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Introduction
Pathological anxiety can be defined as a fear-like or defensive 
physiological and behavioral state that persists in a non-threaten-
ing environment (Eysenck, 1992; Rosen and Schulkin, 1998). 
Pathological anxiety is a core feature of anxiety disorders as 
defined in the Diagnostic and Statistical Manual of Mental 
Disorders (5th ed.; DSM-5), including generalised anxiety disor-
der (GAD), social anxiety disorder (SAD) and panic disorder, 
and post-traumatic stress disorder (PTSD). These disorders rep-
resent the most prevalent class of psychiatric disorders in the 
United States, with an anxiety disorder showing around an 18% 
12-month prevalence rate (Kessler et al., 2005b) and they act as a 
major risk factor for suicide (Eysenck, 1992; Kessler et  al., 
2005b; Rosen and Schulkin, 1998). Specific phobia and social 
phobia have the highest prevalence rates, followed by PTSD, 
GAD and panic disorder (Kessler et al., 2005b) (Table 1). Panic 
disorder and GAD, both archetypal examples of disorders of 
pathological anxiety, represent the sixth leading cause of years 
lived with disability worldwide (Kessler et al., 2005b)

The Research Domain Criteria (RDoC) initiative (Insel et al., 
2010) aims to deconstruct traditional diagnostic categories into 
constituent domains and constructs that are relevant and testable 
across species and units of analysis. This approach is aimed to 
ultimately provide more fundamental measures for diagnostics 
and treatment determination. Human anxiety disorders are com-
monly conceptualised as disorders of maladaptive response to 

acute threat (fear) and potential threat (anxiety), both within the 
RDoC negative valence systems domain. Threatening environ-
mental stimuli or ‘stressors’ typically induce complex behavio-
ral, neural and endocrine responses, including both fear and 
anxiety, which are highly conserved across species (Blanchard 
et al., 2001; Romero, 2004; Ulrich-Lai and Herman, 2009).

Threats or stressors activate brainstem nuclei, particularly the 
locus coeruleus (LC). The LC has widespread norepinephrine 
(NE) projections throughout the central nervous system (CNS) 
thought to primarily function to globally modulate behavior and 
arousal states. NE has myriad central functions including regula-
tion of CNS cells and circuits (O’Donnell et al., 2012). The LC is 
the major producer of NE in the CNS and LC activation produces 
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NE release throughout the cortex, acting as a single global regu-
lator (O’Donnell et al., 2012). Tonic, continuous activity of the 
LC is low during sleep, intermediate during active wake and high 
in states of distress or anxiety (Atzori et al., 2016). Acute threats 
also engage the sympathetic nervous system for the behavioral 
‘fight or flight’ response (hypothalamus–pituitary–adrenal (HPA) 
axis), which elevates circulating glucocorticoids for a coordi-
nated physiological and behavioral response (Charmandari et al., 
2005) (Figure 1). A ‘normal’ or adaptive response to threat can 
present as freezing or motor arrest, often used as a primary proxy 
of fear in rodents or somatomotor agitation or exertion. Both 
responses are coupled with increased vigilance and arousal, criti-
cal for the alerting, orienting and fear learning functions required 
in a dangerous or uncertain environment (Cardinal et al., 2002; 
Sara and Bouret, 2012). These partly reflexive responses are col-
lectively referred to as ‘bottom-up’ responses and are critical for 
an adaptive response to a dynamic environment. Higher order 
frontal cortical systems provide ‘top-down’ regulation of these 
responses to blunt or regulate the response to threat if the envi-
ronment is perceived to be safe (Bishop et al., 2004). While the 
recruitment of brainstem nuclei responsible for alerting and ori-
enting is critical for a normal, adaptive response to threat, the 
excessive or overactive engagement of these structures is associ-
ated with a maladaptive threat response or a prolonged anxious 
state (Berridge and Waterhouse, 2003; Ulrich-Lai and Herman, 
2009). Alongside this excessive bottom-up response, there can be 
also deficient cortical top-down regulation of subcortical and 
midbrain structures, leading to an inability to down-regulate the 
physiological and behavioral threat response.

In rodents, pathological anxiety can be modeled as a variety 
of anxiety-like behaviors, each potentially modeling a compo-
nent of human anxiety disorders. While animal models can cap-
ture certain phylogenetically conserved responses to stressors, 

such as risk aversion and reduced exploratory behaviors, the vast 
cognitive gap that exists between laboratory animals and humans 
limits the translation of a wide range of complex psychological 
characteristics of the human stress response or experience of 
pathological anxiety. Induction of anxiety-like behaviors in 
rodents, for example, via genetic manipulation, chronic repeated 
stress or with predator interactions, is not translatable to humans. 
Likewise, specific human-experienced stressors, including com-
plex childhood trauma or neglect, financial or work stressors and 
extreme social judgment cannot be modeled in animals. 
Furthermore, key clinical features such as worry, rumination, 
intrusive thoughts, nightmares or catastrophising cannot be mod-
eled in animals. Thus, although animal models can generate mul-
tiple translatable features, they do not reflect the full repertoire of 
symptoms that characterise a human anxiety disorder.

While our ability to measure these constructs differs between 
humans and rodents, rodent models can provide considerable 
insight into the pathophysiology of human disorders in some 
respects. Some primary behavioral anxiety-like examples include 
excessive fear-like behaviors, such as freezing and reduced social 
interaction (Rosen and Schulkin, 1998). More translational meas-
ures that can be captured by animal models and observed in 
humans include faster fear learning, reduced extinction learning, 
reduced exploratory behavior and increased risk aversion (Park 
and Moghaddam, 2017). Cognitive-behavioral human measures 
that mirror translational pre-clinical models include fear learning 
(Lissek, 2012), attentional bias (Shechner et al., 2012), as well as 
physiological or neural activity during anticipation of negatively 
valenced stimuli (Bishop et al., 2004). Other biological measures 
such as pupil dilation and 3-methoxy-4-hydroxyphenylglycol 
(MHPG) – a major metabolite of NE – can be measured in both 
humans (Murphy et al., 2014; Raskind et al., 1984; Southwick 
et  al., 1993) and pre-clinical models (Aston-Jones and Cohen, 
2005; Gilzenrat et al., 2010; Joshi et al., 2016; Korf et al., 1973a, 
1973b). To date, there is predominantly indirect evidence of LC’s 
role in human pathological anxiety, however more recent work 
with ultra-high field 7-T magnetic resonance imaging (MRI) is 
enabling direct examination of the human LC in vivo (Morris 
et al., 2020; Priovoulos et al., 2018).

