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Abstract
Lung toxicity is the main cause of the death from methamphetamine (MA) abuse, but its mechanism has remained unclear. The
purpose of our study was to investigate if MA can induce epithelial-to-mesenchymal transition (EMT) and if RUNX3 is involved
in oxidative EMT in MA-induced chronic lung injury. The rats were divided into the control group and MA group. Extracted
lungs were used for morphological measurements andWestern blot. The alveolar epithelial cells were cultured or transfected and
then treated with MA or/and N-acetyl cysteine (NAC) followed by flow cytometry, Western blot, and immunohistochemistry.
Chronic exposure to MA resulted in the lower growth ratio of weight, increased right ventricular index, thickened alveolar walls,
and reduced number of alveolar sacs. Long-term administration with MA caused oxidative stress and pulmonary EMT. NAC
increased RUNX3 and alleviated EMT. However, after knockdown of RUNX3, reactive oxygen species (ROS) levels were
significantly upregulated, indicating that RUNX3 was closely related to oxidative stress. Knockdown of RUNX3 aggravated
MA-induced EMT by activating RUNX3-dependent TGF-β signaling. Therefore, RUNX3 may be the key to oxidative EMT in
methamphetamine-induced chronic lung injury.
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Introduction

The abuse of methamphetamine (MA) is a major public health
issue (Wang et al. 2018). MA is an addictive drug with pop-
ularity among the young and the middle-aged adults
(Orcholski et al. 2017). A study has found that when injecting
MA in humans, 24–31% of the dose is absorbed by lung
(Volkow et al. 2010). A higher uptake rate of MA in lungs
resulted in toxicity and some lung diseases such as pulmonary
hypertension and pulmonary edema (Albertson et al. 1999;
Ciccarone 2011; Ramirez et al. 2018). Pulmonary dysfunction

is the main cause of the death fromMA toxicity, but its mech-
anism has remained unclear.

Runt gene family members (RUNX1, RUNX2, and
RUNX3) play the important roles in the normal development
of tissues and carcinogenesis. RUNX1 was first recognized as
a tumor suppressor in myeloid leukemia. RUNX1 is indis-
pensable for the hematopoietic system and is one of the most
commonly mutated genes in a variety of hematological malig-
nancies (Link et al. 2010; Sood et al. 2017). RUNX2 is essen-
tial for skeletal development and osteoblast differentiation
(Komori 2017). RUNX3, as a tumor suppressor, not only is
involved in the tumor formation but also plays a key role in
cellular growth, embryonic development, and immune regu-
lation (Ito et al. 2015; Lotem et al. 2015). Although a large
number of studies on RUNX3 are focused on cancer metasta-
sis, RUNX3 is also an important regulator of pulmonary an-
giogenesis and plays a vital role in lung development (Lee
et al. 2014). Mice with loss of RUNX3 can show the abnormal
alveolar dysplasia 1 day after birth (Lee et al. 2010). Since
RUNX3 is expressed in lungs and takes part in the lung de-
velopment, we wondered whether RUNX3 is also involved in
the mechanism of chronic lung injury induced by MA.
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Our previous study found that MA increased the ROS
levels and the accumulation of ROS which resulted in oxida-
tive stress in rat lungs (Franco et al. 2008; Bai et al. 2017),
indicating that oxidative stress participated in theMA-induced
lung toxicity (Wang et al. 2018). Oxidative stress inhibited
activation of RUNX3 in human colon cancer cells (Kang
et al. 2013). This suggested to us that RUNX3-related oxida-
tive stress is probably associated with MA-induced chronic
lung injury.

