Markdown integrated code for 
statistical analysis).

Accessible data are available under the terms of the Creative  
Commons Attribution 4.0 International license (CC-BY 4.0).
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I was slightly disappointed by the application of cross-sectional image processing for this 
longitudinally acquired sample. Some of the “considerable heterogeneity in the direction, size and 
emergence of the individual brain-PADs” (raised by the authors in discussion) across the two 
timepoints could potentially be ameliorated by longitudinal processing, which I hope will be 
applied to this dataset in future. I note that the linear mixed models employed here did not take 
into account the time interval between scans, which while acquired ~2 years apart on average, 
there is variability in this timing between scans (the range was 1.0-3.8 years, mean±SD=2.12±0.35 
according to the supplied supplementary datafiles) which together with the lack of inclusion of 
baseline age in the main exploratory model and non-linear maturation trajectories not being 
assessed, may impact the interpretation of the findings. Not withstanding, the analysis reported 
here using these simpler statistical models are valid and provide interesting new data worthy of 
publication, as long as the limitations are clear.  Incorporation of more complex statistical models 
which allow the simultaneous modelling of age, age2, time (between scans), and their interactions 
with diagnostic group – plus incorporation of time of diagnosis (in relation to date of scan 
acquisition) – will allow for greater resolution of the biological processes underpinning cortical 
trajectory differences in future analyses. This may be particularly important given the relationship 
between age at baseline and brain-PAD observed here, which suggests that the differences in 
cortical trajectories are more apparent at earlier time points. 
  
The discussion describes and appropriately acknowledges the limitations of the study, particularly 
in regards to the low correlation with chronological age, the potential of medication effects (not 
examined but small exposed group), the potential for increased error in the HR-MD group due to 
exclusion of those individuals in the training set, and model transferability, the low resolution 1.5T 
scanner. 
  
In regards to the aging model, there are a few limitations of which to be particularly cognisant. 
The aging model developed employed training on scans which were also used as targets for 
prediction, though I note that leave-one-out prediction was employed (for HR-well and C-well 
scans which were employed as training data) to ameliorate circularity of the model prediction. Of 
course, in a perfect world, it would be much better to train the model using an independent 
dataset to ensure the training and test sets are unique and to reduce potential for bias. However 
employing a training dataset acquired on a different scanner/s may also introduce bias and 
reduce model fit, so there are advantages to the approach taken by the authors in this regard, 
particularly if no alternative dataset with equivalent acquisition parameters was available for 
training. The authors' discussion of possible contributors to the low correlation reported here 
between chronological age and brain-age raised important and relevant points, and I agree that 
the tight age window (15-30 years) of the training dataset may result in a poorer correlation 
coefficient than models trained on samples with greater age variability due to subtler age-related 
brain differences over a smaller developmental window. It would be interesting to see whether 
the findings reported here are robust with the application of different (independent) brain-age 
estimators, such as that developed by the ENIGMA MDD working group (Han et al, Mol Psychiatry. 
20201), although I do not suggest that as necessary for the publication of the current work. 
Furthermore, I note that the training set for the current study did not stratify based on gender, 
which may also contribute to poorer model fit due to sex-differences in brain maturation (nor did 
it appear to exclude relatives which may introduce artifact due to heritability of brain structures), 
and may warrant a further note in the discussion. 
  
Can the authors please clarify: 1) whether relatives were included in the training dataset for model 
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predictor; 2) at what stage the brain-PAD values were transformed to z-scores (i.e. was this done 
for all values generated for scan 1 and scan 2 simultaneously, or separately for scan 1 and then 
scan 2 data?); 3) the relationship between CAT12 quality assurance value and accuracy of 
predicted brain-PAD, particularly in regards to lower bounds for ‘satisfactory’, ‘good’ and ‘excellent’ 
are 70%, 80%, and 90% respectively. 
  
Minor comment: there are still a few instances of “ageing” rather than “aging” remaining in the 
document (abstract background, intro para 4 (twice), intro para 8, & Fig 2 title). 
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expertise to confirm that it is of an acceptable scientific standard, however I have 
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We thank the reviewer for the time and effort to evaluate our manuscript and for her 
valuable comments and suggestions. 
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Regarding the statistical analysis we acknowledge the additional limitations raised by the 
reviewer, including cross-sectional image processing, linear age predictors and variation in 
scanning interval. Future studies should apply more complex and more detailed statistical 
models, preferably on larger datasets in order to prevent overfitting and decrease the 
impact of data loss when applying longitudinal processing. 
 
