
REGULAR ARTICLE

The critical role of CD41 T cells in PD-1 blockade against
MHC-II–expressing tumors such as classic Hodgkin lymphoma

Joji Nagasaki,1-4 Yosuke Togashi,1-3 Takeaki Sugawara,5 Makiko Itami,6 Nobuhiko Yamauchi,1,2,7 Junichiro Yuda,1,2,7 Masato Sugano,8

Yuuki Ohara,1,2,8 Yosuke Minami,7 Hirohisa Nakamae,4 Masayuki Hino,4 Masahiro Takeuchi,5 and Hiroyoshi Nishikawa1,2,9

1Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan; 2Exploratory Oncology Research and Clinical Trial Center (EPOC), National
Cancer Center, Kashiwa, Japan; 3Chiba Cancer Center, Research Institute, Chiba, Japan; 4Department of Hematology, Graduate School of Medicine, Osaka City University,
Osaka, Japan; 5Department of Hematology/Oncology and 6Department of Pathology, Chiba Cancer Center, Chiba, Japan; 7Depertment of Hematology and 8Department of
Pathology, National Cancer Center Hospital East, Kashiwa, Japan; and 9Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan

Key Points

•MHC-II plays an impor-
tant role in spontane-
ous and PD-1
blockade–mediated
antitumor immunity
against cHL via cyto-
toxic CD41 T cells.

• LAG-3 could be a po-
tential therapeutic tar-
get for combination
therapies with PD-1
blockade in MHC-
II–expressing cancers.

Classic Hodgkin lymphoma (cHL) responds markedly to PD-1 blockade therapy, and the

clinical responses are reportedly dependent on expression of major histocompatibility

complex class II (MHC-II). This dependence is different from other solid tumors, in which the

MHC class I (MHC-I)/CD81 T-cell axis plays a critical role. In this study, we investigated the

role of the MHC-II/CD41 T-cell axis in the antitumor effect of PD-1 blockade on cHL. In cHL,

MHC-I expression was frequently lost, but MHC-II expression was maintained. CD41 T cells

highly infiltrated the tumor microenvironment of MHC-II–expressing cHL, regardless of

MHC-I expression status. Consequently, CD41 T-cell, but not CD81 T-cell, infiltration was

a good prognostic factor in cHL, and PD-1 blockade showed antitumor efficacy against MHC-

II–expressing cHL associated with CD41 T-cell infiltration. Murine lymphoma and solid

tumor models revealed the critical role of antitumor effects mediated by CD41 T cells: an

anti-PD-1monoclonal antibody exerted antitumor effects onMHC-I2MHC-II1 tumors but not

on MHC-I2MHC-II2 tumors, in a cytotoxic CD41 T-cell–dependent manner. Furthermore,

LAG-3, which reportedly binds to MHC-II, was highly expressed by tumor-infiltrating CD41

T cells in MHC-II–expressing tumors. Therefore, the combination of LAG-3 blockade with

PD-1 blockade showed a far stronger antitumor immunity compared with either treatment

alone. We propose that PD-1 blockade therapies have antitumor effects on MHC-

II–expressing tumors such as cHL that aremediated by cytotoxic CD41 T cells and that LAG-3

could be a candidate for combination therapy with PD-1 blockade.

Introduction

Hodgkin and Reed-Sternberg (HRS) cells are the hallmarks of classic Hodgkin lymphoma (cHL). Most
HRS cells are derived from crippled, largely CD301, preapoptotic, germinal center B cells that lack
functional B-cell receptors and exhibit reduced expression of multiple B-cell transcription factors.1,2 In
30% to 40% of cHL, HRS cells have evidence of latent Epstein-Barr virus (EBV) infection.1 cHL
therefore exhibits an inflamed tumor microenvironment (TME): HRS cells are surrounded by an extensive
infiltrate comprising multiple immune cells,1 suggesting the importance of escape from immunosurveil-
lance for their survival and growth.3 Genetic alterations associated with immune evasion are often
observed, such as copy number alterations in chromosome 9p24.1 including loci associated
with the programmed death 1 (PD-1) ligand (CD274/PD-L1 and PDCD1LG2/PD-L2),4 inducing
PD-1–associated immune evasion.
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A gain of immune escape mechanism, the induction/recruitment
of immunosuppressive cells and increases in the expression of
various immunosuppressive molecules, including PD-1/PD-1
ligands, is an important process during cancer development and
progression.5,6 Therefore, disrupting immunosuppressive compo-
nents with monoclonal antibodies (mAbs) has been tested in the
clinic, and PD-1 blockade has been shown to be effective against
various types of cancer, such as malignant melanoma, lung
cancer, and cHL.6-11 PD-1, which interacts with PD-1 ligands, is
primarily expressed after the activation of T cells and suppresses
T-cell function, reducing the cells to a dysfunctional state called
exhaustion. PD-1 blockade reinvigorates exhausted CD81 T cells,
leading to tumor regression.6 Thus, CD81 T cells that recognize
cancer antigens presented on major histocompatibility complex
class I (MHC-I) through their T-cell receptor are a key component
in killing tumor cells.12,13 The loss of MHC-I expression therefore
induces resistance against PD-1 blockade.14-17 In sharp contrast,
whereas PD-1 blockade exhibits dramatic antitumor efficacy
against cHL, it has been reported that it is relatively effective
against cHL harboring MHC-II, which is frequently expressed by
HRS cells because of their origin,18-21 even with the loss of MHC-I
expression.11 However, although the dependency of the antitumor
immunity induced by PD-1 blockade on MHC-II expression in cHL
suggests an important role for CD41 T cells, the details remain
unclear.