Chronic lung injury clinically includes chronic inflamma-
tion, pulmonary hypertension, chronic obstructive pulmonary
disease (COPD), pulmonary fibrosis, and even lung cancer.
Among these chronic lung diseases, epithelial-to-
mesenchymal transition (EMT) is a vital pathology (Stone
et al. 2016). EMT has been divided into three types: the first
is to promote organ development; the second is related to organ
regeneration and fibrosis; and the third is closely related to
cancer infiltration and metastasis (Choi and Diehl 2009).
EMT can make alveolar epithelial cells obtain mesenchymal
cell phenotype, so that the deposition of extracellular matrix
further promotes the pulmonary remodeling (Stone et al. 2016;
Jolly et al. 2018). Therefore, EMT is also likely to be the key to
the pathogenesis of MA-induced chronic lung injury. In some
studies on the cancer, low levels of RUNX3 can induce EMT
(Whittle and Hingorani 2015; Chen et al. 2017; Kulkarni et al.
2018). Taken together with the above, RUNX3 may play an
important role in EMT induced by chronic exposure to MA.

Based on the above, the purpose of our present study was to
investigate if long-term exposure to MA can induce EMT, if
RUNX3 is related to oxidative stress and EMT formation, and
how RUNX3-related oxidative stress regulates MA-induced
EMT.

Materials and methods

Construction of the rat model of chronic lung injury
induced by MA

Twenty male Wistar rats (200 ± 10 g) from the Animal
Resource Center, China Medical University (certificate num-
ber: Liaoning SCXK 2015-0001), were divided into 2 groups:
control group (n = 9) and methamphetamine group (MA, n =
11). The rats in the MA group were intraperitoneally injected
with MA (China Criminal Police University, China) twice a
day for 6 weeks. In the 1st week, the daily dosage of MA is
10 mg/kg and then was increased by 1 mg/kg per week. At the
6th week, the daily dosage was increased to 15 mg/kg. During
the time of establishing the MA model, one rat in the MA
group was dead in the 3rd week, and the other in the MA
group was dead in the 5th week. The rats in the control group
were intraperitoneally injected with the same volume of 0.9%
normal saline (Wang et al. 2018). The rats were maintained in

a temperature (18–22 °C) and controlled humidity (50–70%)
room and were fed with water and solid food in an alternating
12-h light and 12-h dark cycle. All the rats were weighted
every day. The percentage of weight gain in each group was
calculated every week using formula 1. After 6 weeks, the
right ventricular index (RVI) was also calculated using formu-
la 2 to evaluate the remodeling of the right heart resulting from
chronic pulmonary dysfunction.

All animals’ experimental procedures complywith the guide-
lines of the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health (NIH), with the approval of
the Institutional Animal Care and Use Committee of China
Medical University (IACUC Issue No. CMU2019215).

Percentage of the weight gain

¼ average of the weekly weight−average of the initial weight

average of the initial weight
� 100%

ð1Þ

RVI ¼ right ventricular weight

right ventricular weightþ left ventricular weight
� 100%

ð2Þ

Cell cultures and treatment

Alveolar epithelial cell lines A549 were purchased from the
Beijing Dingguo Biological Technology (Beijing, China). The
alveolar epithelial cells were inoculated in 6-well plates and
cultured in RPMI-1640 (HyClone, USA) medium containing
10% fetal bovine serum (Clark, Australia) and 1% penicillin/
streptomycin at 37 °C in 5% CO2. A total of 1 × 105 cells in
each well were cultured and then were incubated with MA at
the dosage of 0.1, 0.5, 1, and 5 mM for 12, 24, and 48 h (Wang
et al. 2018). To evaluate the effects of ROS scavenger, N-acetyl
cysteine (NAC; N800425, Macklin, Shanghai, China), A549
cells were preincubated by 5 mM NAC (Zhou et al. 2018)
dissolved in dimethyl sulfoxide (DMSO; D5879, Sigma,
USA) for 1 h before 5 mM MA stimulation.

