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Key Points

• PI3Kd inhibition reduces
FL proliferation,Treg and
TFH recruitment, whereas
angiogenesis and dis-
semination are ham-
pered in selected cases.

•Microenvironment ren-
ders FL dependent on
BCL-XL, MCL-1, and
BFL-1; idelalisib
restores FL depen-
dence on BCL-2 and
venetoclax cytotoxicity.

Despite idelalisib approval in relapsed follicular lymphoma (FL), a complete characterization

of the immunomodulatory consequences of phosphatidylinositol 3-kinase d (PI3Kd)

inhibition, biomarkers of response, and potential combinatorial therapies in FL remain to be

established. Using ex vivo cocultures of FL patient biopsies and follicular dendritic cells

(FDCs) to mimic the germinal center (n5 42), we uncovered that PI3Kd inhibition interferes

with FDC-induced genes related to angiogenesis, extracellular matrix formation, and

transendothelial migration in a subset of FL samples, defining an 18-gene signature

fingerprint of idelalisib sensitivity. A common hallmark of idelalisib found in all FL cases

was its interference with the CD40/CD40L pathway and induced proliferation, together

with the downregulation of proteins crucial for B–T-cell synapses, leading to an inefficient

cross talk between FL cells and the supportive T-follicular helper cells (TFH). Moreover,

idelalisib downmodulates the chemokine CCL22, hampering the recruitment of TFH and

immunosupressive T-regulatory cells to the FL niche, leading to a less supportive and

tolerogenic immune microenvironment. Finally, using BH3 profiling, we uncovered that

FL–FDC and FL–macrophage cocultures augment tumor addiction to BCL-XL and MCL-1 or

BFL-1, respectively, limiting the cytotoxic activity of the BCL-2 inhibitor venetoclax.

Idelalisib restored FL dependence on BCL-2 and venetoclax activity. In summary, idelalisib

exhibits a patient-dependent activity toward angiogenesis and lymphoma dissemination. In

all FL cases, idelalisib exerts a general reshaping of the FL immune microenvironment and

restores dependence on BCL-2, predisposing FL to cell death, providing a mechanistic

rationale for investigating the combination of PI3Kd inhibitors and venetoclax in clinical

trials.

Introduction

The pathogenesis of follicular lymphoma (FL), the most common indolent B-cell non-Hodgkin lymphoma
characterized by the presence of t(14;18) and BCL-2 overexpression, is thought to be the result of
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a close collaboration between recurrent somatic mutations and
a permissive microenvironment.1,2 FL tumor cells are dependent
on their microenvironment for proliferation and survival, remain-
ing dependent on signals through the B-cell receptor (BCR).3 In
this context, 2 populations present in the tumor niche are
fundamental: follicular dendritic cells (FDCs) and dendritic cell-
specific intercellular adhesion molecule-3-grabbing nonintegrin–
expressing macrophages (Mf). Both cell types interact with
stereotypic mannosylated residues of the BCR, in a T cell–
independent manner, activating pathways such as nuclear
factor-kB or phosphatidylinositol 3-kinase (PI3K)-Akt, which
support tumor growth.4-6 Moreover, FL cells are intermixed in
tight contact with supportive T-follicular helper cells (TFH) that
contribute to FL lymphomagenesis through tumor necrosis
factor-a (TNF-a), lymphotoxin a, interleukin-4 (IL-4), and CD40L7,8

and regulatory T cells (Treg) facilitating immune evasion.9 In this
cross talk, PI3K behaves as a hub that integrates different signals
coming from the microenvironmental milieu. Among the existing
PI3K isoforms, PI3Kd is restricted to leukocytes, and early studies
showed an important role for in nontransformed B cells, with an
almost exclusive dependence of the BCR signaling on PI3Kd over
other PI3K isoforms.10 In the last years, specific inhibitors of PI3Kd
have been developed, and idelalisib has been the first to enter the
clinic, reaching US Food and Drug Administration approval in 2014
for relapsed small lymphocytic lymphoma, chronic lymphocyctic
leukemia (CLL), and FL.11,12

The mechanism of action of idelalisib has been studied mainly in
CLL, where this PI3Kd inhibitor acts by targeting stroma–cancer
cell interactions, abrogating BCR-derived survival signals, and
inducing a redistribution of CLL cells from the tissue compart-
ments into the blood. In addition, idelalisib inhibits CLL cell signaling
pathways in response to CD40L, B-cell activating factor (BAFF), or
TNF-a and interfered with integrin-mediated CLL cell adhesion to
endothelial and bone marrow stroma cells.13-15 Moreover, recent
findings indicate that PI3Kd inhibitors could also be used to target
the immune system by dampening Treg activity and facilitating
host–antitumor responses.16,17

Surprisingly, despite the approval of idelalisib for relapsed FL,
the current knowledge about its specific mechanism of action is
mostly restricted to CLL. Our purpose in the current study is to
characterize the immune microenvironment remodeling exerted
by idelalisib together with its mechanisms of sensitivity and
resistance in ex vivo cocultures of FL-FDC ad FL-Mf established
with FL patient samples.