Lymphocyte activation gene-3 (LAG-3), another immune check-
point molecule, mainly binds to MHC-II molecules and provides an
inhibitory signal to T cells, especially CD41 T cells.22,23 Indeed,
LAG-3 expression by tumor-infiltrating lymphocytes (TILs) corre-
sponds to a poor prognosis in certain tumor types, including cHL,
non-Hodgkin lymphoma, and chronic lymphocytic leukemia, in
which malignant cells frequently exhibit MHC-II expression.24-26

In addition, LAG-3 expression by TILs is reportedly associated with
EBV infection in cHL,25,27 and LAG-3 reportedly represses T-cell
function in viral infection.28 These findings suggest that LAG-3
can be an additional therapeutic target in MHC-II–expressing
tumors.

In this study, we found in clinical samples that cHL frequently lacked
expression of MHC-I but maintained MHC-II expression. In addition,
CD41 T cells highly infiltrated the TME of MHC-II–expressing cHL,
suggesting that CD41 T cells in the TME play an important role in
antitumor immunity against MHC-II–expressing cHL. To elucidate
the role of CD41 T cells in MHC-II–expressing tumors, we examined
antitumor effects using various patterns of MHC-expressing tumors
in syngeneic animal models.

Materials and methods

Patients and samples

Eighty-five patients with cHL who underwent biopsy at the National
Cancer Center or Chiba Cancer Center from 1999 through 2018
(first diagnosis, 80; relapse, 5) were enrolled in this study (Table 1).
The patients’ clinical information was obtained from their medical
records. The clinical protocol for this study was approved by
the appropriate institutional review boards and ethics committees
at the National Cancer Center (2017-511) and Chiba Cancer
Center (R02-123). The study was conducted in accordance with
the Declaration of Helsinki.

Immunohistochemistry

For immunohistochemistry (IHC), formalin-fixed, paraffin-embedded
(FFPE) sections (3 mm) were deparaffinized with xylene, rehydrated,
and subjected to an antigen retrieval process in a microwave oven
for 20 minutes. After the inhibition of endogenous peroxidase
activity, individual slides were incubated overnight at 4°C with anti-
CD4 mAb (SP35; Roche Diagnostics, Basel, Switzerland), anti-
CD8 mAb (C8/144B; Dako, Copenhagen, Denmark); anti-FOXP3
mAb (236A/E7; Abcam, Cambridge, United Kingdom); anti–MHC-I
(HLA-A, -B, and -C) mAbs (EMR8-5; HKD, Hokkaido, Japan);
anti–MHC-II (HLA-DP, -DQ, and -DR) mAbs (CR3/43; Dako); anti-
CD68 mAb (D4B9C; Cell Signaling Technology, Danvers, MA); and
anti-PD-L1 mAb (E1L3; Cell Signaling Technology). The slides were
then incubated with an EnVision reagent (Dako), and the color
reaction was developed in 2% 3,3-diaminobenzidine in 50 mM Tris
buffer (pH 7.6) containing 0.3% hydrogen peroxidase. Double
staining for MHC-I or MHC-II and CD68 was performed using
Simple Stain AP (Nichirei, Tokyo, Japan) in addition to EnVision
reagent. MHC-I or MHC-II and CD68 were developed as brown
with 3,3-diaminobenzidine and as red with Fast Red, respectively.

HRS cells were identified as large CD301 cells and discriminated
them from CD681 macrophages. The membrane expression of
MHC-I, MHC-II, and PD-L1 by HRS cells was assessed as
previously reported.29 Intratumoral CD41, CD81, and FOXP31

T cells were counted; 5 fields (0.0625 mm2) containing HRS cells
were randomly selected and counted for each slide. The average of
the 5 area counts for each patient was used for statistical analysis.