Silencing by small interfering RNA against RUNX3

The bottom of each well is covered by 70% cells. The cells
were transfected with siRNA against RUNX3 (Sangon
Biotech, Shanghai, China) using Lipofectamine 3000
(Thermo Fisher Scientific, USA) following the manufac-
turer’s instructions. The following base pairs of siRNA were
used for RUNX3: RUNX3-HOMO-863, (sense) 5 ′-
CCCUGACCAUCACUGUGUUTT-3′ and (antisense) 3′-
AACACAGUGAUGGUCAGGGTT-5′. After transfection
for 72 h, the cells were treated with MA (5 mM, 48 h) and/
or NAC (5 mM, 1 h), respectively, and were divided into the
control group, the NC group, the siRUNX3 group, the
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siRUNX3+NAC group, the siRUNX3+MA group, and the
siRUNX3+MA+NAC group.

Hematoxylin and eosin staining

The right inferior lobes of the lungs in the control and MA
groups (n = 3) are fixed with 4% paraformaldehyde,
dehydrated, and paraffin embedded. They were sliced into
4-μm sections and stained with hematoxylin and eosin
(H&E) staining. Sections on slides were placed under an op-
tical microscope (Olympus BX 51, Japan) for observation and
analysis. Chronic lung injury was evaluated by the thickness
of the alveolar septum and the number of alveolar sacs (three
visual fields selected randomly were analyzed in each section;
magnification, × 200 and × 400) (Wang et al. 2018).

Western blotting analysis

The lung tissue (n = 6) and the alveolar epithelial cells were
lysed in RIPA buffer with PMSF on ice and centrifuged at
14,000g for 15 min. Protein concentrations were measured by
a BCA kit (Beyotime Biotechnology, Nanjing, China). After
electrophoresis, protein was transferred to a PVDF membrane
(Bio-Rad). The PVDF membrane was blocked in 5% fat-free
milk for 2 h, then incubated with corresponding primary anti-
bodies at 4 °C overnight (Table 1). The membranes were
washed in Tris-buffered saline-Tween-20 (TBS-T) 3 times
(10 min/time) and then incubated with horseradish peroxidase
(HRP)–conjugated goat anti-rabbit or goat anti-mouse sec-
ondary antibodies (Proteintech, USA) for 2 h at room temper-
ature, followed by detecting using enhanced chemilumines-
cence (ECL). The relative protein expression was quantified
by densitometry using ImageQuant software (Molecular
Dynamics) and normalized to β-actin. The results of
RUNX3, GCS (glutamylcysteine synthetase), SOD2, E-
cadherin, ZO-1,α-SMA, TGF-β1, Smad2, and p-Smad2were
represented by the relative yield to the β-actin, respectively.

Immunohistochemical assay

The 4-μm sections were processed by deparaffinization, hy-
dration, and antigen retrieval. Primary antibodies were diluted
to 1:500 and incubated with rabbit anti-ZO-1 (21773-1-AP,
Proteintech, USA), anti-α-SMA (55135-1-AP, Proteintech,
USA), and 1:1000 anti-RUNX3 (13089S, Cell Signaling
Technology, USA) overnight at 4 °C. The sections were
incubated with goat anti-rabbit biotinylated secondary an-
tibody for 10 min at room temperature and then reacted
with conjugated streptavidin-peroxidase (MXB, Fuzhou,
China) for 10 min at room temperature. The sections were
dipped into diaminobenzidine (DAB, Zhongshan Jinqiao,
Beijing, China) and counterstained with hematoxylin and
then observed under an optical microscope (Olympus BX
51, Japan).

Flow cytometry for determination of ROS

DCFH-DA can pass freely through the cell membrane and is
nonfluorescent. It is hydrolyzed by the esterase in the cells to
form DCFH after entering the cells. DCFH cannot penetrate
the cell membrane and can be oxidized into fluorescent DCF
by intracellular ROS. The fluorescence spectrum of DCF is
very similar to FITC, so the fluorescence intensity of DCF can
be detected by setting FITC parameters. Therefore, DCF fluo-
rescence intensity was measured to evaluate the levels of ROS
in the cells.

A549 cells (1 × 105 cells/well) were collected and seeded
into 6-well plates, washed by PBS, incubated with thousand
times diluted DCFH-DA (Genview, USA) with serum-free
RPMI-1640 medium, and then incubated in the CO2 incubator
for 1 h at 37 °C in a dark and humidified atmosphere. The
treated cells were washed with serum-free RPMI-1640 medi-
um and collected with PBS to make a suspension. Flow cy-
tometry was used to detect the relative fluorescence intensity
of ROS.