We also addressed how FL microenvironment modulates the
FL dependence on antiapoptotic members of the BCL-2 family
different from BCL-2, potentially explaining the limited success
of ABT-199/venetoclax in the clinical setting.18 Moreover, we
demonstrated how idelalisib restores BCL-2 dependence and
venetoclax activity, setting up the mechanistical basis for the
initiation of clinical trials of PI3Kd inhibitiors and venetoclax.

Methods

Patient samples

Primary FL cells were isolated from tumoral lymph nodes from
a cohort of 42 patients, diagnosed according to the World Health
Organization classification criteria in the Hospital Clinic of Barcelona.
Patient clinical features are summarized in supplemental Table 1.

The study was approved by the Ethics Committee of Hospital
Clinic (IRB# HCB/2018/0397), and patients signed written
informed consent.

FL microenvironment models

To prepare FL cocultures, we used HK cells, a nonimmortalized
FDC cell line generated from normal tonsils, which was kindly
provided by Yong Sung Choi and has been extensively used to
mimic the germinal center (GC) microenvironment.19-21 Mfwere
derived from peripheral blood mononuclear cells (PBMCs) of
healthy donors (Banc de Sang i Teixits Barcelona). Blood
samples were enriched in monocyte population using Rosette
Sep (human monocyte enrichment cocktail; STEMCELL Tech-
nologies, Grenoble, France) and then cultured for 7 days with
100 ng/mL macrophage colony-stimulating factor (Thermo
Fisher Scientific, Waltham, MA). FL-FDC and FL-Mf cocultures
were performed in RPMI 10% fetal bovine serum (FBS) at ratios
of 1:20 (FDC:FL) and 1:4 (Mf:FL), respectively, for the times
indicated in the presence or absence of idelalisib provided by
Gilead Sciences (Seattle, WA) and/or venetoclax (Selleck
Chemicals, Houston TX).

Intracellular BH3 (iBH3) profiling

FL cells were cocultured with FDC or Mf with or without
idelalisib for 24 hours at a cell density of 2 3 106 cells/mL. First,
isolated FL cells were stained using Live/Dead Fixable Aqua
Dead Cell Stain kit and labeled with CD19-PE (BD Biosciences,
San Jose, CA). After washing, cells were placed in 96-well
plates permeabilized and exposed to peptides (Gene Script,
Piscataway, NJ), which mimic the BH3 (BCL-2 Homology 3)
domain of several proapoptotic members of the BCL-2 family
and proceed according to the standardized protocol from the
Anthony Letai laboratory (http://letailab.dana-farber.org/bh3-
profiling.html). Cytochrome C release in viable and CD191 cells
was used as a read-out.

Detailed description of additional methods is included in supple-
mental Methods.

Results

Idelalisib modulates FDC-induced gene sets in

selected FL patients

To examine the molecular effect of idelalisib in a relevant ex vivo
FL model, we established FL cocultures (n 5 5) with cells
isolated from lymph node biopsies from FL patients and FDC
generated from normal tonsils to mimic the GC microenviron-
ment and maintain FL cell viability.22 FL patient characteristics
are summarized in supplemental Table 1. FL-FDC cocultures
significantly (P 5 .0002) increased the viability of FL cells, and
idelalisib induced moderate cytotoxicity at 72 hours on tumor
cells that was maintained in the coculture (supplemental
Figure 1). Gene expression profiling (GEP) of magnetically
purified CD201 B cells from FL-FDC cocultures treated with or
without idelalisib indicated that FDC significantly changed the FL
transcriptome. A differential gene expression analysis identified
306 genes significantly upregulated (P , .05 and fold change
[fc] . 2) in patients FL1-FL4 (mean fc 5 6.1), whereas FL5 was
not responsive to FDC coculture (mean fc5 1.6; Figure 1A). We
uncovered a differential gene regulation by idelalisib of these
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FDC upregulated genes, leading to 2 different patterns of
response: FL1 and FL4 sensitive to idelalisib with 133 FDC-
induced genes downmodulated by idelalisib (average fc , 0.5),
whereas FL2 and FL3 appeared resistant to the inhibitor, with no
downmodulated genes and some of them even upregulated
(FL2; Figure 1A). Of note, the PI3K/AKT pathway was significantly
blocked by idelalisib in the presence or absence of FDC, even in
the resistant case FL35 (supplemental Figure 2). No significant
changes in FL cells viability were observed at 48 hours in
idelalisib-treated samples (supplemental Figure 3).