We appreciate that the reviewer acknowledges not only the limitations but also the 
advantages of our leave-one-out approach. We would like to add that we had also tested a 
different, externally validated brainage model (brainageR version 1, 
https://github.com/james-cole/brainageR) for this sample. This model was developed using 
a large adult sample (n=2001, age mean age = 36.95 ± 18.12, age range 18–90 years). This 
model however appeared more biased than our previous model and showed structural 
overestimations for our specific sample, and therefore less optimal for our purposes. To be 
specific, performance metrics with brainageR (as assessed within our model’s training 
sample) were r = 0.39 for the correlation between brain age prediction and chronological 
age; MAE = 8.2 years; M brain age prediction = 30.1 (with sample M age = 22.4), SD brain age 
prediction = 6.3 years (with sample SD age = 3.0 years). This supports our notion that the 
demographics of our dataset complicated the use of externally validated models, hence our 
current approach.   
 
The reviewer furthermore requested clarification on three matters, which we provide below: 
 
1) Were relatives included in the training dataset for model predictor? In the model training 
phase we only left out scans of the subject for whom the brain age was being predicted. So, 
in some cases the scans of a sibling remained in the training set. We acknowledge this 
limitation but would also like to note that relatedness within the sample is limited and that 
we did take it into account within subsequent statistical models (i.e. as random effect). 
 
2) At what stage the brain-PAD values were transformed to z-scores? This was done when 
running the statistical models (i.e. R formula: lme(scale(BrainPAD) ~ Wave * Group, random 
= ~ 1|PedID/ID, data=…). Given the long data format, scaling was done over all observations 
(i.e. across timepoints/waves). This is consistent with the approach of a single brain age 
prediction model (balanced with regard to timepoints). Furthermore, when one would scale 
separately per timepoint, the different scaling factor per timepoint would complicate 
interpretation. 
 
3) What is the relationship between CAT12 quality assurance value and accuracy of 
predicted brain-PAD, particularly in regards to lower bounds for ‘satisfactory’, ‘good’ and 
‘excellent’ are 70%, 80%, and 90% respectively? This is an interesting question to raise. We 
have now explored the relationship between Brain-PAD and image quality. We have created 
plots, which can be viewed in the OSF repository (https://osf.io/pz2x5/) under 
‘Supplementary information’ > ‘Plots_peer_review’. The plots and corresponding statistics 
show no correlation between image quality and Brain-PAD (T1: r = 0.056, p = 0.42; T2: r = -
0.086, p = 0.32). To elaborate further, visual inspection suggest a minor, non-statistically 
significant trend in which higher image quality is associated with slightly more accurate 
brain age predictions / less bias, because (i) at the right end the regression lines approach 
brain-PAD = 0, and (ii) the SD of brain-PAD appears smaller when image quality is better. 
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This logically reflects slightly (not significantly) more noise in the model with lower quality 
images. 
 
As described above, we have updated our OSF repository by adding additional plots (and 
code for these plots). Furthermore, following the minor comment of inconsistent spelling 
(ageing/aging) we have updated our manuscript accordingly.  

Competing Interests: No competing interests were disclosed.
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© 2020 Singh M. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.
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Stanford, CA, USA 

Thank you for addressing reviewer comments.
 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 27 May 2020

https://doi.org/10.21956/wellcomeopenres.17108.r38282

© 2020 Singh M. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Manpreet K. Singh   
Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 
Stanford, CA, USA 

Summary: This is an interesting and well-written article examining structural trajectories in brain 
age in young individuals at familial risk for mood disorder. That the study was insufficiently 
sampled to assess the contribution of family history as an independent factor is a significant 
limitation to this study. Given that the sample involves young people with a family history of 
bipolar disorder, consider that as a more accurate representation of the title. 
 