Table 1 Primary antibodies in
this study Primary antibody Dilution Company Catalog

RUNX3 1:1000 Cell Signaling Technology, USA 13089S

SOD2 1:1000 Proteintech, USA 24127-1-AP

GCS 1:1000 Proteintech, USA 12601-1-AP

E-cadherin 1:1000 Proteintech, USA 20874-1-AP

ZO-1 1:500 Proteintech, USA 21773-1-AP

α-SMA 1:500 Proteintech, USA 55135-1-AP

TGF-β1 1:500 Proteintech, USA 18978-1-AP

Smad2 1:1000 ABclonal, China A0440

p-Smad2 1:500 Affinity Biosciences, USA AF3449

β-actin 1:10,000 Proteintech, USA 66009-1-lg
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Immunofluorescence assay

The cells were cultured in the 6-well plates and treated with
MA or/and NAC. The cells were fixed in 4% paraformalde-
hyde and then were permeabilized in 0.2% Triton X-100 be-
fore blocking in 3% BSA for 1 h. The cells were incubated
with primary antibodies: monoclonal mouse anti-ZO-1
(66452-1-lg, 1:200, Proteintech, USA) and monoclonal rabbit
anti-α-SMA (55135-1-AP, 1:200, Proteintech, USA) over-
night at 4 °C. The CY3-conjugated goat anti-mouse IgG and
FITC-conjugated goat anti-rabbit IgG secondary antibodies
(1:100, Proteintech, USA) were incubated for 1 h at room
temperature in the dark. After DAPI (Beyot ime
Biotechnology, China) was added into each well, the mixture
was incubated in the dark at room temperature for another
5 min. All the specimens were observed in × 100 oil immer-
sion lens of a Nikon Eclipse Ni epifluorescence microscope
(Nikon Instruments Inc., Tokyo, Japan).

Statistical analysis

All the data are expressed as mean ± standard deviation (SD).
Statistical analysis was performed with IBM SPSS Statistics
22.0 and GraphPad Prism 6.0 (GraphPad Software, Inc., San

Diego, CA, USA). Statistical comparisons were performed
using the t test and one-way ANOVA followed by the LSD
post hoc test. The values of P < 0.05 were considered to indi-
cate a statistically significant difference.

Results

MA induced chronic lung injury

H&E staining was used to show the pathological changes
of the lungs of rats. In the control group, the alveolar
structure was intact and there was no infiltration of in-
flammatory cells and no thickening of the alveolar walls
(Fig. 1a). But chronic exposure to MA caused more com-
pact parenchyma, the reduction in the number of alveolar
sacs, and the thickening of the alveolar walls (Fig. 1b, c).
The percentage of weight gain in the MA group was sig-
nificantly lower than that in the control group from 4th to
6th week (Fig. 1d). The right ventricular index (RVI)
0.19 ± 0.035 from the control group was significantly in-
creased to 0.33 ± 0.008 in the MA group (**P < 0.01 vs.
control, Fig. 1e).

Fig. 1 MA induced chronic lung injury. a MA-induced chronic lung
injury by H&E staining (Olympus BX 51, Japan, × 200 and × 400).
Long-term exposure to MA caused more compact lung parenchyma,
the thickened alveolar septum, and the reduced number of alveolar sacs.
b The thickness of the alveolar septum. c The number of alveolar sacs. d
Percentage of weight gain of rats in the Con and MA groups (n = 9). e

Percentage of right heart index gain of rats in the CON and MA groups
(n = 9). The quantification of b and c was 11analyzed in 3 visual fields
randomly selected in a section (n = 3), respectively. Data are presented as
the mean ± SD. *P < 0.05, **P < 0.01 vs. CON. CON, control; MA,
methamphetamine
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MA induced EMT in lungs and alveolar epithelial cells