To validate these differential idelalisib responses in a larger patient
cohort, 39 genes were selected with the following criteria:
upregulation by FDC coculture (fc . 2, P , .05) and differential
regulation by idelalisib (fc, 0.5 just in sensitive patients). The effect
of idelalisib in this custom gene signature was analyzed in 25 FL-
FDC cocultures. Figure 1B and supplemental Figure 4 illustrate the
power of this gene signature to identify idelalisib-sensitive and
-resistant FL-FDC cultures. To generate a more manageable
predictor, we reduced this signature to 18 genes (supplemental
Methods), virtually maintaining the same predictive power (Figure
1C-D). This gene signature provides an easy and manageable
fingerprint to identify new sensitive FL patients showing idelalisib
score#20.4 (maximum idealisib score for the 18-gene signature in
the sensitive patient cohort):

Idelalisib score ¼median
�
log2expression 18gene_signature�

FLFDC 1 IDELA
FLFDC

��
:

To further characterize possible patterns of clinical responses to
idelalisib, we analyzed the mutational status of 10 commonly
mutated genes in the series of FL with distinctive molecular
responses to idelalisib according to the signature established in
Figure 1D. These genes included CREBBP, KMT2D, TNFRFS14,
EP300, EZH2, MEF2B, TNFAIP3, TP53, RRAGC, and EPHA7
(supplemental Figure 5; supplemental Table 2). The frequency of
these mutations in our patient series was in accordance with
published results in larger patient cohorts.2

We did not observe any correlation between molecular responses
to idelalisib and mutational load, similar to previous reports.23 Of
note, RRAGC24 (FL9 and FL16) and P53 (FL10) mutations were
just present in resistant FL cases, whereas MEF2B mutations were
restricted to sensitive cases (supplemental Figure 5). However, the
low number of cases precluded extracting definitive conclusions in
this regard.

Idelalisib reduces FDC-induced angiogenesis and

transendothelial migration in sensitive patients

We then sought to determine the functional consequences of this
differential gene regulation by idelalisib between sensitive and
resistant patients. Gene set enrichment analysis (GSEA) of the
whole expression data set of FL-FDC cocultures vs FL mono-
cultures uncovered a striking enrichment of genes related to
angiogenesis, transendothelial migration (TEM), cell-cell/cell-matrix
adhesion, extracellular matrix formation, and cell migration among
others, in accordance with previous results.22 Table 1 summarizes
GSEA results of the total enriched gene sets associated with
a specific biologic process. Enrichment plots of representative

upregulated pathways in FL-FDC cocultures are provided in
Figure 2A. Likewise, these gene sets were downregulated by
idelalisib in FL1- and FL4-sensitive cases, whereas FL2 and FL3
showed no modulation (Figure 2B). Next, we proceed to validate
these results at functional level. We focused on 2 processes of
paramount importance in lymphoma: angiogenesis and cell
dissemination.

It is well documented that PI3K/AKT plays a key role in angiogen-
esis, both through regulation of vascular endothelial growth factor-
A (VEGF-A) expression and as a transducer of VEGF-A–VEGFR1
and VEGF-C–VEGFR2 downstream signaling.25 Analysis of
VEGF-A and VEGF-C secretion by enzyme-linked immunosor-
bent assay (ELISA) on supernatants from FL-FDC cocultures
with or without idelalisib uncovered a significant (P 5 .0033
and P 5 .0222, respectively) downregulation of both proangio-
genic factors mostly in idelalisib-sensitive patients (Figure 3A)
in accordance with GEP results (Figure 2B). We then used
these supernatants in a tube formation assay with human
umbilical vein endothelial cells (HUVECs; Figure 3B). Super-
natants from FL-FDC cocultures significantly increased the
number of nodes and junctions compared with those from FL
monocultures (nodes: P 5 .0056 in sensitive patients, P 5
.0076 in resistant patients; junctions: P 5 .0067 in sensitive
patients, P 5 .0058 in resistant patients). Importantly, the
presence of idelalisib diminished the proangiogenic potential of
those supernatants exclusively in idelalisib-sensitive patients
(nodes: P 5 .0138; junctions: P 5 .0091), in accordance with
the results obtained for VEGF-A and VEGF-C.

As described in Figure 2, FL-FDC coculture significantly modulated
the expression of some adhesion-related molecules and extracel-
lular matrix components, with a differential regulation by idelalisib
between sensitive and resistant patients as displayed in Figure 3C.
The main integrins upregulated were ITGA2, ITGA6, ITGB1,
and ITGBL1, whereas the main corresponding ligands were the
extracellular matrix component collagens (COL1A2, COL3A1,
COL6A3, and COL1A1), fibronectin (FN1), laminin (LAMB1,
LAMA4, LAMB2), tenascin (TNC), cysteine-rich angiogenic
inducer 61 (CYR61), and the glycoprotein thrombospondin 1
(THBS1), which are involved in angiogenesis, cell-to-cell
interaction, and cell-to-matrix interaction. We then validated
the functional consequences of this gene regulation. As adhesion
represents a precedent step for cell migration onset, FL cells from
FL-FDC cocultures with or without idelalisib were challenged to cell
adhesion experiments to HUVECs. Idelalisib significantly (P 5
.0046) reduced this event only in sensitive patients (Figure 3D).
Likewise, the simultaneous reduction observed in both integrins
and their ligands in sensitive patients may indicate a decrease
in the migratory capacity of these cells inside the lymph node
and through the blood vessel wall. To examine that hypothesis,
we carried out a TEM assay. FL cells from FL-FDC cocultures
with and without idelalisib were challenged to migrate through
transwells coated with a HUVEC monolayer toward a gradient
of FBS. In line with the adhesion assay results, idelalisib
exhibited a trend to reduced TEM in sensitive patients (P 5
.0646), whereas it did not affect this phenomenon in resistant
patients (Figure 3E).