Multiplexed fluorescent IHC

Multiplexed fluorescent IHC was performed with direct detection of
antigens by primary antibodies from the different species. Anti-CD4
rabbit mAb (SP35; Roche Diagnostics), anti-PD-1 mouse mAb
(J116; Abcam), and anti-LAG-3 mouse mAb (17B4; Abcam) were
used for primary staining. Anti-rabbit IgG Alexa Fluor 555 (Abcam)
and anti-mouse IgG Alexa Fluor 488 (Thermo Fisher Scientific,
Waltham, MA) were used to stain secondary antibodies, and the
slides were analyzed with a BZ-X710 (Keyence, Osaka, Japan).

Cell lines and reagents

A20 (mouse B-cell lymphoma) and E.G7 (mouse T-cell lymphoma)
cell lines were purchased from ATCC (Manassas, VA). MC-38 cell
line (mouse colon cancer) was obtained from Kerafast (Boston,
MA). These cell lines were maintained in RPMI medium (Fujifilm
Wako Pure Chemical Corporation, Osaka, Japan) supplemented
with 10% fetal calf serum (Biosera, Orange, CA). All tumor cells
were used after confirming that they were Mycoplasma2 by
Mycoplasma testing with the PCR Mycoplasma Detection Kit
(TaKaRa, Shiga, Japan), according to the manufacturer’s instruc-
tions. Murine interferon (IFN)-g was obtained from PeproTech
(Rocky Hill, NJ). Rat anti-mouse PD-1 mAb (RMP1-14), anti-LAG-3
mAb (C9B7W), control rat IgG2 mAb (RTK2758), and control rat
IgG1k mAb (RTK2071) were obtained from BioLegend (San
Diego, CA). Anti-mouse CD4 mAb (GK1.5), anti-mouse CD8bmAb
(Lyt 3.2), and control rat IgG2b mAb (LTF-2) were purchased from
BioXCell (West Lebanon, NH).

Constructs, virus production, and transfection

Ovalbumin (OVA) cDNA was subcloned into pBABE-puro, which
was transfected into a packaging cell line using Lipofectamine
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3000 Reagent (Thermo Fisher Scientific). After 48 hours, the
supernatant was concentrated and transfected into cell lines (A20/
OVA). B2M-deficient A20/OVA, E.G7, and MC-38 cell lines were
generated using CRISPR/Cas9 technology. In brief, a targeting
guide RNA sequence (5ʹ-TTCGGCTTCCCATTCTCCGG-3ʹ) was
used to edit the B2M locus. The guide RNA and Cas9 protein
(Thermo Fisher Scientific) were transfected into A20/OVA, E.G7,
and MC-38 cell lines, by using Lipofectamine CRISPRMAX
(Thermo Fisher Scientific). The knockout cell lines were named
A20/OVA/B2MKO, E.G7/B2MKO, and MC-38/B2MKO, respec-
tively. Mouse CIITA cDNA was subcloned into pBABE-puro, and
viruses were generated and transfected into the cell lines, which
were similarly named E.G7/B2MKO/CIITA and MC-38/B2MKO/
CIITA. The expression of MHC-I and MHC-II was evaluated by flow
cytometry in triplicate.

In vivo animal models

FemaleC57BL/6J andBALB/cAmice (6-8weeks old) were purchased
from CLEA Japan (Tokyo, Japan). C57BL/6J-Prkdc,scid./Rbrc mice
(B6 SCID; RBRC01346) were provided by RIKEN BRC (Tsukuba,
Japan) through the National BioResource Project of the Ministry of
Education, Culture, Sports, Science and Technology/Japan
Agency for Medical Research and Development (MEXT/AMED).
A20/OVA cells (5 3 106), E.G7 cells (5 3 106), or MC-38 cells
(1 3 106) were inoculated subcutaneously, and tumor volume
was monitored every 3 days. The means of the long and short
diameters were used to generate tumor growth curves. Mice
were grouped when the tumor volume reached ;100 mm3,
and anti-PD-1 mAb (200 mg/mouse), anti-LAG-3 mAb (300 mg/
mouse), or control mAb was administered intraperitoneally
3 times every 3 days thereafter. For CD41 and CD81 T-cell
deletion, anti-CD4 mAb (100 mg/mouse) and anti-CD8b mAb
(100 mg/mouse), respectively, were administered intraperitoneally

1 day before tumor cell inoculation and then injected every 7 days.
Tumors were harvested 14 days after tumor cell inoculation to
collect TILs for evaluation by flow cytometry. All in vivo experiments
were performed at least twice (n 5 6 per group). All mice were
maintained under specific-pathogen–free conditions in the
animal facility of the Institute of Biophysics. Mouse experiments
were approved by the Animal Committee for Animal Experimen-
tation of the National Cancer Center and Chiba Cancer Center.
All experiments met the standards set forth in the Guide for the
Care and Use of Laboratory Animals (National Institutes of
Health, Bethesda, MD).