Western blot analysis showed that the epithelial marker proteins
E-cadherin and ZO-1 in lungs were decreased in the MA group
but that there was an increase of mesenchymal marker gene α-
SMA expression, compared with the control group (Fig. 2a–d).
In Fig. 2i, ZO-1was expressed highly and localized at tight
junctions in the control group, but in the MA group, ZO-1
expression was diminished. The expression of α-SMA in the
MA group was much higher than that in the control group (Fig.
2j). When alveolar epithelial cells were treated with MA (0.1,
0.5, 1, and 5 mM) for 12, 24, and 48 h, MA reduced the levels
of ZO-1 and E-cadherin and increased the levels of α-SMA at
time- and dose-dependent manners compared with the control
group (Fig. 2e). Specifically, there were reductions in ZO-1 and
E-cadherin and upregulated expression of α-SMA by 5 mM
MA at 48 h (Fig. 2f–h). The above results indicated that long-
term administration with MA can cause EMT in lung tissue or
alveolar epithelial cells.

The effect of MA on oxidative stress and RUNX3

Oxidative enzyme superoxide dismutase (SOD) reflects the
degree of oxidative stress injury (Rodriguez-Iturbe et al.

2007; Langer 2012). Antioxidative enzyme glutamylcysteine
synthetase (GCS) can scavenge oxygen free radicals (Lim
et al. 2015). In our study, MA caused higher expression of
SOD2 and lower expression of GCS in lungs (Fig. 3a–c).
Western blot analysis showed that compared with the control
group, RUNX3 in lungs was dramatically decreased in the
MA group (Fig. 3a, d), which was consistent with the result
from the immunohistochemistry analysis (Fig. 3e). The main
cause of oxidative stress is excessive production of ROS
(Kong et al. 2014; Lim et al. 2015). Flow cytometry was used
to analyze the levels of ROS in living cells by measuring 1 ×
105 cells and found that MA significantly augmented the pro-
duction of intracellular ROS (Fig. 3f, g). RUNX3 expression
in alveolar epithelial cells was inhibited by MA (Fig. 3h).
Specifically, RUNX3 reduction was most prominent by
5 mM MA at 48 h (Fig. 3i).

The effect of oxidative stress on RUNX3 and EMT

To investigate if oxidative stress further affected RUNX3 and
EMT, the alveolar epithelial cells were treated with the ROS
scavenger NAC. MA increased SOD2 and decreased GCS,
but in the NAC+MA group, the expression of SOD2 was
much lower and the expression of GCS was much higher than

Fig. 2 MA induced EMT in lungs and alveolar epithelial cells. a–d EMT
marker proteins E-cadherin, ZO-1, and α-SMA expressed in lungs by
Western blot. e–h The expression of E-cadherin, ZO-1, and α-SMA in
alveolar epithelial cells. i Expression of ZO-1 in lungs in the CON and
MA groups by IHC staining. j Expression ofα-SMA in lungs in the CON

and MA groups by IHC staining. The arrows indicate the expression of
ZO-1 (brown) or α-SMA (brown) in the alveolar epithelium in different
groups. Data are presented as the mean ± SD. *P < 0.05, **P < 0.01 vs.
CON. C, control; 0.1, 0.1 mM MA; 0.5, 0.5 mM MA; 1, 1 mM MA; 5,
5 mM MA; MA, methamphetamine
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those in the MA group (Fig. 4a–c), indicating that NAC
attenuated MA-induced oxidative stress. The level of
RUNX3 was significantly upregulated in the NAC+MA
group in comparison with the MA group (Fig. 4d). MA
caused the occurrence of EMT with the reduction in the
epithelial markers E-cadherin and ZO-1 and with the in-
crease in the mesenchymal cell marker α-SMA, which
were reversed by NAC from MA (Fig. 4e–g). MA reduced
the ratio of ZO-1/α-SMA that was upregulated in the
NAC+MA group, compared with the MA group (Fig.
4h, i). These results suggested that pulmonary EMT by
MA was associated with oxidative stress.