These results taken together uncovered antiangiogenic and anti-
dissemination properties of idelalisib in sensitive FL patients.
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Figure 1. Idelalisib modulates FDC-induced gene sets in selected FL patients. (A) FL primary cells (n 5 5) were isolated from monocultures or FL-FDC cocultures,

treated with and without idelalisib (500 nM, 48 hours), RNA extracted, and subjected to GEP. Robust multiarray average data were analyzed with a paired (monoculture vs

coculture) Limma algorithm (false discovery rate , 0.05, fc . 2). Heatmap represents the genes significantly upregulated in FL cells by FDCs in 4 of 5 patients. A differential

regulation by idelalisib was acknowledged. (B) FL primary cells were isolated from FL-FDC (n 5 25) cocultures treated with and without idelalisib (500 nM, 48 hours), and
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Idelalisib interferes with FL–T cells cross talk through

CD40/CD40L and affects Treg and TFH recruitment

through CCL22 downregulation

In addition to the modulatory effects of idelalisib on FDC-induced
genes, idelalisib displays a more general downregulatory action

over a group of genes that were mostly not induced by FDC
coculture and similarly downmodulated by idelalisib independently
of the presence of FDCs in all patients tested. GSEA revealed that
these genes were related to CD40L signaling (Figure 4A) and to the
GC program including B-lymphocyte–induced maturation protein 1
(BLIMP)–regulated genes (supplemental Table 4; supplemental
Figure 6). The CD40-CD40L pathway lies at the cross talk between
B and T cells in the GC and is fundamental for B-cell survival,
proliferation, and differentiation into plasma cells.26 Likewise, the
mTORC1 pathway was also downregulated by idelalisib, validating
the inhibition of PI3K/AKT/mTOR pathway by idelalisib both in
monoculture and in FL-FDC coculture (supplemental Table 4;
supplemental Figure 6), and idelalisib decreased ribosomal protein
S6 phosphorylation (supplemental Figure 7).

The FL patient samples used in this study were obtained from
patient biopsies of lymph nodes and contained a significant
percentage of T cells (supplemental Table 1), although their full
functionality ex vivo, in the absence of an adequate microenviron-
ment, may be compromised.27 For this reason, we chose to validate
the interference of idelalisib with the CD40L pathway using an
engineered FDC cell line (YK6-CD40L) that overexpresses CD40L
on the cell membrane. FL cells labeled with Carboxy Fluorescein
Succinimidyl Ester (CFSE) proliferated in the presence of YK6-
CD40L (FL/YK6 vs FL/YK6-CD40L: P 5 .0084; Figure 4B), as
attested by the loss of their fluorescent signal, and idelalisib inhibited
their proliferation at concentrations of just 50 nM (untreated vs 50 nM:
P 5 .003398; untreated vs 500 nM: P 5 .001338; supplemental
Figure 8; Figure 4B), thus validating GEP results. We also validated at
a protein level the downregulation by idelalisib of several CD40L target
genes directly involved in this B–T immunological synapse, such as the
activation molecule SLAMF1, the intercellular adhesion molecule
ICAM1, or the costimulatory protein CD80 from the GC gene set. In all
FL cases analyzed, idelalisib induced a moderate but constant
decrease in their expression (Figure 4C).

Among the genes regulated by idelalisib in the CD40L pathway, the
chemokine CCL22 stood out. This chemokine is secreted by many
tumor types including FL.9,28,29 CCL22 and CCL17 are the ligands
for CCR4 receptor used by circulating effector/memory lympho-
cytes, especially Treg and T helper cells, for their recruitment.30 To
gain insights into the consequences of CCL22 downregulation by
idelalisib, we first validated the GEP results, analyzing its expression
(P , .0001) in an expanded series of FL-FDC cocultures (n 5 25;
Figure 4D) followed by its quantification at a protein level. Analysis
of CCL22 by ELISA in supernatants from FL-FDC cocultures
treated with or without idelalisib (500 nM, 48 hours) demonstrated
that CCL22 is secreted in the FL-FDC niche, and idelalisib induced
a significant reduction of this chemokine (Figure 4E, P 5 .003).
Then, we checked whether FL-FDC coculture supernatants were
able to effectively recruit Treg cells from blood. To this aim, PBMCs
from healthy donors, enriched in the T-cell fraction, were allowed
to migrate toward those FL-FDC supernatants (with or without