Flow cytometry analyses

Flow cytometry assays were performed as described.30,31 In
brief, cells were washed with phosphate-buffered saline con-
taining 2% fetal calf serum and subjected to staining with surface
antibodies. Intracellular staining was performed with specific anti-
bodies and FOXP3/Transcription Factor Staining Buffer Set (Thermo
Fisher Scientific), according to the manufacturer’s instructions. For
intracellular cytokine and granzyme B assays, cells were stimulated
for 5 hours with phorbol 12-myristate 13-acetate (100 ng/mL)/
ionomycin (2 mg/mL) (Sigma Aldrich, St. Louis, MO). GolgiPlug
reagent (1.3 ml/mL; BD Biosciences, Franklin Lakes, NJ) was added
for the last 4 hours of the culture. Samples were assessed with an
LSRFortessa (BD Biosciences) or a FACSVerse (BD Biosciences)
and FlowJo software (BD Biosciences). The staining antibodies
were diluted according to the manufacturer’s instructions. The
antibodies used in the flow cytometry analyses are summarized in
supplemental Table 1.

Statistical analyses

Prism 7 (GraphPad Software, San Diego, CA) and R version 4.0.2
software (R Foundation for Statistical Computing, Vienna, Austria)

Table 1. Patient characteristics

Features

MHC class I MHC class II

Positive (n 5 36) Negative (n 5 49) P Positive (n 5 54) Negative (n 5 31) P

Age, median (range), y 55 (15-79) 34 (15-88) .10 54 (15-88) 44 (17-83) .33

Sex (male/female) 28/8 32/17 .24 41/13 19/12 .22

Sampling (1st diagnosis/relapse) 32/4 48/1 .16 49/5 31/0 .15

Histology (NS/MC/others) 12/18/6 24/21/4 .35* 17/28/9 19/11/1 .036*

EBV (positive/negative) 17/11 12/18 .19 23/17 6/12 .16

Performance status (0-1/21) 34/2 49/0 .18 52/2 31/0 .53

Ann Arbor stage (I or II/III or IV) 17/19 22/27 ..99 25/29 14/17 ..99

B symptom (yes/no) 8/28 17/32 .24 17/37 8/23 .63

LDH, median (range), U/L 204 (68-333) 235 (143-554) ,.01 208 (68-441) 227.5 (134-554) .093

MHC class I (positive/negative) — — — 27/27 9/22 .071

MHC class II (positive/negative) 27/9 27/22 .071 — — —

CD4, median (range) 428.2 (81.4-1137.6) 425 (75-925) .97 496.9 (137.6-1137.6) 268.8 (75-700) ,.01

CD8, median (range) 284.4 (125-412.6) 118.8 (6.2-437.4) ,.01 203.1 (11-400) 118.8 (6.2-437.4) .053

FOXP3, median (range) 81.2 (12.4-368.6) 100 (6.4-568.6) .30 93.8 (6.4-568.6) 100 (12.4-431.2) .52

PD-L1 (positive/negative) 34/2 37/12 .036 46/8 25/6 .76

Data are the number of patients, unless stated otherwise (n 5 85).
MC, mixed cellularity; NS, nodular sclerosis.
*NS vs MC.
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were used for statistical analyses. The relationships between
groups were analyzed with Fisher’s exact test or Student t test.
Overall survival (OS) and progression-free survival (PFS) were
defined as the time from the initiation of first-line standard
chemotherapy until death from any cause and the time from the
initiation of first-line standard chemotherapy until the first observa-
tion of disease progression or death from any cause, respectively.
Five-year survival was used to develop receiver operating charac-
teristic (ROC) curves and set cutoff values of CD4, CD8, and
FOXP3 counts. OS and PFS were analyzed by using the Kaplan-
Meier method and compared among groups by using the log-rank
test. A Cox proportional hazards model was used for the univariate
and multivariate analyses to estimate hazard ratios and 95%
confidence intervals. Only those variables with P , .05 in
a univariate analysis were included in the multivariate analysis. All
tests were 2-tailed, and results at P , .05 were statistically
significant.