Methods: Please specify more clearly in the methods that the time to follow up is 2 years. The 
design of the study is confusing and circuitous that it doesn’t become apparent until the results 
that the time elapsed between baseline and follow up scans is 2 years. The difference between a 
15 year old two years later is significantly different than a 30 year old 2 years later in terms of 
brain maturation. By which standard is 15-30 years of age considered to be a “tight” age range?  
 
Methods: Please clarify the temporal reference for group classifications – is it at 2 year follow up or 
at 6 year follow up?  Please provide justification for approach. 
 
Methods: Was mania severity assessed in this sample on clinical follow up? 
 
Results/Discussion: The HAMD scores upon follow up in the individuals categorized as HR-MD are 
quite low and in the upper limit of the mild range, with a mean that doesn’t even reach the lower 
bound of the mild range. How do authors conceptualize these individuals relative to the healthy 
individuals in terms of clinical staging in the context of brain age? Is deceleration of brain age 
likely to be associated with an increased risk for clinical progression or precede early clinical 
progression?  What kind of study design would be able to tease this apart? It would be helpful to 
include rational future directions beyond increasing sample size. 
 
Scanning at 1.5 tesla significantly limits spatial resolution and should be noted as a limitation.  
 
Minor comment: unless specified by the journal style, the term “ageing” spelled in this way is 
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distracting.
 
Is the work clearly and accurately presented and does it cite the current literature?
No

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No

Are the conclusions drawn adequately supported by the results?
Yes
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Jul 2020
Laura de Nooij, University of Edinburgh, Edinburgh, UK 

We thank the reviewer for her time and effort in reviewing our article and her constructive 
comments. Based on these comments, we have improved the manuscript and have 
uploaded a revised version of this article. Here, we would also like to address the comments 
on a point-by-point basis. 
 
"This is an interesting and well-written article examining structural trajectories in brain age in 
young individuals at familial risk for mood disorder. That the study was insufficiently sampled to 
assess the contribution of family history as an independent factor is a significant limitation to this 
study." 
 
As above, we are happy that these particular limitations of the study are clearly portrayed 
and our rationale transparent. In particular, we provide detailed explanations for the choice 
of within-sample prediction, our concerns about just using the control sample alone, 
further, we thoroughly tested performance of the model and overfitting per group, we 
tested other available algorithms, and tested the method against other widely available 
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brain age prediction software derived in independent samples (BrainAge). We therefore 
consider that though the study has limitations, and we acknowledge the need for 
replication, it represents an important foundation for further research in the field. 
 
"Given that the sample involves young people with a family history of bipolar disorder, consider 
that as a more accurate representation of the title" 
  We agree with the reviewer and have added the cohort name to the title of the manuscript 
for clarity, this now reads “Longitudinal trajectories of brain age in young individuals at 
familial risk of mood disorder from the Scottish Bipolar Family Study” 
 
 
"Methods: Please specify more clearly in the methods that the time to follow up is 2 years. The 
design of the study is confusing and circuitous that it doesn’t become apparent until the results 
that the time elapsed between baseline and follow up scans is 2 years. The difference between a 
15 year old two years later is significantly different than a 30 year old 2 years later in terms of 
brain maturation. By which standard is 15-30 years of age considered to be a “tight” age range?" 
 
We have now clarified in the methods that the time between scans was ~ 2 years.  We also 
agree with the reviewer that the change over time for a 15 year old will be different than 
that for someone aged 30 years. For this reason, we performed an age interaction model, 
investigating the potential effect of age on these relationships. These results were initially 
included as exploratory findings in supplemental information and indeed demonstrated 
larger decelerations for younger participants in the HR-MD group. These results are now 
detailed in the main body of the manuscript. 
 
 
"Methods: Please clarify the temporal reference for group classifications – is it at 2 year follow up 
or at 6 year follow up?  Please provide justification for approach." 
 
This information has now been added to the manuscript. In most cases individuals were 
seen every 2 years for a total of 6 years (x3 assessments, but only 2 scans) 
For the control group, individuals were included if they had remained without being 
diagnosed with any psychiatric disorder throughout the period of the study (via 
assessments and/or GP records). Those that did become unwell were a small group (n=12) 
and are not included in the current analysis. This approach was used to reduce 
heterogeneity in the control group. 
For the high-risk group, none met clinical criteria for any mood disorder at baseline. If at 
any assessment they did meet criteria for a mood disorder (at the time of assessment or 
over the intervening period since the earlier assessment) they were considered as being in 
the HR-MD group. So, once someone had a diagnosis, even though they may not have been 
actively symptomatic at the time of the assessment, they were still considered as being in 
the mood disorder group. This approach was based on the premise that once an individual 
had met diagnostic criteria at any time over the course of the study, they were no longer 
‘high risk’ for mood disorder, but actually a ‘case’. 
 