RUNX3-denpendent oxidative EMT induced by MA
through TGF-β signaling

In order to determine the role of RUNX3 in pulmonary EMT,
the siRUNX3 plasmids were transfected into the alveolar

epithelial cells. After incubation for 72 h, transfected efficien-
cy was confirmed by Western blot analysis (Fig. 5a, b). In
comparison with the control group, RUNX3 was significantly
decreased in the siRUNX3 group (###P < 0.001 vs. CON),
indicating that siRNA transfection is successful.

To observe the relationship between RUNX3 and oxidative
stress, the alveolar epithelial cells were treated and divided
into the CON group, NAC group, NC group, siRUNX3
group, and siRUNX3+NAC group. Flow cytometry analysis
in Fig. 5c showed that compared with the control group, the
level of ROS in the siRUNX3 and siRUNX3+NAC groups
was significantly increased; compared with the siRUNX3
group, ROS production was significantly reduced in the
siRUNX3+NAC group; and the ROS level in the
siRUNX3+NAC group was more than that in the NAC group
(Fig. 5d). These results indicate that lower RUNX3 can cause
oxidative stress, so RUNX3 was closely related to oxidative
stress.

Fig. 3 The effect of MA on oxidative stress and RUNX3. a–d Effects of
MA on the expression of SOD2, GCS, and RUNX3 in lungs. e
Expression of RUNX3 in lungs in the CON and MA groups by
immunohistochemical staining. The arrows indicate that sections were
stained with rabbit anti-RUNX3 (brown) in the CON and MA groups.
f, g ROS levels in the alveolar epithelial cells by flow cytometry. The

mean value in P1 is the average fluorescence intensity, as a statistical
indicator, representing the expression of ROS. h, i Expression of
RUNX3 in alveolar epithelial cells. Data are presented as the mean ±
SD. *P < 0.05, **P < 0.01, ***P < 0.001 vs. CON; C, control; 0.1,
0.1 mM MA; 0.5, 0.5 mM MA; 1, 1 mM MA; 5, 5 mM MA; MA,
methamphetamine
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Next, the alveolar epithelial cells were separately
treated and divided into the CON group, NC group,
siRUNX3 group, siRUNX3+MA group, and siRUNX3+
MA+NAC group. TGF-β1 and p-Smad2 were signifi-
cantly increased in the siRUNX3, siRUNX3+MA, and
siRUNX3+MA+NAC groups (Fig. 5e–g, P < 0.05,
P < 0.001 vs. CON). After knockdown of RUNX3, the
levels of TGF-β1 and p-Smad2 were further upregulated
by MA but were reversed by NAC from MA (Fig. 5e–g).
And then, in Fig. 5h, E-cadherin and ZO-1 were reduced
and α-SMA was increased in the siRUNX3 group and in
the s iRUNX3+MA group . Compared wi th the
siRUNX3+MA group, E-cadherin and ZO-1 were signif-
icantly increased and the expression of α-SMA was de-
creased in the siRUNX3+MA+NAC group (Fig. 5i–k).
Immunofluorescence assay results of α-SMA and ZO-1
were consistent with Western blot (Fig. 5l, m). These
results suggest that RUNX3 is the key to oxidative
EMT induced by MA and that RUNX3-denpendent anti-
oxidative stress can alleviate MA-induced EMT through
TGF-β signaling.

Discussion

Chronic exposure to MA resulted in the lower growth ratio of
weight, increased RVI, and chronic lung injury including the
thickened alveolar walls and the reduced number of alveolar
sacs. Long-term administration with MA caused oxidative
stress and reduced the expression of RUNX3 in alveolar epi-
thelial cells. NAC alleviated pulmonary EMT, suggesting that
EMT by MA was associated with oxidative stress. After
knockdown of RUNX3, ROS levels were significantly upreg-
ulated, indicating that RUNX3 was closely related to oxida-
tive stress. siRUNX3 made MA further decrease E-cadherin
and ZO-1 and increase α-SMA by activating RUNX3-
dependent TGF-β signaling. But the aggravated EMT was
significantly reversed by the inhibition of RUNX3-related ox-
idative stress. These results indicate that long-term exposure
toMA can induce pulmonary EMT, that pulmonary EMTwas
associated with oxidative stress, that RUNX3 was the key to
oxidative EMT induced by MA, and that the inhibition of
RUNX3-related oxidative stress can alleviated MA-induced
EMT through TGF-β signaling.