Results

CD41 T cells infiltrate the TME of

MHC-II–expressing cHL

To examine the immunological landscape in the TME of cHL, we
collected 85 cHL samples. Eighty samples were obtained at first
diagnosis and 5 more samples at relapse after any prior
treatment. These samples were subjected to IHC for MHC-I,
MHC-II, CD4, CD8, FOXP3, and PD-L1. FOXP3 staining could
not be evaluated in 3 samples because of the bad condition of
the samples. We identified HRS cells as large CD301 cells and
discriminated them from CD681 macrophages (supplemental
Figure 1A). We evaluated the membrane expression of MHC-I
and MHC-II by HRS cells. MHC-I expression was frequently
lost in cHL (49 of 85), as previously reported (Table 1;
Figure 1A).18,19 In sharp contrast, more than half of the cHL
samples (54 of 85) harbored MHC-II expression (Table 1;
Figure 1A). Twenty-seven MHC-I1MHC-II1, 27 MHC-I2MHC-II1,
9 MHC-I1MHC-II2, and 22 MHC-I2MHC-II2 cHLs were ob-
served in our cohort. Accordingly, CD41 T cells more frequently
infiltrated the TME of cHL than did CD81 T cells (Figure 1B).
CD41 T-cell infiltration was more frequently observed in MHC-
II–expressing cHL samples than in MHC-II–deficient cHL samples
regardless of the MHC-I expression status (Table 1; Figure 1C-D).
On the other hand, CD81 T-cell infiltration was associated with
MHC-I expression: CD81 T cells were often detected in MHC-
I–expressing cHL samples but barely in MHC-I–deficient cHL
and were not related to MHC-II expression (Table 1; Figure 1C-D).
Although FOXP31 regulatory T cells are crucial in suppres-
sion of antitumor immunity,32,33 its infiltration was not related
to the expression of MHC-I or MHC-II (Table 1; supplemental
Figure 1B). Therefore, CD41 T cells may play an important
role in MHC-II–expressing cHL, even with the loss of MHC-I
expression.

CD274 (encoding PD-L1) is frequently amplified in cHL.4

Consistently, our analyses revealed that most patients (71 of 85)
in our cHL cohort harbored PD-L1, as previously reported (Table 1;
supplemental Figure 1C).4,11,34 Expression of PD-L1 was more
frequently detected in MHC-I–expressing cHL. Thus, PD-L1, as well
as the loss of MHC-I expression, contributes to immune evasion
in cHL.

MHC-II expression plays an important role in

spontaneous and PD-1 blockade–mediated

antitumor immunity

Various patterns of MHC expression in cHL samples prompted us
to examine PD-1 blockade–mediated antitumor effects in animal
models. Because there is no syngeneic Hodgkin lymphoma mouse
model, we used other lymphoma models (A20 and E.G7) and
a solid tumor model (MC-38). The A20 cell line expressed both
MHC-I and MHC-II because of its B-cell origin, which is different
from that of the E.G7 cell line and another solid tumor cell line, MC-
38 (supplemental Figure 2). PD-1 blockade significantly delayed the
tumor growth of A20/OVA tumors (MHC-I1MHC-II1; Figure 2A).
We then generated MHC-I–deficient cell lines by deleting the B2M
gene, which is a crucial component of MHC-I,35 using the CRISPR/
Cas9 system (supplemental Figure 2). Similar to the MHC-
I–expressing A20/OVA tumors, MHC-I–deficient A20/OVA/B2MKO
tumors responded to PD-1 blockade (Figure 2A).

To further elucidate the roles of MHC-II in the antitumor effects of
PD-1 blockade, we used the E.G7 and MC-38 cell lines expressing
MHC-I, but not MHC-II, on the cell surface (supplemental Figure 2).
Anti-PD-1 mAb significantly inhibited tumor growth compared with
control mAb (supplemental Figure 3A). The frequencies of activated
CD81 T cells, which were assessed as the proportion of CD441

CD62L2 effector/memory CD81 T cells, TNF-a1IFN-g1CD81

T cells, and GrB1CD81 T cells, were significantly higher in the TME
of mice treated with anti-PD-1 mAb compared with mice treated
with control mAb (supplemental Figure 3B-D). Thus, the antitu-
mor efficacy against MHC-I–expressing solid tumors was
mainly dependent on activating CD81 T cells, as previously
reported.6,12,13 We next generated MHC-I–deficient cell lines
by deleting the B2M gene (supplemental Figure 2). In contrast
to wild-type E.G7 and MC-38 tumors, MHC-I–deficient MC-38/
B2MKO and E.G7/B2MKO tumors failed to respond to the PD-1
blockade (Figure 2B). Consistently, the frequencies of CD441