This review aims to synthesise the pre-clinical and clinical 
literature to date related to a hypothesised role of the LC in 
responses to acute and chronic threat, as well as the emergence of 
pathological anxiety. By first defining its role in critical cognitive 
processes, like attention, learning and memory, we aim to lay the 
groundwork for an understanding of its role in response to threat 
to inform dimensional (RDoC) mechanistic models across human 
anxiety disorders with the ultimate goal of improving treatments 
for these disabling conditions.

Afferents and efferents of the LC-NE 
system
The LC projects to myriad cortical, subcortical and brainstem 
nuclei to rapidly and globally modulate neural function (Bremner 
et  al., 1996a, 1996b). It also receives widespread innervation. 
Extensive work characterising LC afferents and efferents has 
been largely conducted in animal models. Ascending LC-NE pro-
jections diverge into four bundles (Jones et al., 1977) to innervate 
(1) hypothalamus (Asakura et al., 2000; Jones et al., 1977), par-
ticularly the lateral portion including periventricular nucleus and 

Figure 1.  Major locus coeruleus (LC) projections throughout the 
central nervous system play distinct functional roles.
Ascending LC projections innervate the hypothalamus for autonomic and 
endocrine regulation; the amygdala for salience detection and associative 
learning; the hippocampus to influence learning, memory and plasticity; and 
the cortex, for regulation of attention, arousal and the cognitive evaluation of 
pain. Descending LC projections (gray) reach the periaqueductal gray and other 
brainstem nuclei, as well as the spinal cord.
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supraoptic nucleus, important for autonomic and endocrine regu-
lation (Jones et al., 1977); (2) ventral and central nucleus of the 
amygdala (Asakura et al., 2000; Jones et al., 1977), important for 
salience detection and associative learning (Campese et al., 2017; 
Chen et  al., 1992; Sears et  al., 2013); (3) the ‘diagonal band’, 
medial septum and hippocampus (Haring and Davis, 1985; Jones 
et  al., 1977; Loughlin et  al., 1986), that influences learning, 
memory and plasticity (Ehlers and Todd, 2017; Harley, 1987; 
Sara, 2009); and (4) the corpus callosum, reaching the cingulum 
and beyond throughout the cortex (Jones et al., 1977), for regula-
tion of attention, arousal and the cognitive evaluation of pain 
(David Johnson, 2003; Sara and Bouret, 2012; Scherder et  al., 
2003; Willis and Westlund, 1997). LC-NE neuron lesions reduce 
NE in most of these regions, particularly hypothalamus and cer-
ebral cortex (Neophytou et al., 2001). The LC also projects to the 
bed nucleus of the stria terminalis (BNST) (Asakura et al., 2000), 
cerebellum (Bremner et  al., 1996b), lateral habenula (Purvis 
et al., 2018) and extensively to the olfactory bulb (Shipley et al., 
1985). Descending LC projections pass into the medial forebrain 
bundle including the periacqueductal gray (PAG), tegmentum 
and raphe nuclei (Jones et al., 1977). Posterior-ventral LC pro-
jects through the length of the spinal cord (Jones and Yang, 1985; 
Loughlin et al., 1986) and targets parasympathetic neurons of the 
vagus dorsal motor nucleus (Westlund and Coulter, 1980).

Afferent inputs to the LC are less extensive than its efferents. 
Midbrain and brainstem projections to LC derive primarily from 
the ventrolateral (Ennis and Aston-Jones, 1986), rostral (Aston-
Jones et al., 1991a) and dorsomedial medulla (Aston-Jones et al., 
1991b) – regions that play a major role in the regulation of sym-
pathetic control and behavioral orienting. It receives bidirectional 
inputs from the ventral tegmental area (VTA) (Deutch et  al., 
1986; Ornstein et al., 1987), which modulate depressive pheno-
types (Isingrini et al., 2016; Weiss et al., 2005; Zhang et al., 2018, 
2019), and from suprachiasmatic nucleus (SCN) (Legoratti-
Sanchez et  al., 1989) for circadian-based regulation of arousal 
(Aston-Jones et  al., 2001). Other brainstem inputs to the LC 
derive from the hypothalamic paraventricular nucleus (PVN), 
PAG, raphe nuclei, as well as from the spinal cord, with limited 
inputs from neighboring nuclei to create a local circuit (Aston-
Jones et al., 1991b; Cedarbaum and Aghajanian, 1978). Cortical 
and subcortical projections to LC originate from insula, central 
nucleus of the amygdala (Cedarbaum and Aghajanian, 1978), 
dorsolateral and dorsomedial prefrontal cortex (PFC) (Arnsten 
and Goldman-Rakic, 1984) and from prelimbic PFC – which 
may be indirect (Aston-Jones et al., 1991b; Jodo et al., 1998).

The widespread network of the LC system is therefore crucially 
positioned to play a significant role in modulating both ascending 
visceral feedback and descending cortical cognitive processing to 
mediate both psychological and physiological operations (Berntson 
et al., 2003). There is a growing consensus that distinct projections 
mediate distinct behaviors, suggesting that the LC is comprised of 
independent modules (Uematsu et al., 2017). Functionally distinct 
cell modules have been demonstrated to have specific anatomical 
projections with distinct functions (Hirschberg et al., 2017; Llorca-
Torralba et al., 2019; Uematsu et al., 2015, 2017). For example, 
discrete projections can have opposite physiological and behavio-
ral effects: amygdala projections can enable aversion learning, 
whereas PFC projections can enable extinction learning (Uematsu 
et al., 2017). Similarly, ascending and descending projections can 
have opposite functions: spinal projections can be analgesic and 

anti-nociceptive, whereas PFC projections can exacerbate pain 
responses (Hirschberg et al., 2017). In rodents, there appears to be 
a developmental genetic basis for some of these functional distinc-
tions (Robertson et al., 2013, 2016). LC projections throughout the 
cortex are not homogeneous, and they show distinct biochemical 
and electrophysiological properties, governing varying levels of 
NE release (Chandler et  al., 2014). Further work supports this 
model of modularity by indicating that LC cell populations are 
functionally distinct ensembles, since their spiking activity are 
largely asynchronous (Totah et  al., 2018). Interestingly, strong 
aversive stimuli can cause a robust, unified LC-NE response across 
most LC cells (Uematsu et al., 2017), suggesting that the LC can 
provide both specific mediation of discrete behaviors and global 
mediation of general arousal. This highlights the nexus at which 
the LC operates and its crucial role as a modulator of highly con-
served behavioral responses, discrete higher order cognitive func-
tions and global arousal.