Table 1. Gene sets regulated by idelalisib treatment in FL-FDC

cocultures in sensitive patients

Gene sets No. of enriched gene sets NES FDR, q

Custom gene sets

Human angiogenesis 1 2.63 ,.0001

IRF4 pathway 1 1.98 .0045

Cell cycle regulation 2 1.98 .0039

Integrin pathway 1 1.92 .0067

Serum response 1 1.85 .0131

Canonical pathways (C2CP)

Focal adhesion-integrins 12 2.80 ,.0001

Extracellular matrix formation 7 2.76 ,.0001

Angiogenesis (VEGF/PDGF pathways) 5 2.29 ,.0001

Cell adherent junctions–ECadherin 5 2.08 .0009

Cell cycle G1-M 8 2.01 .0027

Transendothelial cell migration 2 1.90 .0115

Motif gene sets (C3 TFT)

SRF 6 2.31 ,.0001

IRF 2 1.85 .0080

NFAT 1 1.73 .021

NF-kB 1 1.64 .041

Hallmark gene sets (H)

Epithelial mesenchymal transition 1 3.25 ,.0001

Angiogenesis 1 2.26 ,.0001

mTOR 1 1.95 .0002

Interferon a and g responses 2 1.6 .015

GO gene sets (C5)

Extracellullar matrix organization 8 2.9 ,.0001

Adhesion-integrins 9 2.56 ,.0001

Vasculature-angiogenesis-EC growth 15 2.49 ,.0001

Cell cycle G1-S and G2-M 6 2.09 .0007

Gene sets regulated by idelalisib were identified by GSEA using custom gene sets
experimentally derived (http://lymphochip.nih.gov/signaturedb/index.html), C2 canonical
pathways, C3 motif gene sets, Hallmark, and C5-GO signatures obtained from the
Molecular Signature Database (v2.5). Threshold: FDR , 0.05 and NES . 1.5. The number
of enriched gene sets and the best FDR and NES scores are indicated for each biological
process. A complete list of the enriched gene set is detailed in supplemental Table 3.
EC, endothelial cell; IRF, interferon response factor; IRF4, interferon regulatory factor 4; FDR,

false discovery rate; mTOR, mammalian target of rapamycin; NES, normalized enriched score;
NFAT, nuclear factor of activated T cells; NF-kB, nuclear factor kB; SRF, serum response factor.

Figure 1. (continued) RNA was extracted and subjected to a multiplex reverse transcription-polymerase chain reaction by Fluidigm to characterize 39 selected genes

upregulated in the FL-FDC coculture (fc . 2) and differently modulated by idelalisib (fc , 0.5 in sensitive patients). Heatmap displays fc in response to idelalisib referred to the

untreated control. The cutoff to consider idelalisib sensitive was established using a paired t test comparing the expression 2/1 idelalisib adjusted with the Benjamini-

Hochberg method (details in supplemental Methods). (C) Boxplots for each patient of the log2 fc expression in response to idealisib. (i) Full 39-gene signature. (ii) Reduced

18-gene signature (details in supplemental Methods). The median represented in each box plot corresponds to the idelalisib score. (D) Heatmap displaying the mean

expression of the selected 18 genes in either sensitive (n 5 9) and resistant (n 5 16) patients classified as in panel B, referred to the baseline control without coculture.
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idelalisib), where CCL22 was determined previously, and counted
by flow cytometry (CD41/CD251/FoxP31). FL-FDC superna-
tant favored Treg recruitment, and idelalisib reduced this event
(Figure 4Fi; P 5 .0009) in agreement with a recent study.31 In
contrast, using PBMCs from fresh tonsils to mimic the follicular
origin, we demonstrated that the recruitment of T-follicular
regulatory cells (Tfr) (CD41/CXCR51/FoxP31) related to good
prognosis32 and was not affected by idelalisib (Figure 4Fii). We
finally analyzed the ability of those coculture supernatants to recruit
T-follicular helper cells (TFH), a T-cell subpopulation fundamental for
FL survival.7,33 Likewise, using PBMCs from fresh tonsils enriched
in the T-cell fraction, we quantified the effect of idelalisib on TFH
cells (CD41CXCR51CD252) migration and demonstrated that
FL-FDC supernatants recruited TFH and idelalisib (P 5 .002)
diminished this migration (Figure 4Fiii).

In summary, idelalisib reshapes the immune FL microenvironment by
decreasing the levels of the CCL22 that limits the recruitment of
immunosuppressive Treg and the supportive TFH to the FL niche,
together with the disruption of FL–TFH cross talk cells via CD40L.