 
"Methods: Was mania severity assessed in this sample on clinical follow up?" 
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Yes, mania was also assessed at every assessment using the Young Mania Rating Scale 
(YMRS), however previous studies indicated that there were no significant differences 
between the three groups in terms of the YMRS cross sectionally or over time, and the 
median and interquartile ranges were low, hence we did not specifically examine mania 
ratings in the current analysis (Papmeyer et al, Psychiatry Res. 2016 Feb 28; 248: 119–125; 
Papmeyer et al, Psychol Med. 2015 Nov; 45(15): 3317–3327.). This information has now been 
added to the manuscript. 
 
 
"Results/Discussion: The HAMD scores upon follow up in the individuals categorized as HR-MD are 
quite low and in the upper limit of the mild range, with a mean that doesn’t even reach the lower 
bound of the mild range. How do authors conceptualize these individuals relative to the healthy 
individuals in terms of clinical staging in the context of brain age? Is deceleration of brain age 
likely to be associated with an increased risk for clinical progression or precede early clinical 
progression?  What kind of study design would be able to tease this apart? It would be helpful to 
include rational future directions beyond increasing sample size." 
 
The reviewer is correct that the HAMD scores are relatively low, we however note that the 
depression status was not defined according to the severity of current symptoms at the 
time of the scan, but based on lifetime depression, a note to this effect has been added to 
the discussion. 
Regarding the second point, it is not possible to disentangle whether the differences in 
brain age are a cause or consequence of clinical progression. In future studies, earlier scans 
prior to prodromal phases of disease, along with leveraging opportunities from other 
statistical approaches to determine causal directionality could be implemented to attempt 
to understand these relationships. This has also now been added to the discussion. 
 
 
"Scanning at 1.5 tesla significantly limits spatial resolution and should be noted as a limitation." 
 
This is now explicitly mentioned as a limitation in the manuscript. As above we also now 
acknowledge that though this is not ideal given current technology, the choice of scanner 
strength was determined at the beginning of this 10 year prospective study. We considered 
the value of having prospective longitudinal data, together with detailed QC (using software 
quality assurance metrics in combination with manual checks excluding scans with artefacts 
or of otherwise insufficient quality) provided sufficient confidence in the data quality used in 
the current study. 
  
"Minor comment: unless specified by the journal style, the term “ageing” spelled in this way is 
distracting." 
 
All spellings of the term “ageing” have now been changed to “aging”  

Competing Interests: No competing interests

 
Page 22 of 25

Wellcome Open Research 2020, 4:206 Last updated: 11 NOV 2020



Reviewer Report 20 January 2020

https://doi.org/10.21956/wellcomeopenres.17108.r37434

© 2020 Mitchell P. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Philip B. Mitchell   
School of Psychiatry, University of New South Wales, Sydney, NSW, Australia 

This is the first study of cross-sectional and longitudinal changes in brain aging in young people at 
high genetic risk of bipolar disorder. As such, it is of interest to the field. 
 
The main result is the somewhat counter-intuitive finding that those at risk who go on to develop 
a mood disorder demonstrate reduced ('decelerated') brain aging. This contrasts with findings in 
older patients in which depression is related to increased brain aging. The explanation for this 
unexpected finding is less than convincing. 
 
The authors are frank about the limitations of this study, the major one being that the 'training' 
dataset was a combination of controls who stayed well, and at risk subjects who stayed well - 
thereby confounding risk and clinical status. 
 
Issues to be addressed:

There needs to be more frank acknowledgement that the brain aging difference in the risk 
group that developed mood episodes may have been a result of the depression in addition 
to the risk state per se. 
 

1. 

The study used a 1.5T MRI scanner. Is it possible that this did not provide sufficient 
resolution for such a study?

2. 