LC modulation of arousal, attention 
and memory formation

Arousal and attention

Adaptive responses to dynamic environments require intact func-
tioning of attentional and memory-formation systems. Adept 
attentional direction is required for appropriate memory forma-
tion, and a correctly formed memory is required to guide appro-
priate attention direction. Both of these systems are under tight 
regulation by the LC, particularly in response to threat-related 
stimuli or events (Anisman et al., 2000; Ehlers and Todd, 2017; 
Sara and Bouret, 2012).

For normal attentional function, tonic firing of the LC in the 
range of 1–3 Hz is needed. Lower than normal activity is associ-
ated with hypoarousal and attention deficits, whereas higher 
tonic firing is associated with hyperarousal and anxious states 
(Howells et al., 2012). In the normal state and in the absence of 
threat, the tonic LC-NE system sustains vigilance and orienting 
functions (David Johnson, 2003). At an early, basic level, LC 
projections to vestibular nuclei mediate vestibulo-ocular and ves-
tibulospinal reflexes for alerting and vigilance (Balaban, 2002, 
2016; Peng et al., 2016). The ability of the LC to direct attention 
to a given cue seems unrelated to valence (Berridge and 
Waterhouse, 2003): the LC responds to all novel stimuli and 
mediates general attentional orienting (Sara and Bouret, 2012; 
Usher et al., 1999). The central LC-NE system therefore alerts or 
primes the organism in response to any significant external event 
(Svensson, 1982). Interestingly, LC lesions reduce exploratory 
behavior, but only in novel environments (Harro et  al., 1995). 
This, coupled with evidence from electrophysiological studies in 
primates, suggests that the LC may play a major role in regulat-
ing the switch between goal-directed (exploit) and exploratory 
behaviors in novel environments (Usher et al., 1999).

The LC generally becomes activated in states of heightened 
vigilance, when a disruptive stimulus requires reorienting behav-
ior (Aston-Jones et al., 1991a). Single unit recordings show that 
the LC responds to a stimulus predicting a noxious air puff in 
freely moving cats, but shows no activation during prediction of 
reward (Rasmussen and Jacobs, 1986). It has been suggested that 
phasic LC-NE activity acts as a global ‘interrupt’ function to ori-
ent attentional and cognitive processing to salient or, specifically, 
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threatening situations (David Johnson, 2003) and its activity is 
closely related to cortical excitability for wide-scale behavioral 
and cognitive priming (Sara and Bouret, 2012). However, while 
the LC responds to all novel stimuli (Berridge and Waterhouse, 
2003), and stimuli that require a response (Rajkowski et  al., 
2004), responses generally habituate over time if the stimulus is 
not aversive (Sara and Bouret, 2012), implicating a special func-
tion for threat. In support of this, LC-NE response to novel light 
is higher in rodents with greater fear-potentiated startle (Anisman 
et al., 2000). However, the frontal cortex has the ability to sup-
press LC activity over time (Sara and Herve-Minvielle, 1995).

Learning and memory

The LC plays a critical role in learning and memory formation, 
especially for threat-related learning. Multiple neural systems 
subserve distinct learning and memory processing, broadly 
including hippocampal context-dependent associative learning, 
stimulus discrimination, declarative memory and working mem-
ory (Olton et al., 1979; Sutherland and McDonald, 1990), amyg-
dala-mediated affective or biologically significant incentive-based 
associative learning (Phelps, 2004; Sutherland and McDonald, 
1990) and dorsal striatal reinforcement-based motor learning 
(McDonald and White, 1993). The LC-NE system seems to mod-
ulate each of these distinct learning and memory systems. First, 
LC-NE projections to hippocampus regulate long-term potentia-
tion (LTP) and hippocampal plasticity (Harley, 1987), allowing 
arousal to influence learning (Sara, 2009), to engender subse-
quent attentional biases (Ehlers and Todd, 2017). Second, an 
intact direct functional LC-NE projection to the amygdala is nec-
essary for Pavlovian threat learning (Sears et al., 2013) and aver-
sive Pavlovian-to-instrumental transfer (Campese et  al., 2017), 
and NE activity in the amygdala enhances passive-avoidance 
memory consolidation (Chen et  al., 1992). Finally, there are 
fewer LC-NE terminals in the dorsal striatum, although the dor-
sal striatum shows high NE turnover rates and interactions 
between LC-NE neurons and the striatal dopaminergic system 
seems to mediate the behavioral effects of methamphetamine 
(Ferrucci et al., 2013; Fornai et al., 1996a, 1996b). Together these 
findings demonstrate that the LC can have a powerful effect on 
the regulation of multiple memory systems, including hippocam-
pal plasticity for generation of threat-related attentional biases 
and amygdala-mediated associative learning for aversive events.

Role of LC in response to acute threat
Threatening environmental cues or events induce a coordinated 
response (Carrasco and Van de Kar, 2003) that is designed to 
heighten vigilance and prepare a rapid and flexible behavioral 
response. Threat or perceived stress increases NE release and HPA 
axis activation which induces hypothalamic corticotrophin-releas-
ing factor (CRF) release and adrenal production of glucocorticoids 
including cortisol (Carrasco and Van de Kar, 2003; Makino et al., 
2002). CRF and NE work together to promote the response to 
stress (Gresack and Risbrough, 2011) – inhibiting feeding, increas-
ing blood pressure, stimulating adrenocorticotropic hormone 
(ACTH) and elevating sympathetic tone (Bailey et  al., 2003; 
Laugero et al., 2001). Altogether these systems prepare the organ-
ism for an acute behavioral response. CRF also increases tonic LC 
firing rate and NE release (Asakura et al., 2000; Fan et al., 2009; 

Jedema and Grace, 2004), while NE also directly activates the HPA 
(Calogero et al., 1988), creating a feed-forward system important 
for anxiety pathogenesis (Owens et al., 1993).