CD62L2 effector/memory CD81 T cells, TNF-a1IFN-g1CD81

T cells, and GrB1CD81 T cells in the TME were comparable
between mice treated with anti-PD-1 mAb and those treated with
control mAb (supplemental Figure 4A-C). Exogenous MHC-II
expression was established in these MHC-I–deficient cell lines
by transfection of the class II major histocompatibility complex
transactivator (CIITA) gene (E.G7/B2MKO/CIITA and MC-38/
B2MKO/CIITA) (supplemental Figure 2).36 E.G7/B2MKO/CIITA
tumors (MHC-I2MHC-II1) exhibited growth similar to that of
E.G7/B2MKO tumors (MHC-I2MHC-II2) in immunocompro-
mised (B6 SCID) mice, whereas these tumors grew significantly
slower than E.G7/B2MKO tumors in immunocompetent
(C57BL/6) mice, suggesting that MHC-II expression plays an
important role in antitumor immunity, even in MHC-I–deficient
tumors (Figure 2C). We then examined the antitumor effect of
PD-1 blockade. The anti-PD-1 mAb significantly inhibited E.G7/
B2MKO/CIITA and MC-38/B2MKO/CIITA tumor growth com-
pared with the control mAb, as was observed for A20/OVA/
B2MKO tumors (Figure 2D). These results indicate that MHC-II
expressed by tumor cells contributes to both spontaneous and
PD-1 blockade–mediated antitumor immunity, even in MHC-
I–deficient tumors, which is consistent with previous studies
showing that cHL responds to PD-1 blockade therapies in an
MHC-II–dependent manner.11,20
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Cytotoxic CD41 T cells are essential for antitumor

immunity in MHC-I2MHC-II1 tumors

Because our data for cHL samples revealed that CD41 T cells
infiltrated the TME of MHC-II–expressing cHL (Figure 1B-C), we
explored tumor-infiltrating CD41 T cells in MHC-II–expressing

murine tumors. The frequency of CD41 T cells and the ratio of
CD41 T cells/CD81 T cells in the TME were significantly higher
in MHC-I2MHC-II1 tumors than in control tumors (Figure 3A). In
addition, larger amounts of CD41 T cells harboring cytotoxic
molecules were detected in the TILs of MHC-I2MHC-II1 tumors,
meaning that some CD41 T cells gained cytotoxic activity in
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MHC-I2MHC-II1 tumors (Figure 3B). Consistently, CD41 T-cell
deletion but not CD81 T-cell deletion accelerated E.G7/
B2MKO/CIITA (MHC-I2MHC-II1) tumor growth (Figure 3C),
further supporting the critical role for cytotoxic CD41 T cells in
the antitumor efficacy on MHC-I2MHC-II1 tumors.

We also examined whether PD-1 blockade augmented the
antitumor activity mediated by CD41 T cells in E.G7/B2MKO/
CIITA tumors. The frequencies of CD441CD62L2 effector/memory
CD41 T cells, TNF-a1IFN-g1CD41 T cells, and GrB1CD41 T cells
were significantly higher in the TIL population of E.G7/B2MKO/CIITA

Figure 2. (continued) 0 (n 5 6 per group). Tumor growth was monitored every 3 days. (D) In vivo antitumor efficacy of anti-PD-1 mAb against E.G7/B2MKO/CIITA and

MC-38/B2MKO/CIITA tumors. The in vivo experiments were performed as described in panel A (E.G7, 5.0 3 106, and MC-38, 1.0 3 106). All in vivo experiments were

performed twice with similar results. *P , .05; **P , .01.
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tumors treated with anti-PD-1 mAb than in that of those treated with
control mAb (Figure 4A-C). Accordingly, the antitumor effect of PD-1
blockade was abrogated in CD41 T-cell–deleted mice, but not
in CD81 T-cell–deleted mice (Figure 4D). Overall, CD41 T cells,
particularly cytotoxic CD41 T cells, are essential for antitumor
immunity in MHC-I2MHC-II1 tumors.

CD41 T-cell infiltration, a favorable prognostic factor

in cHL, is associated with the antitumor effect of PD-1

blockade on cHL

Considering the critical role of CD41 T cells in antitumor immunity
in MHC-II–expressing tumors, we further examined the effect of
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CD41 T cells on survival in 76 patients with cHL who received
first-line standard chemotherapy (doxorubicin, bleomycin, vinblas-
tine, and dacarbazine). Five patients, from whom samples were
obtained at relapse, were excluded from these survival analyses.
Each cutoff value of CD4 (high, $425, vs low, ,425), CD8 (high,
$168.6, vs low, ,168.6), and FOXP3 (high, $143.6, vs low,
,143.6) counts was selected from ROC curves using 5-year
survival (supplemental Figure 5A). CD41 T-cell infiltration, but not
CD81 T-cell infiltration, was associated with a favorable prognosis
in the patients with cHL (Figure 5A; supplemental Figure 5B).
Furthermore, neither FOXP31 T-cell infiltration, MHC-I expression,
nor MHC-II expression was associated with the prognosis
(supplemental Figure 5C-E). PD-L1 expression was related to
worse PFS (supplemental Figure 5F). No clinicopathological
features except MHC-II expression exhibited a significant corre-
lation with CD41 T-cell infiltration (supplemental Table 2).
Accordingly, the multivariate analysis revealed that CD41 T-cell
infiltration was an independent prognostic factor, as were age and
Ann Arbor stage (supplemental Table 3). Among the cHL patients