Immune microenvironment modulates BCL-2

dependence of FL cells

BCL-2 inhibition by venetoclax has proven to be a good partner for
BCR kinase inhibitors in several lymphoid malignancies different
from FL.34-36 Surprisingly, despite the fact that BCL-2 over-
expression is a hallmark of FL, the BCL-2 inhibitor venetoclax has
shown limited activity in this lymphoma.18 To better understand this
apparent contradiction, we characterized the BCL-2 dependency in
a set of FL patient samples by BH3 profiling.37 This technique is
a functional assay designed to interrogate mitochondrial apoptotic
machinery as a whole. Using a BH3 peptide derived from the
proapoptotic protein BIM, which interacts with all major antiapop-
totic proteins, we measured the proximity of FL cells to the threshold
of apoptosis, a property called mitochondrial priming,38 and found
that FL cells showed a different degree of mitochondrial priming
(Figure 5A). BH3 profiling was also able to determine precisely the
dependence of FL cells on specific antiapoptotic BCL-2 family
proteins, such as BCL-XL, BCL-2, or BFL-1 (Figure 5B). In the
absence of coculture, we found that FL cells primarily showed
patterns of either BCL-2 (n 5 6) or BCL-XL dependence (n 5 6),
whereas only 1 case manifested dependence on MCL-1/BFL-1
(Figure 5C shows a representative example of each pattern). BCL2
pattern was characterized by high sensitivity to both venetoclax
(used as a specific peptide against BCL-2) and BCL-2–associated
agonist of cell death (BAD), whereas BCL-XL pattern was associated

to higher sensitivity to Harakiri (HRK) peptide than for BCL-2
(venetoclax). Finally, BFL-1 dependence, just found in 1 case, was
linked to high sensitivity for phorbol-12-myristate-13-acetate-
induced protein 1 (PMAIP1/NOXA) and FS2 peptides. In the FL
samples tested, we did not identify a case with MCL-1 pattern (high
sensitivity for NOXA and low for FS2).

Next, we sought to determine how microenvironment modulates
this BCL-2 dependency. For this purpose, we set FL cocultures
with FDC or human Mf, as they are also fundamental in FL
pathogenesis.4,39 Interestingly, we identified that FL-FDC coculture
significantly protected from venetoclax and BAD-induced apopto-
sis, whereas it increased the sensitivity to HRK (P 5 .031) and
NOXA (P 5 .042) peptides, uncovering that BCL-XL and MCL-1
dependence raises at the expense of BCL-2. Furthermore, Mf also
protected FL cells from venetoclax and BAD peptide apoptosis,
whereas it sensitized them to a synthetic peptide specific for BFL-1
(FS2; P 5 .047),40 indicating a higher dependence on this
antiapoptotic protein (Figure 5D). In summary, immune microenvi-
ronment renders FL more dependent on apoptotic proteins different
from BCL-2, reducing their priming for apoptosis.37 This fact may lie
at the basis of the reduced clinical benefit observed with venetoclax
in FL patients.18

Idelalisib bypasses microenvironment derived

resistance of FL cells to venetoclax

We next wondered if idelalisib, despite inducing limited cell death,
may be able to increase FL overall mitochondrial priming or modify
their specific BH3 profile. We uncovered that idelalisib did not
significantly increase FL priming either in monoculture or in FL-FDC
and FL-Mf cocultures (supplemental Figure 9) but restored BCL-2
dependence over BCL-XL (Figure 6A). Venetoclax, used as
a specific peptide for BCL-2, exhibited minimal response in FL-
FDC and FL-Mf cocultures, whereas a recovery of venetoclax
activity was observed in the presence of idelalisib both in FL-FDC
(P 5 .0393) and FL-Mf (P 5 .0001) cocultures (Figure 6A).
Likewise, FL cells displayed lower response to BAD peptide (which
would simulate combined BCL-2/BCL-XL inhibition) in FL-FDC
(P 5 .0085) and FL-Mf (P 5 .0455) cocultures, and idelalisib
treatment allowed the recovery of BAD activity in both FL-FDC
(P 5 .0014) and FL-Mf (P 5 .0279) cocultures (supplemental
Figure 10). On the contrary, idelalisib did not modify the overall
priming of HRK peptide activity in these cocultures (supplemental
Figure 10), implying changes in BCL-XL dependence, reinforcing
the notion that idelalisib activity relies on restoring FL dependence
on BCL-2 (Figure 6A).

Figure 3. Idelalisib reduces FDC-induced angiogenesis and TEM in sensitive patients. FL-FDC coculture supernatants with or without idelalisib (IDELA, 500 nM, 48

hours) were used to determine VEGF-A and VEGF-C protein secretion by ELISA in sensitive (n 5 6) and resistant (n 5 6) patients (A) and tube formation assay of endothelial