Fig. 4 The effect of oxidative stress on RUNX3 and EMT. a Expression
of SOD2, GCS, RUNX3, E-cadherin, ZO-1, and α-SMA in the alveolar
epithelial cells by Western blot. b SOD2 protein expression in alveolar
epithelial cells. c GCS protein expression in alveolar epithelial cells. d
RUNX3 protein expression in alveolar epithelial cells. e–g EMT marker
proteins E-cadherin, ZO-1, and α-SMA expressed in alveolar epithelial

cells. h, i Immunofluorescence assay of α-SMA and ZO-1 in alveolar
epithelial cells. The cells were treated withMA (5mM, 48 h) and/or NAC
(5 mM, 1 h), respectively. Data are presented as the mean ± SD.
*P < 0.05, **P < 0.01, ***P < 0.001 vs. CON; #P < 0 .05 vs. MA;
NAC, N-acetyl cysteine; MA, methamphetamine

799RUNX3-dependent oxidative epithelial-to-mesenchymal transition in methamphetamine-induced chronic lung...



The high uptake and accumulation of MA in the lungs
resulted in chronic lung injury (Park et al. 2012). In the present
study, pulmonary toxicity was prominent under the exposure
to MA from 4th to 6th week. MA caused the slower growth
ratio of weight and even individual death. Morphological re-
sults showed that the alveolar walls were thickened, that pul-
monary alveoli were fused, and that the number of alveolar
sacs was reduced. These suggested that long-term exposure to
MA induced chronic lung injury in rats.

EMT plays an important role in various physiological pro-
cesses, especially in lung development and some lung dis-
eases, such as pulmonary fibrosis, chronic obstructive pulmo-
nary disease (COPD), and lung cancer (Stone et al. 2016).
EMT is defined as the process by which phenotypic changes
fix in the epithelial cells, manifesting that the epithelial cells
lose the epithelial marker protein such as E-cadherin respon-
sible for tight junctions (Karicheva et al. 2016) and then con-
vert into the mesenchymal phenotype after acquiring the mes-
enchymal markers such as α-SMA (Lu et al. 2017). The re-
sults from our study show that MA significantly decreased
epithelial marker proteins E-cadherin and ZO-1 but

significantly increased the expression of the mesenchymal
marker gene α-SMA in lungs and in alveolar epithelial cells.
These changes were in accordance with other drug-induced
EMT (Chen et al. 2016; Yang et al. 2018), reflecting that
pulmonary EMT could be induced by the long-term adminis-
tration with MA. In addition, ROS scavenger NAC signifi-
cantly reversed the expression of E-cadherin, ZO-1, and α-
SMA and upregulated the ratio of ZO-1/α-SMA from MA.
These results suggest that pulmonary EMT by MA was asso-
ciated with oxidative stress.

RUNX3 acts as the smallest member of the RUNX family
to inhibit tumor formation. Although most research studies
about RUNX3 have focused on cancer (Xu et al. 2012;
Lotem et al. 2015; Gou et al. 2017; Chen et al. 2019),
RUNX3 also plays a key role in cell growth, vascular devel-
opment, and immune regulation (Lee et al. 2010, 2014; Lotem
et al., 2017). Interestingly, there is a crosstalk between
RUNX3 and oxidative stress (Kang et al. 2013; Poungpairoj
et al. 2015). Oxidative stress is an imbalance between the
production of ROS and the detoxification capabilities (Kang
et al. 2017). In the present research, long-term exposure to