While the role of the HPA axis has been well-defined as a key 
coordinating system that responds to threat or stress, a significant 
body of work underscores the critical role of the LC in this 
response too. It is clear that the LC rapidly responds to threaten-
ing stimuli. LC activity increases in monkeys (Grant and 
Redmond, 1984) and rats within 15 min (Silveira et al., 1993) and 
30 min (Day et al., 2004; Sands et al., 2000) after an aversive or 
threatening stimulus. LC activation occurs following a range of 
threats or stressors, including the elevated plus maze (Silveira 
et  al., 1993), acute and chronic-restraint stress (Sands et  al., 
2000), lipopolysaccharide (LPS)-induced sickness (Lacosta 
et al., 1999), forced swim and a single electric shock (Bruijnzeel 
et al., 2001), and the impact on increased LC excitability can be 
long lasting (Borodovitsyna et al., 2018). Threatening predator 
odor, an ecologically relevant stressor that elicits innate anxiety 
responses, induces activation of LC (Day et  al., 2004; Hayley 
et al., 2001), BNST, PVN and PAG (Janitzky et al., 2015), lead-
ing to anti-predatory responses (Sobrinho and Canteras, 2011). 
Pain and acute noxious stimuli also activate central NE circuits in 
rodents (Kowalski et al., 2014) and in humans, as measured by 
pupilomotry (Chapman et al., 2014).

In humans, subliminal fear activates the LC, alongside higher 
cortically mediated orienting responses (Liddell et  al., 2005). 
Anticipation of threat engages arousal and increases brainstem 
auditory evoked potentials (Baas et al., 2006) and pupil dilation 
(Clewett et al., 2018), both thought to be indirect measures of LC 
activation, although pupil dilation can be governed by other sys-
tems besides NE (Nelson and Mooney, 2016; Reimer et  al., 
2016). Finally, in humans, even psychological or perceived stress 
increased LC connectivity with amygdala (van Marle et  al., 
2010). The LC-NE system is therefore thought to govern a rapid 
warning response to stress (Lanius et al., 2017).

Other threat response systems

The LC is not, of course, the only neural threat response system. 
It is worth noting that other cortical and subcortical regions par-
ticipate in a wider ‘threat circuit’, including amygdala and medial 
PFC, which are extensively reviewed elsewhere (Simpson et al., 
2001; Taylor and Whalen, 2015) (Figure 2). Briefly, the amyg-
dala has been most widely implicated in threat processing (Derntl 
et al., 2009; Harmer et al., 2006; Isenberg et al., 1999; Johansson 
and Hansen, 2002; Loughead et  al., 2008; Oya et  al., 2002), 
although it seems to serve a higher order, integrative threat learn-
ing function compared to the LC’s more rapid alerting function. 
The amygdala is a site of convergence of exteroceptive informa-
tion from cortex and thalamus and visceral information from sub-
cortex (Bremner et  al., 1996a), where conditioned associations 
can be formed, activating learned fear responses (Cardinal et al., 
2002). Indeed, there is evidence that the amygdala is recruited 
during early stages of fear learning (Bishop et al., 2007; Davidson, 
2002). More generally salient events increase amygdala activa-
tion (both appetitive and aversive) (Fitzgerald et al., 2006) and 
the release of extrahypothalamic CRF, suggesting it drives atten-
tion to salient events rather than acting as a specific threat signal 
(Merali et al., 1998). The medial PFC (in humans, comprised of 
orbitofrontal cortex, ventomedial PFC, dorsomedial PFC and 
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anterior cingulate cortex (ACC)), which has reciprocal projec-
tions with both the amygdala (Aggleton et al., 1980; Carmichael 
and Price, 1995; Ghashghaei and Barbas, 2002) and the LC, reg-
ulates and updates learned negative associations via extinction 
learning or re-learning new safe/neutral associations (Delgado 
et al., 2008; Milad et al., 2005; Milad and Quirk, 2002). Optimal 
emotion regulation requires concomitant activation of medial 
PFC and deactivation of amygdala (Delgado et al., 2008; Wager 
et al., 2008), which mitigates anxiogenesis (Bishop et al., 2004; 
Hare et  al., 2008; Hariri et  al., 2003; Pezawas et  al., 2005; 
Simpson et al., 2001). In addition, the dorsolateral PFC also plays 
a regulatory role on medial PFC and amygdala threat or stress-
related responses, reducing interference by negative emotion for 
adaptive cognitive control, important for resilience (Liston et al., 
2009; Ochsner et al., 2004; Sinha et al., 2016). While these corti-
cal regions respond to threat or stressors and downregulate the 
negative emotional and autonomic response to stress, acute threat 
or stress also has a detrimental effect on PFC function, via 
increased NE which engages alpha-1 adrenergic receptors to 
reduce PFC function (Arnsten, 2015), resulting in cortical atro-
phy, dendritic deterioration and overall reduction in cognitive 
control of emotion (Arnsten, 2009).

Role of LC in the development of 
pathological anxiety
Thus far, we have highlighted the ‘normal’ or adaptive role of the 
LC in response to acute threat. The following sections describe 

the hypothesised role of the LC in responses and processes that 
lead to maladaptive or pathological states.

Chronic stress

Chronic or repeated stress in rodents can be used as a model for 
human disorders of pathological anxiety and depression. These 
rodent studies demonstrate that the LC is involved in several dif-
ferent types of stress response. First, after prolonged restraint 
stress (30–60 min), LC activity (C-fos) increases (Keshavarzy 
et al., 2015). Second, chronic or repeated stress (corticosterone 
administration; Fan et al., 2014) increases tyrosine hydroxylase 
(TH) in the LC and norepinephrine transporter (NET) in the hip-
pocampus, amygdala and PFC (Fan et  al., 2014), leading to 
increased anxiety and defensive behaviors. After chronic long-
term stress, not only does LC activity increases but also its sub-
sequent sensitivity to stress increases. Chronic stress induces 
amplification of LC reactivity and increased NE release to subse-
quent stressors in rats (Jedema et al., 2001), possibly related to 
reduced LC auto-inhibition after stress (Jedema et al., 2008) and 
blunting of HPA axis regulation in a feedback-facilitation cycle 
(Makino et al., 2002).