in our cohort, 3 patients received anti-PD-1 mAb treatment. Tumor
cells in 2 patients harbored MHC-II expression accompanied by
CD41 T-cell infiltration, and anti-PD-1 mAb monotherapy showed
remarkable clinical benefits in both patients (Figure 5B-C;
supplemental Table 4). Another patient with low CD41 T-cell
infiltration despite expression of MHC-II failed to respond to the
treatment (supplemental Table 4).

LAG-3 could be a target for combination treatment

with PD-1 blockade in MHC-II–expressing tumors

Because LAG-3, which binds to MHC-II, is an immune checkpoint
molecule that inhibits CD41 T-cell activation,22,23 we investi-
gated the role of LAG-3 in our MHC-I2MHC-II1 tumor models.
First, LAG-3 expression by CD41 T cells in the TME was
examined. A considerable proportion of the CD41 T cells in E.G7/
B2MKO/CIITA tumors (MHC-I2MHC-II1) compared with those in
E.G7/B2MKO tumors (MHC-I2MHC-I2) expressed LAG-3 ac-
companied by PD-1 (Figure 6A), suggesting that LAG-3 is
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a potential target for combination treatment with PD-1 block-
ade in MHC-I2MHC-II1 tumors. The antitumor effects of the
anti-PD-1 mAb, anti-LAG-3 mAb, and their combination were
tested in MHC-I2MHC-II1 tumors. Anti-LAG-3 mAb alone
exhibited antitumor efficacy against MHC-I2MHC-II1 tumors

but not against MHC-I1MHC-II2 tumors (Figure 6B; supple-
mental Figure 6). Furthermore, the combination of anti-PD-1
mAb and anti-LAG-3 mAb exhibited far stronger antitumor
efficacy against MHC-I2MHC-II1 tumors than either mAb alone
(Figure 6B). The antitumor effect of anti-LAG-3 mAb against
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MHC-I2MHC-II1 tumors was totally abrogated in CD41

T-cell–deleted mice but not in CD81 T-cell–deleted mice
(Figure 6C). Accordingly, the frequencies of CD441CD62L2

effector/memory CD41 T cells, TNF-a1IFN-g1CD41 T cells,
and GrB1CD41 T cells were significantly higher in the TME
of mice treated with anti-PD-1 mAb or anti-LAG-3 mAb than
in that of those treated with control mAb (supplemental
Figure 7A-C). Furthermore, the frequencies of these CD41

T-cell subsets were further increased by combination treatment
with anti-PD-1 and anti-LAG-3 mAbs (supplemental Figure 7A-C).
Overall, LAG-3 blockade preferentially acts on MHC-I2MHC-II1

tumors via cytotoxic CD41 T-cell–mediated antitumor immu-
nity, and the combination of anti-PD-1 mAb and anti-LAG-3 mAb
exhibits far stronger antitumor efficacy than either single treatment. In
fact, the tumor-infiltrating CD41 T cells in MHC-II–expressing cHL
expressed both PD-1 and LAG-3 (supplemental Figure 1D). We
therefore propose that LAG-3 blockade in combination with PD-1
blockade is a potential therapeutic approach in MHC-II–expressing
tumors.

Discussion

PD-1 blockade provides a remarkable clinical response in cHL,
regardless of the MHC-I expression status. Yet, detailed analyses
of actual effector cells have not been reported. In this study, we
found that CD41 T cells, not CD81 T cells, highly infiltrated
the TME of MHC-II–expressing cHL. In animal models, MHC-
II–expressing tumors favorably responded to anti-PD-1 mAb
via cytotoxic activity by CD41 T cells, even with the loss of
MHC-I expression. Indeed, patients with MHC-II–expressing cHL
harboring CD41 T-cell infiltration markedly responded to PD-1
blockade therapy. Furthermore, LAG-3, another immune check-
point molecule that binds to MHC-II, was highly expressed by
tumor-infiltrating CD41 T cells with PD-1 expression in MHC-
II–expressing tumors, and PD-1 and LAG-3 dual blockade
exhibited far stronger antitumor efficacy than blockade of either
molecule. Considering the high PD-11LAG-31CD41 T-cell in-
filtration in MHC-II–expressing tumors, LAG-3 blockade could be
a potential candidate approach for combination treatment with
PD-1 blockade.