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
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Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Young people at increased genetic risk of bipolar disorder

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Jul 2020
Laura de Nooij, University of Edinburgh, Edinburgh, UK 

We thank the reviewer for his time and effort in reviewing our article and his supportive and 
positive comments. Based on these comments, we have improved the manuscript and have 
uploaded a revised version of this article. Here, we would also like to address the comments 
on a point-by-point basis. 
 
 
"The main result is the somewhat counter-intuitive finding that those at risk who go on to develop 
a mood disorder demonstrate reduced ('decelerated') brain aging. This contrasts with findings in 
older patients in which depression is related to increased brain aging. The explanation for this 
unexpected finding is less than convincing." 
 
We have now expanded on this finding and simplified the discussion, adding that the 
majority of studies reporting accelerated brain aging in mood disorder are conducted in 
older adult samples, rather than younger adolescent cohorts. Given the non-linear 
trajectory of regional brain maturation / aging over the life-course, particularly over periods 
where there is significant developmental change (e.g. adolescence), it may not be the case 
that there is a simple retrospective linear trajectory of accelerated biological aging from 
these adult studies to periods earlier in life. Further, this finding fits with wider theories of 
adolescent psychopathology, for example the ‘dual system’ model where delayed 
maturation (‘decelerated brain age’) in higher order cortical regions in relation to limbic 
regions is proposed to underlie difficulties in emotional regulation, cognitive function and 
social behaviour, increasing vulnerability to mood disorder. 
 
"The authors are frank about the limitations of this study, the major one being that the 'training' 
dataset was a combination of controls who stayed well, and at risk subjects who stayed well - 
thereby confounding risk and clinical status." 
 
We are happy that these particular limitations of the study are clearly portrayed and our 
rationale transparent. In particular, we provide detailed explanations for the choice of 
within-sample prediction, our concerns about just using the control sample alone, further, 
we thoroughly tested performance of the model and overfitting per group, we tested other 
available algorithms, and tested the method against other widely available brain age 
prediction software derived in independent samples (BrainAge). We therefore consider that 
though the study has limitations, and we acknowledge the need for replication, it 
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represents an important foundation for further research in the field. 
 
 
"There needs to be more frank acknowledgement that the brain aging difference in the risk group 
that developed mood episodes may have been a result of the depression in addition to the risk 
state per se." 
 
We have now added a section to the discussion addressing this point, explaining that the 
brain aging differences may have resulted from depression and risk state in combination, 
and that we cannot disentangle effects of risk and depressive symptoms in the current 
study. 
 
"The study used a 1.5T MRI scanner. Is it possible that this did not provide sufficient resolution for 
such a study?" 
 
We also now acknowledge this point in the limitations section. Though this is not ideal given 
current technology, the choice of scanner strength was determined at the beginning of this 
10 year prospective study. We considered the value of having prospective longitudinal data, 
together with detailed QC (using software quality assurance metrics in combination with 
manual checks excluding scans with artefacts or of otherwise insufficient quality) provided 
sufficient confidence in the data quality used in the current study.  
To elaborate from a technical point of view, 1.5T MRI scans indeed provide more noisy data 
and lower resolution than 3T MRI data. Smoothing is a recommended pre-processing step 
that reduces the noise on voxel level and was also applied in the pipeline of the current 
study. Subsequently, in order to appropriately deal with this high-dimensional data, voxels 
were resampled into greater voxel sizes in order to reduce the number of variables 
(features) for the machine learning approach (note however that due to previous 
smoothing, this step did not further reduce the resolution). We find that these 
recommended pre-processing steps reduce noise and resolution, but that the resolution of 
our pattern recognition approach is still higher than with standard sMRI analysis 
approaches in which voxels are often averaged across areas. The last step of the pipeline 
was the extraction of features with PCA. We thus applied multiple pre-processing steps, and 
although derived and pre-processed variables will also be more precise when input 
variables are more precise (e.g. due to higher scanner strength), we would argue that the 
low scanner strength in itself does not comprise the methods of this study. In addition, we 
reference several other studies that applied similar approaches also including 1.5T sMRI 
data (e.g. Franke et al., NeuroImage, 2012, 63, 1305–1312; Gaser et al, PLOS ONE, 2013, 8(6), 
e67346).  
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