In addition, in rat models of chronic stress, increased NE in 
the PFC causes further cortical atrophy and dendritic restructur-
ing, resulting in reduced cognitive and attentional control (Liston 
et al., 2006, 2009). While it is probably too much to assume that 
the cellular observations made in rats directly translate to the 
human data, it is nevertheless important to recognise that chronic 
stress-induced plasticity in the PFC exists across species. These 

Figure 2.  Central actions of the locus coeruleus (LC) in the regulation in threat reactivity.
(a) The adaptive response to acute threat involves a rapid, coordinated response in order to prepare the organism for an acute physiological response and behavioral 
activation. This involves hypothalamus–pituitary–adrenal (HPA) axis activation, hypothalamic corticotrophin-releasing factor (CRF) release and production of cortisol, 
which reaches body tissues via peripheral vasculature. Rapid LC activation and norepinephrine (NE) release also occurs, with NE targets throughout the cortex leading to 
global modulation of arousal and attention. Other NE targets in the amygdala (Amy) and medial prefrontal cortex (MPFC) mediate threat learning and reciprocally regulate 
the LC (red lines). (b) Chronic threat or stress leads to widespread changes in the central LC-mediated response to subsequent stressors. Chronic stress leads to LC hyper-
activity, increased NE in LC, amygdala, hippocampus, MPFC and increased HPA axis activity via reduced HPA regulation. Excessive cortisol and NE relate to maladaptive 
physiological signs of hyper-arousal and reduced regulation of the LC by the MPFC (dotted red lines), which additionally contribute to reduced regulation of pathological 
anxiety. Gray lines indicate LC and HPA projections.
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stress-induced alterations could be pathologically exacerbated in 
patients with PTSD (Bremner et al., 1997).

The emergence of anxiety-like behaviors in 
rodents

There is considerable evidence indicating a link between 
increased LC activity and the development of pathological anxi-
ety-like behaviors in animals. For example, anxiety, fear and 
behavioral inactivation in rats are associated with increased LC 
activity (Kryzhanovskii et  al., 1991). More causal evidence 
emerges from studies showing that LC activation produces 
greater anxiety and fear-like behavior (via neurokinin 1 recep-
tors; Hahn and Bannon, 1999) in both rodents (Boulenger and 
Uhde, 1982) and monkeys (Bunney and Tallman, 1980). 
Furthermore, increased LC activity and TH expression is associ-
ated with the onset of anxiety-like behaviors in a rodent model of 
chronic pain (Alba-Delgado et  al., 2013). This LC-mediated 
onset of anxiety behaviors is partly mediated via projections to 
amygdala (McCall et al., 2017) and amygdala CRF inputs to LC, 
which increases tonic LC activity that promotes anxiety-like 
behaviors in mice (Curtis et al., 2002; McCall et al., 2015; Van 
Bockstaele et al., 1998). The increased tonic LC activity appears 
to be sufficient to induce acute anxiety-like behavior following 
stress (McCall et  al., 2015; Sciolino et  al., 2016; Zerbi et  al., 
2019). Furthermore, transgenic mice with increased LC catecho-
laminergic neuron density have increased anxiety-like and panic 
behaviors (Dierssen et al., 2006).

LC lesions seem to reduce anxiety- or fear-like behavior 
(Boulenger and Uhde, 1982), increase fear extinction (Tsaltas 
et  al., 1984) and do not affect appetitive sucrose conditioning 
(Tsaltas et al., 1984), indicating its specific role in threat process-
ing. Reduction of alpha2A adrenoreceptor expression in the LC 
also reduces anxious behavior during the elevated plus maze in rats 
(Shishkina et al., 2002). Furthermore, blocking the LC increase in 
TH expression following stress reduces anxiety behaviors (Lee 
et al., 2012a, 2012b). The specificity of this effect is demonstrated 
by a studies showing that selective inhibition of LC-NE neurons 
during stress precludes generation of anxiety-like behaviors in 
rodents (McCall et al., 2015). Further work has shown that acute 
stress causes persistent increases in LC firing consistent with long-
term expression of anxiety-like behavior in rats (Borodovitsyna 
et  al., 2018). Together these rodent studies strongly indicate the 
critical role of the LC in anxiety pathogenesis.

There is, however, also contradictory evidence suggesting 
that reduced LC activity is associated with anxiety. Abolishing 
LC activity with desipramine increased anxiety behaviors (immo-
bility) (Weiss et  al., 1994), and destruction of LC terminals 
increased anxiety-like behavior in the form of reduced explora-
tion of novel environments (Itoi et al., 2011; Kask et al., 2000) in 
rodents. This inconsistency in findings of reduced LC activity 
associated with anxiety may be explained by the specific behav-
ioral measure affected by LC-NE lesions: immobility and reduced 
exploration. Evidence indicates that LC-NE lesions alter freezing 
time in rats without affecting the initial locomotor (running and 
jumping) response to conditioned and unconditioned aversive 
stimuli, indicating LC lesions may relate to defense rather than 
behavioral activation for aversive avoidance (Neophytou et al., 
2001). However, while the LC has a global function in mediating 
arousal to strongly aversive stimuli, distinct sub-modules can 

have distinct and opposite functional roles in mediating learning 
or responses to aversive stimuli (Hirschberg et al., 2017; Llorca-
Torralba et al., 2019; Uematsu et al., 2015, 2017). The distinct 
roles of the LC-NE system in active versus passive aversive 
avoidance require further study.

Role of the LC in risk factors for 
pathological anxiety
Insight into the role of the LC in pathological anxiety can be dis-
cerned via examining risk factors for the development of patho-
logical anxiety. For examples, Wistar Kyoto rodents are bred to 
be susceptible to certain types of stress and exhibit anxiety-like 
behaviors with excessive responses to stressors. These rats show 
reduced inhibitory control of the LC (less sensitive alpha-2 
adregnergic receptors in LC and reduced inhibitory GABA 
input), implicating a shift toward enhanced excitatory capacity of 
the LC as a key mechanism of anxiety (Bruzos-Cidon et  al., 
2015). Rodents bred to exhibit high anxiety behaviors also show 
increased activity of the LC, PAG, hypothalamus, as well as 
reduced activity of the ACC after stress (Salchner et al., 2006). 
Furthermore, transgenic rats with reduced glial angiotensinogen 
and enhanced anxiety behaviors show coincident higher LC 
activity and increased locomotor response to novelty (Ogier 
et al., 2016). Finally, rat offspring from stressed dams, a risk fac-
tor for susceptibility to anxiety, show higher fear responses and 
corticosterone reactivity, alongside increased LC, amygdala and 
striatal reactivity and reduced medial PFC reactivity to stress 
(Sadler et al., 2011). Together, these findings in rodents highlight 
the role of genetic and prenatal environmental factors that modu-
late LC and frontal cortical reactivity to stressors. These factors 
pose clear risk for exaggerated anxiety responses in rodents. 
Interestingly, in seeming contradiction to these findings, 
Maudsley non-reactive rats (which are resilient to anxiety) show 
higher basal LC neuronal activity and a burst-like pattern of fir-
ing (Verbanac et al., 1994). More work needs to be done to tease 
apart the contributions of tonic versus phasic LC firing and spe-
cific modular regulation of activity.