Fig. 5 RUNX3-related oxidative EMT induced by MA through TGF-β
signaling. a, b The expression of RUNX3 after transfection by Western
blot assay. c, d ROS levels in the alveolar epithelial cells by flow cytom-
etry. The mean value in P1 is the average fluorescence intensity, as a
statistical indicator, representing the expression of ROS. (e) TGF-β sig-
naling expression by Western blot. f TGF-β 1 expression in alveolar
epithelial cells in the various groups. g p-Smad2/Smad2 expression in
alveolar epithelial cells in the various groups. h–k EMT marker proteins
E-cadherin, ZO-1, andα-SMA expressed in alveolar epithelial cells in the

various groups. l, m Immunofluorescence assay of α-SMA and ZO-1 in
alveolar epithelial cells. After transfection for 72 h, the cells were treated
with MA (5 mM, 48 h) and/or NAC (5 mM, 1 h), respectively. Data are
presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 vs.
CON group; #P < 0.05 vs. NAC; $P < 0.05, $$P < 0.01, $$$P < 0.001 vs.
siRUNX3; P < 0.05, P < 0.001 vs. siRUNX3+MA. CON, control; NC,
negative control (empty plasmid); siRUNX3, siRNA against RUNX3;
NAC, N-acetyl cysteine; MA, methamphetamine
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MA not only significantly decreased the expression of
RUNX3 in vivo and vitro but also increased ROS levels and
caused redox imbalance by reducing GCS and increasing
SOD. To investigate if RUNX3 is related to oxidative
stress–induced by MA, the alveolar epithelial cells were
transfected with siRUNX3 or/and treated with the ROS scav-
enger NAC. Our study shows that compared with the control
group, the level of ROS in the siRUNX3 and siRUNX3+NAC
groups was significantly increased; compared with the
siRUNX3 group, ROS production was significantly reduced
in the siRUNX3+NAC group; in addition, the ROS level in
the siRUNX3+NAC group was more than that in the NAC
group. These results indicate that lower RUNX3 can cause
oxidative stress, so RUNX3 is closely related to oxidative
stress.

The occurrence of EMT is affected by some mechanisms
including the TGF-β signaling pathway, Wnt signaling path-
way, and Notch signaling pathway (Savagner 2001; Wang
et al. 2019; Xiang et al. 2019). TGF-β is one of the most
important inducers for EMT involved in organ fibrosis, em-
bryo development, and tumor metastasis (Dong et al. 2017).
RUNX3 is a key regulator of the TGF-β signaling pathway by
interacting with R-Smads (Krishnan and Ito 2017). The in-
creased proliferation and suppressed apoptosis of gastric epi-
thelial cells with RUNX3−/− were attributed to defective
TGF-β signaling (Voon et al. 2012). In our present study,
TGF-β1 and p-Smad2 were significantly increased in the
siRUNX3, siRUNX3+MA, and siRUNX3+MA+NAC
groups. After knockdown of RUNX3, the levels of TGF-β1
and p-Smad2 were further upregulated by MA but were re-
versed by NAC from MA. E-cadherin and ZO-1 were re-
duced, and α-SMA was increased in the siRUNX3 group
and in the siRUNX3+MA group. Compared with the
siRUNX3+MA group, E-cadherin and ZO-1 were significant-
ly increased and the expression of α-SMA was significantly
d e c r e a s e d i n t h e s iRUNX3+MA+NAC g roup .
Immunofluorescence assay results of α-SMA and ZO-1 were
consistent withWestern blot. In a follow-up work, we will use
the technique of Cre-loxP Knockout in rats to further confirm
the relationship among RUNX3, oxidative stress, and EMT
induced by MA. But these present results suggest that
RUNX3 is related to oxidative EMT induced by MA and that
the inhibition of RUNX3-dependent oxidative stress can alle-
viate MA-induced EMT through TGF-β signaling.

In summary, RUNX3 may be the key to oxidative EMT in
methamphetamine-induced chronic lung injury.
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