HUVEC cells cultured for 24 hours with their own media alone or mixed with the corresponding supernatants (ratio 1:1) (B) (magnification 340). Five representative images of

each condition were captured using a phase-contrast microscope and analyzed by FIJI-ImageJ (angiogenesis analyzer plug-in). Representative images from a sensitive patient

are shown. Node and junction numbers from sensitive (n 5 5) and resistant (n 5 5) patients are displayed. (C) Heatmap displaying the regulation induced by idelalisib (IDELA)

in the expression of integrins and their ligands in FL cells from FL-FDC cocultures of sensitive (FL1 and FL4) and resistant patient samples (FL2 and FL3). (D) After IDELA

treatment (500 nM, 48 hours) FL cells from FL-FDC cocultures with or without idelalisib (500 nM, 48 hours) of sensitive and resistant patients (n 5 8) were stained with

calcein and allowed to adhere for 3 hours to HUVECs. After extensive washing, the cells that remained attached were lysed, and fluorescence was measured in a Synergy HT

microplate reader. (E) FL cells (n 5 12) from FL-FDC cocultures with or without idelalisib (500 nM, 48 hours) were challenged to migrate for 6 hours in a gradient of FBS

through trans-wells coated with HUVECs seeded on gelatin 0.1% coated 1 TNF-a (10 ng/mL). CD201 cells crossing the HUVEC barrier were counted by flow cytometry.

*P , .05, **P , .01. ns, not significant.
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One possible contributory mechanism of this idelalisib activity in FL-
FDC cocultures may be explained by the reduction of BAD
phosphorylation on the direct PI3K target Ser13641 that may allow
proapoptotic BAD relocation to the mitochondrial membrane and
apoptosis induction42 (Figure 6C). Another contributory mecha-
nism could be the increase in the proapoptic HRK expression in
response to idelalisib in FL-FDC cocultures (supplemental Fig-
ure 11). In contrast, in FL-Mf cocultures, the downregulation of

BFL-1 expression by idelalisib may have a role (supplemental
Figure 12).

The therapeutic cooperation of idelalisib with venetoclax on
apoptosis induction was further assessed by flow cytometry
measuring the percentage of viable cells after 3-day coculture with
each agent alone or in combination at therapeutic doses (ie,
venetoclax in the nanomolar range). We concluded that the

Figure 4. (continued) 48 hours). FL-FDC coculture supernatants with and without IDELA were used to assess CCL22 gene expression by real-time polymerase chain

reaction (n 5 26) using GUSB, ACTB, and B2M as houskeeping genes (D), CCL22 protein expression by ELISA (n 5 16) (E), and migration of Treg cells (CD41CD251

FoxP31; n 5 14) obtained from PBMCs of healthy donors (Fi) or migration of Tfr (CD41CXCR51FoxP31; n 5 9) (Fii) and TFH cells (CD41CXCR51CD252; n 5 14) (Fiii)

obtained from normal tonsils.
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treatment of FL cells with the combination resulted in significant
reduction of cell viability compared with the single agents both in the
FL-FDC cocultures (P5 .0135) and in FL-Mf cocultures (P5 .0006;
Figure 6B). Additionally, this positive combinatorial effect was observed
in both idelalisib-sensitive and -resistant FL samples (supplemental
Figure 13), classified according to the 18-gene signature defined in
Figure 1. Neither venetoclax nor idelalisib displayed significant cytotoxic
activity on FDC or Mf (supplemental Figure 14).

Thus, these results provide the molecular basis for a bench-to-
bedside translation of this new therapeutic combination. A schematic
rationale is provided in Figure 6D.

Discussion

The microenvironment of FL, an incurable B-cell non-Hodgkin
lymphoma, is thought to play a major role in its pathogenesis and
clinical outcome, and a number of therapies targeting FL–
microenvironment cross talk have reached the clinic. Idelalisib is
a first-in-class PI3Kd inhibitor approved for the treatment of
relapsed/refractory FL.11,43 Despite its introduction into the clinic,
a precise characterization of the interference of idelalisib with the
FL–microenvironment cross talk remains poorly defined. In the
present study, using a meaningful ex vivo coculture system
composed of FL patient cells and supportive FDCs from normal
tonsils, we discovered that idelalisib interferes with specific biologic
processes including angiogenesis and TEM (Table 1; supplemental
Table 3), exclusively in a selected group of patients. This discovery
allows us to define a gene signature to discriminate between
idelalisib-sensitive and -resistant FL primary cultures validated in an
expanded cohort of patients. Ideally, the predictive value of this
“idelalisib score” should be further validated in pretreatment
samples from FL patients enrolled in idelalisib clinical trials to
correlate in vivo responses with this in vitro predictor.

In those patients defined as sensitive based on the idelalisib score,
idelalisib reduced the secretion of the proangiogenic factors VEGF-
A and VEGF-C. These supernatants were significantly less efficient
in the generation of endothelial HUVEC microtubules, used as
a read-out of their proangiogenic potential. This is of key importance
in FL, because vascularization predicts overall survival and risk of
transformation.44