Biological sex

Biological sex can also act as a risk factor for pathological anxi-
ety and implicate LC as a differentiating factor in mediating anxi-
ety behaviors. Female rats have larger and more complex LC 
than males (Bangasser et al., 2011; Valentino et al., 2012) and the 
constitution of receptor sites on LC structures also seems to differ 
between sexes. CRF receptors in the cortex (Bangasser et  al., 
2010) and LC (Bangasser, 2013) are differentially expressed 
between sexes, making females more sensitive to CRF. Higher 
female sensitivity to CRF in the LC is linked with more hypera-
rousal and symptoms of pathological anxiety (Bangasser, 2013). 
Interestingly, selective LC-NE glucocorticoid receptor ablation 
in female, but not male rats, results in heightened anxiety-like 
behaviors (Chmielarz et al., 2013). Chronic alcohol administra-
tion also induces anxiogenesis with increased LC activity and in 
female but not male rats (Retson et al., 2015). Finally, early life 
stress increases astrocyte function in the LC which leads to anxi-
ety symptoms in female, but not male mice (Nakamoto et  al., 
2017). Together, these findings indicate that heightened 
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vulnerability to stressors in females may be in part governed by 
specific differences in LC structural and molecular composition, 
rendering females more susceptible to pathological anxiety.

Inflammation

Finally, inflammation may mediate the link between LC function 
and anxiety behaviors. For example, LPS injected into the LC 
increases astrocyte function and anxiety-like behavior in mice 
(Nakamoto et al., 2017). Inflammation can also serve as a high-
risk state for the development of pathological anxiety. 
Monoarthritis (a hyper-inflammatory state in rodents) is associ-
ated with an anxiety-like phenotype, with increased activation in 
LC and PFC (Borges et  al., 2014) and systemic interleukin-2 
injections increases NE in many LC target regions (Lacosta et al., 
2000). In a rodent model of anorexia, increased inflammation 
coincides with increased LC activity and anxiety behaviors 
(Scharner et  al., 2017). Conversely, reducing neuro-inflamma-
tion can reduce LC damage and anxiety-like behaviors in a 
mouse model of Alzheimer’s disease (Braun and Feinstein, 
2017). The LC itself seems to have a regulatory, anti-inflamma-
tory effect, acting as a neurotrophic and neuroprotective modula-
tor in a normal state (Feinstein et al., 2016; Lee et al., 2016; Wang 
et al., 2015). However, the LC’s anti-inflammatory and neuropro-
tective capacity is reduced following stress (Lee et  al., 2016), 
indicating one mechanism by which the LC mediates the normal 
and abnormal response to stressors – via neuroimmune 
regulation.

Role of LC in human patients with 
pathological anxiety
Patients with pathological anxiety experience clinical symptoms 
and cognitive disturbances that point toward an underlying dis-
turbance in LC function. Panic disorder is characterised by the 
recurrent unexpected onset of ‘panic attacks’, a sudden and rapid 
state of intense fear or sympathetic nervous system arousal, in the 
absence of any environmental threat, substance or other provok-
ing disorder (American Psychiatric Association, 2013). 
Individuals with panic disorder also fear future attacks and avoid 
situations that might trigger an attack, such as crowded public 
transport. GAD is a condition of excessive, non-specific anxiety 
or worry, often coupled with restlessness, irritability or fatigue, 
as well as concentration difficulties (American Psychiatric 
Association, 2013). SAD is more specific than GAD, character-
ised by a persistent, excessive fear of social or performance situ-
ations in particular, including maladaptive worry about social 
scrutiny and embarrassment (American Psychiatric Association, 
2013). PTSD, previously classified as an anxiety disorder and 
now classified as a trauma- and stressor-related disorder 
(Friedman, 2013), can develop in individuals exposed to event(s) 
that threatened death or serious injury, in which the trauma is re-
experienced via nightmares, flashbacks or unwanted memories 
(American Psychiatric Association, 2013). Patients with PTSD 
experience negative alterations in mood and cognition, as well as 
states of heightened physiological arousal and exaggerated startle 
responses, alongside more general difficulties with concentration 
and exaggerated avoidance behaviors (American Psychiatric 
Association, 2013).

Early evidence indicated that patients with PTSD and panic 
disorder, given yohimbine (an α2 adrenergic receptor antagonist) 
or CO2 (increases LC-NE), show increased anxiety and panic 
symptoms (Charney et al., 1984; Gorman et al., 1984; Southwick 
et al., 1993), implicating a role for LC-NE in anxiety symptoms 
in humans. PTSD has since been conceptualised as a disorder 
stemming from conscious and subconscious hyper-response to 
threat, associated with hyperarousal and a hyper-active ‘alarm 
system’ neural response including from the LC, amygdala and 
PFC (Lanius et al., 2017). In support of this model, PTSD patients 
show more exaggerated heart-rate responses, skin conductance, 
eye blink responses and LC blood-oxygen-level-dependent 
(BOLD) activation to loud sounds (Naegeli et al., 2018), as well 
as higher LC and insula BOLD responses to fearful stimuli 
(Morey et al., 2015) compared to trauma-exposed controls. There 
is also evidence linking PTSD with distorted fear learning gov-
erned by overactive of LC and insula to fearful stimuli and with 
increased LC connectivity with amygdala, striatum and insula 
during direct threatening eye gaze (Steuwe et  al., 2015). 
Contradictory to this model is evidence that patients with PTSD 
show reduced LC size and reduced LC-NE reuptake availability 
(Arango et al., 1996; Bracha et al., 2005). However, this may be 
explained by differences in tonic versus phasic LC responses. For 
example, there is evidence for increased NE activity in PTSD in 
response to stressors but not during rest (Bremner et al., 1999). 
Finally, there is evidence for reduced PFC-mediated cognitive–
emotional control during stress in PTSD: traumatic images 
invoke reduced medial PFC and ACC area 24 blood flow (posi-
tron emission tomography (PET)) in patients (Bremner et  al., 
1999) and patients have reduced ACC response when exposed to 
emotional conflict (Kim et al., 2008), implicating a mechanism 
of heightened LC reactivity to threat alongside blunted cortical 
regulation.

Studies implicating LC in other human disorders of patho-
logical anxiety are less numerous than those in PTSD. LC dys-
function has been implicated in SAD (Marazziti et al., 2015), and 
worry in GAD has been associated with reduced heart-rate vari-
ability (indicating parasympathetic withdrawal) and increased 
LC–amygdala connectivity (Meeten et al., 2016). The amygdala 
has been more widely studied in these disorders. For example, 
phobia is associated with enhanced amygdala activation to threat 
(Bertolino et  al., 2005), suggested to be involved in vigilance-
avoidance processing (Larson et al., 2006), which reduces after 
therapy (Alpers et al., 2009; Goossens et al., 2007). Panic disor-
der has also been associated with the ‘extended fear network’ 
including brainstem, cingulate, insula, PFC and amygdala 
(Sobanski and Wagner, 2017), which cause both physiological 
and psychological (threat anticipation) symptoms (Windmann, 
1998). Other cortical and subcortical regions implicated in 
human pathological anxiety are more extensively reviewed else-
where (Simpson et al., 2001; Taylor and Whalen, 2015).

Anxiolytics
Clinical pharmacology on known anxiolytics is another area of 
research that implicates the function of the LC-NE system in 
human pathological anxiety. The alpha-1 adrenergic receptor 
antagonist, prazosin, is effective for treating PTSD (Koola et al., 
2014; Raskind et al., 2000) and stress-induced craving in alcohol 
dependence (Fox et al., 2012). Beta-adrenergic receptors are also 
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necessary for the development of anxiety-like behaviors (Gorman 
and Dunn, 1993; Wohleb et al., 2011) and regulate the induction 
of stress-induced gene expression in the brain in mice 
(Roszkowski et al., 2016). Beta-adrenergic receptor antagonism 
(‘beta-blockers’) prevents the development of anxiety-like 
behaviors in mice (Gorman and Dunn, 1993) and humans 
(Jefferson, 1974), particularly for somatic symptoms (Harris and 
Aston-Jones, 1993; Hayes and Schulz, 1987; Kelly, 1980; Noyes, 
1982). While there is limited evidence for the efficacy of beta-
blockers for treating PTSD (Amos et al., 2014) and performance 
anxiety in healthy individuals (Liebowitz et  al., 1985), more 
recent studies indicate a novel pathway for treating anxiety disor-
ders with beta-blockers. First described by Nader et al. (2000) in 
2000, memory reconsolidation is a process whereby memories 
that are re-activated become labile and vulnerable to manipula-
tion. Several studies have now demonstrated that distribution of 
traumatic memory reconsolidation with beta-blockers is feasible 
in humans and effective at relieving PTSD symptoms (Brunet 
et al., 2008; Evers, 2007; Kindt et al., 2014), although wider rep-
lication is currently lacking (Wood et al., 2015). While this novel 
direction for treatment of pathological anxiety in humans is 
promising, further work is needed to more directly target LC-NE 
system dysfunction with pharmacotherapies. One small study of 
three panic disorder patients showed that inhibition of the LC 
with the alpha2 agonist, clonidine, resulted in reduced panic and 
anxiety symptoms (Valenca et al., 2004).

While evidence for targeting LC-NE dysfunction for the treat-
ment of pathological anxiety in humans is largely indirect, more 
direct evidence from pre-clinical studies implicates modulation 
of the LC-NE system function as a direct target for a variety of 
anxiolytics.

First, endogenous neuropeptide Y (NPY) is anxiolytic and 
reduces the behavioral responses to stress (Desai et  al., 2014; 
Eaton et al., 2007; Kask et al., 2002). A network including LC, 
amygdala, PAG and hippocampus seems to mediate the anxio-
lytic effects of NPY (Heilig, 2004; Kask et al., 2002). More spe-
cifically, NPY given directly to the LC reduces anxiety and 
increases exploratory behaviors in rats (Kask et  al., 1998) and 
anxiety-like behavior produced by LC terminal destruction can 
be attenuated by NPY administration (Kask et al., 2000). NPY 
given immediately before (Sabban et  al., 2015a; Serova et  al., 
2013) or after (Sabban et  al., 2015b) stress (forced swim, ele-
vated plus maze, LC activation) reduces stress-induced physio-
logical and behavioral manifestations of anxiety including 
ACTH, corticosterone and LC-TH expression (Sayed et  al., 
2018, #1; Serova et  al., 2013}. Interestingly, stress causes a 
reduction of NPY in LC, nucleus accumbens (Nac) and PVN 
(Desai et  al., 2014), indicating a mechanism by which stress 
leads to reduced resilience against anxiogenesis.

Benzodiazepines, which are commonly used for anxiolysis, 
bind to LC neurons (Hellsten et al., 2010) and reduce LC neuronal 
activity (Soderpalm and Engel, 1989), stress-induced increase in 
NE (Gray, 1996; Ida et  al., 1985; Tanaka et  al., 2000), CRF 
(Skelton et al., 2000) and the neuroendocrine responses to stress 
(Carrasco and Van de Kar, 2003). Diazepam has been shown to 
reduce LC responses to negative stimuli (Rasmussen and Jacobs, 
1986). In contrast, non-BZ anxiolytics increase LC activity 
(Sanghera and German, 1983; Trulson and Henderson, 1984).

Chronic selective serotonin reuptake inhibitors (SSRIs), 
which are antidepressant and anxiolytic, reduce LC-NE neuron 

firing in control (Szabo and Blier, 2002) and perinatal-protein 
deprived rats (Sodero et al., 2004). SSRIs seem to reduce LC fir-
ing at a rate consistent with their therapeutic effects (Szabo et al., 
2000). The SSRI fluoxetine also reduces glucocorticoid receptor 
expression in LC (Heydendael and Jacobson, 2010). Another 
non-SSRI antidepressant, imipramine, also reduces stress-
induced LC activation (de Medeiros et al., 2005). Selective sero-
tonin-norepinephrine reuptake inhibitors (SNRIs) such as 
milnacipran, which has also shown to have anxiolytic effects 
(Dell’Osso et al., 2010), may also activate LC to release 5HT for 
anxiolysis (Bourin et al., 2005).