FL patients usually present disseminated disease at diagnosis,
indicating the high mobility properties of these tumor cells. To enter
lymphoid organs, B cells must adhere to the endothelium and
transmigrate across the endothelial barrier. Both processes are
mediated through selectin ligands, integrins, or CD44.45 Impor-
tantly, in several models of lymphoma, including FL, the expression
of several b-integrins has been associated with disease dissemi-
nation and patient prognosis.46 Thus, the regulation of this process
is of paramount importance to control the disease, and idelalisib has
shown significant activity in sensitive patients. In this regard, studies
of the interference of idelalisib and others BCR inhibitors (ie,
ibrutinib) with adhesion and migration have been used as a read-out
of antitumor activity.47 FL is characterized by a strong infiltration of
diverse T-cell subpopulations. Our results uncovered the modula-
tion of the CD40/CD40L pathway at the B–T interface by idelalisib
as a general phenomenon, decreasing CD40L-induced prolifera-
tion. Idelalisib also downregulates the expression of several
membrane proteins critical for B–T cell synapses (CD80, SLAMF1,
and ICAM1). The net balance of these effects might result in an

inefficient cross talk between FL cells and the supportive TFH cells.
Of the specific genes regulated by the CD40L-CD40 system,
CCL22 stood out as a chemokine fundamental for the migration of
diverse T-cell subpopulations.30 The decrease in CCL22 secretion
by idelalisib may contribute to changes in the composition of FL
microenvironment. By means of in vitro migration assays, we
observed a significant decrease in the recruitment of Treg and TFH
when these cells were challenged to migrate toward supernatants
from FL-FDC cocultures treated with idelalisib. PI3Kd is fundamen-
tal for the generation of TFH,

48 and the presence of these supportive
TFH has been associated with poor prognosis in a number of
hematologic malignancies.49 Intratumoral TFH cells induce pro-
duction of CCL22 by FL tumor cells and facilitate active recruitment
of Tregs and IL-4–producing T cells, which, in turn, may stimulate
more chemokine production in a feedforward cycle. Likewise, based
on previous studies,50 the decrease in the activation receptor
SLAMF-1 observed in our system may reduce IL-4 production by
TFH. Moreover, the cross talk between FL and TFH contributes to FL
pathogenesis and promotes immune evasion in FL microenviron-
ment.9 Thus, the coordinated decrease in TFH and Treg recruitment
may allow the host to mount superior immune responses against
the tumor.

BCL-2 overexpression is the genetic hallmark of FL. However, BCL-
2 antiapoptotic proteins extend well beyond BCL-2 and are known
to be regulated by the microenvironment.51 We uncovered that FL-
FDC cocultures augmented tumor addiction to BCL-XL and MCL-1,
whereas BFL-1 was relevant in FL-Mf cocultures. The conse-
quence of these changes was a decrease in the activity of the
BCL-2 inhibitor venetoclax. These results are in agreement with
those reported by several groups in CLL and MCL34,52-55 and may
well be the basis of the reduced clinical benefit observed in FL
patients treated with venetoclax.18 Idelalisib restored FL depen-
dence on BCL-2 and venetoclax activity by several mechanisms
including BAD serine dephosphorylation, an increase in HRK, and
a decrease in BFL-1 expression, thus providing a mechanistic
rationale for investigating the combination of PI3Kd inhibitors and
venetoclax in clinical trials, following the success in CLL.56
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46. Terol MJ, López-Guillermo A, Bosch F, et al. Expression of beta-integrin adhesion molecules in non-Hodgkin’s lymphoma: correlation with clinical and
evolutive features. J Clin Oncol. 1999;17(6):1869-1875.

47. de Rooij MFM, Kuil A, Kater AP, Kersten MJ, Pals ST, Spaargaren M. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and
CLL: a rationale for combination therapy. Blood. 2015;125(14):2306-2309.

48. Rolf J, Bell SE, Kovesdi D, et al. Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J Immunol. 2010;
185(7):4042-4052.

49. Zhou DM, Xu YX, Zhang LY, et al. The role of follicular T helper cells in patients with malignant lymphoid disease. Hematology. 2017;22(7):412-418.

50. Yusuf I, Kageyama R, Monticelli L, et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule
receptor (CD150). J Immunol. 2010;185(1):190-202.

51. Leverson JD, Cojocari D. Hematologic tumor cell resistance to the BCL-2 inhibitor venetoclax: a product of its microenvironment? Front Oncol. 2018;8:
458.

52. Jayappa KD, Portell CA, Gordon VL, et al. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in
CLL and MCL [published correction appears in Blood Adv. 2017;1(19):1537]. Blood Adv. 2017;1(14):933-946.

4230 SERRAT et al 8 SEPTEMBER 2020 x VOLUME 4, NUMBER 17



53. Oppermann S, Ylanko J, Shi Y, et al. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells.Blood.
2016;128(7):934-947.

54. Thijssen R, Slinger E, Weller K, et al. Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be
counteracted by CD20 antibodies or kinase inhibitors. Haematologica. 2015;100(8):e302-e306.

55. Chiron D, Dousset C, Brosseau C, et al. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced
ABT-199 resistance in mantle cell lymphoma. Oncotarget. 2015;6(11):8750-8759.

56. Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019;380(22):2095-2103.

8 SEPTEMBER 2020 x VOLUME 4, NUMBER 17 PI3Kd IMPACT ON FL MICROENVIRONMENT AND BCL-2 ROLE 4231