Finally, exercise has been shown to reduce anxiety and stress-
related markers, and increase galanin in LC (Salim et al., 2010; 
Sciolino and Holmes, 2012; Sciolino et  al., 2015). Exercise or 
galanin has been shown to reduce stress-induced anxiety behav-
iors (Sciolino et al., 2015). Chronic galanin antagonism blocked 
the resilience-inducing influence of exercise (Sciolino et  al., 
2015).

Future directions in approaches to 
studying the LC in humans
Emerging advances in neuroimaging technology and computa-
tional modeling are starting to highlight pathways by which the 
LC can be studied in humans in vivo. Advances in MRI acquisi-
tion protocols, resolution afforded by higher field MRI and data 
denoising strategies will allow the investigation of LC structure 
and function with enhanced spatial and temporal precision.

The past few years have provided in vivo characterisation of 
the LC in awake humans that reliably correlates to post-mortem 
analyses of relative LC size, cell distribution, location, age-
related size alteration and disease-specific structural changes, 
notably for Alzheimer’s disease (Chan-Palay and Asan, 1989; 
Kelly et al., 2017; Theofilas et al., 2017). The T1-weighted turbo 
spin echo (TSE) technique is the current gold standard of LC 
structural imaging in humans, offering contrast in the LC due to 
the presence of neuromelanin (NM), which is MR-visible due to 
a magnetisation transfer (MT) contrast mechanism. NM contrast 
has been shown to be a reliable indirect measure of the number of 
LC cells – providing the basis for in vivo studies of LC micro-
structure (Betts et al., 2019; Clewett et al., 2016). The metabolic 
activity of the LC has also been captured with functional MRI, 
albeit with large voxel sizes. Validation of LC functional MRI 
(fMRI) has come from reference to simultaneously acquired 
pupilometry, showing that pupil diameter and LC BOLD activa-
tion are tightly correlated (Alnaes et al., 2014; Elman et al., 2017; 
Murphy et  al., 2014). These advances have demonstrated the 
rapid improvement in fMRI resolution and sensitivity. 
Nonetheless, while current structural imaging of the LC uses 
high in-plane resolution (~0.4 mm), it also has large slice thick-
ness (~3 mm). This means that while LC can be localised in the 
brainstem, the characterisation of its size and shape is still not 
optimised. Similarly, current functional MRI of LC involves 
image acquisition at standard voxel sizes of ~3 mm to attain good 
functional sensitivity. Recent work using high-field MRI and 
computational segmentation algorithms has been used to meas-
ure LC structure and volume with sub-millimeter resolution 
(Morris et al., 2020). This was successfully performed in human 
subjects with and without pathological anxiety, demonstrating 
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enlarged LC in patients, associated with poorer attentional con-
trol and higher anxious arousal (Morris et  al., 2020). Further 
applications of this work in larger sample sizes and using fMRI 
will be critical for the translation of the wealth of pre-clinical 
work described, to clinical settings.

Recent advances in computational modeling approaches are 
also providing new insights into LC function. Several computa-
tional frameworks suggest two underlying modes of LC function. 
One mode in which tonic LC activity mediates exploration via an 
increase in gain in sensory representations and general arousal, 
and the second mode in which phasic LC activity optimises 
behavior in light of current task performance, recruiting insula-
based salience detection and PFC decision-making systems 
(Aston-Jones and Cohen, 2005; Dowman et al., 2016). Optimal 
task performance and learning requires an accurate representa-
tion of certainty in the environment, which is suggested to be 
computed by NE and acetylcholine (Yu and Dayan, 2005), both 
of which modulate general arousal-related pupil dilation (Larsen 
and Waters, 2018). Indeed, pupil dilation has been linked with the 
reliability or stability of information in the environment (Nassar 
et  al., 2012), critical for optimal environmental navigation. 
However, this link between pupil sensitivity and optimal compu-
tation of environmental features in an unstable world seems to be 
disturbed in patients with high trait anxiety (Browning et  al., 
2015). Together, these computational models provide new and 
potentially integrative insights into LC and NE function, and 
their potential disturbance in human disorders of pathological 
anxiety. Harnessing computational models based on known 
physiological and biological systems will enable development 
and understanding of small and large-scale networks that ulti-
mately direct behavior.

Summary
The LC is critically placed to modulate both ascending visceral 
feedback and descending cortical cognitive processing to medi-
ate both psychological and physiological operations (Berntson 
et al., 2003). While threat or perceived stress broadly increases 
sympathetic tone and HPA axis activation (Carrasco and Van de 
Kar, 2003; Makino et al., 2002), it also recruits LC activity and 
NE release throughout the CNS. Direction of attention and mem-
ory formation, particularly for threat-related stimuli and events, 
are both under tight regulation by the LC. Indeed the LC responds 
rapidly to a range of threatening stimuli, including even the mere 
anticipation of threat (Baas et  al., 2006; Clewett et  al., 2018), 
subliminal fear (Liddell et  al., 2005) or perceived stress (van 
Marle et  al., 2010) and the broader LC-NE system governs an 
‘alarm system’ response to stress (Lanius et  al., 2017) across 
species.

Moreover, chronic or repeated stress (Fan et  al., 2014) 
increases LC, hippocampal, amygdala and PFC activity (Fan 
et  al., 2014) and leads to anxiety and defensive behaviors (Li 
et  al., 2018). After chronic stress, not only does LC activity 
increase but its sensitivity to subsequent stressors also increases 
(Jedema et al., 2001), possibly due to reduced LC auto-inhibition 
after stress (Jedema et al., 2008). Resultant increased tonic LC 
activity and LC catecholaminergic neuron density is sufficient to 
lead to anxiety and panic in rodents (Dierssen et al., 2006; McCall 
et  al., 2015). This coincides with human evidence of hypera-
rousal and exaggerated physiological responses to threat centered 

on LC (Lanius et  al., 2017; Morey et  al., 2015; Naegeli et  al., 
2018). Together this suggests a mechanism by which repeated 
stress can lead to LC dysregulation and therefore maladaptive 
exaggerated fear or pathological anxiety responses.

Future innovation in human neuroimaging and neural circuit 
modeling will advance the investigation of LC structure and 
function in vivo, allowing greatly enhanced precision for charac-
terising the LC in humans.
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