We generated MHC-I–deficient tumor cell lines by deleting B2M,
an essential component of MHC-I.35 As expected, the MHC-
I–deficient tumors, which could not interact with CD81 T cells, were
resistant to PD-1 blockade. In accordance with this finding, B2M
loss reportedly correlates with tumor progression and is an
important mechanism of resistance to immune checkpoint inhibitors
(ICIs).14-17 On the other hand, PD-1 blockade exhibited antitumor
efficacy against MHC-II–expressing tumors, even with the loss of
MHC-I expression in our animal models, which was abrogated by
CD41 T-cell deletion. CD41 T cells are generally crucial in helping
to prime CD81 T cells by providing cytokines and licensing antigen-
presenting cells.37 Tumor antigen-specific CD41 T cells, which help
to prime/activate tumor-specific CD81 T cells, play a crucial role in
antitumor immunity in MHC-I–expressing tumors.38 In addition,
MHC-II expressed by tumor cells in addition to MHC-I augments the
antitumor efficacy of ICIs, further supporting the importance of
CD41 T-cell help.39 In contrast, the antitumor efficacy of PD-1
blockade was observed in MHC-II–expressing tumors, even in
CD81 T-cell–deleted mice, in our study. One can envision that
CD41 T cells may directly attack MHC-I2MHC-II1 tumors by

recognizing peptide-MHC-II complexes. CD41 T cells with cytotoxic
activity against virus-infected cells and tumor cells have been
reported to be cytotoxic CD41 T cells.40-42 In patients with cHL,
which frequently expresses MHC-II, that expression, but not MHC-I
expression, is reportedly associated with a favorable prognosis for
PD-1 blockade therapies.18-21 Although PD-1 expression by
CD81 T cells is associated with clinical responses in solid tumors,
such as malignant melanoma and non–small-cell lung cancer, in
which CD81 T cells directly kill tumor cells,43,44 our study revealed
that PD-11CD41 T cells infiltrated the TME in MHC-II–expressing
cHL, further indicating the essential role of CD41 T cells in PD-1
blockade–mediated antitumor immunity in MHC-II–expressing
cHL lacking MHC-I expression. Several studies have demon-
strated that PD-11CD41 T cells rather than CD81 T cells highly
infiltrated the TME in cHL.32,45 Indeed, some patients with MHC-
II–expressing cHL harboring CD41 T-cell infiltration responded to
PD-1 blockade in our cohort. Considering the dramatic clinical
responses of ICIs in cHL and our results,11,20 we propose that
PD-1 blockade can be an important choice according to MHC
expression, and CD41 and CD81 T-cell infiltration. Especially,
cHL with MHC-II expression and high CD41 T-cell infiltration
would be a good candidate for PD-1 blockade, suggesting
a potential biomarker. Furthermore, comprehensive analyses such
as multiplex IHC, flow cytometry, CyTOF, and scRNAseq beyond
single-molecule IHC in tumor tissues have been introduced to
elucidate detailed immune profiling.46 Such technologies should
help us to develop suitable immunotherapy based on immune
profiling in the future.

LAG-3 is another immune checkpoint molecule that inhibits immune
responses.22,23 LAG-3 expression is reportedly related to re-
sistance to PD-1 blockade therapies.47,48 The immunosuppressive
effects of LAG-3 are mainly dependent on CD41 T cells through
binding to the peptide and MHC-II on antigen-presenting cells.23

Although LAG-3 blockade therapies are now under intense
investigation in the clinic upon the success of CTLA-4 blockade
and PD-1/PD-L1 blockade therapies, significant antitumor efficacy
has not been shown, even with combination therapy.49,50 Consis-
tently, our study demonstrated that anti-LAG-3 mAb alone exhibited
insufficient antitumor effects on MHC-I1MHC-II2 tumors, as
observed in previous studies.51 In contrast, LAG-3 was highly
expressed by CD41 T cells in the TME of MHC-II–expressing
tumors, even with the loss of MHC-I expression, and anti-LAG-3
mAb alone exhibited an antitumor effect, as did anti-PD-1 mAb,
mediated by cytotoxic CD41 T cells in our animal models.
Furthermore, combination treatment with anti-PD-1 mAb and
anti-LAG-3 mAb exhibited far stronger antitumor efficacy on
MHC-II–expressing tumors than either mAb alone. Similar results
were also reported in an MHC-I1MHC-II1 mouse breast tumor
model.48 These findings suggest a possible application of this
combination treatment in MHC-II–expressing cancers, including
cHL, regardless of MHC-I expression status. In fact, phase I and II
clinical trials investigating the combination of anti-LAG3 mAb
and anti-PD-1 mAb against hematologic malignancies including
cHL are ongoing (www.clinical trials.gov NCT02061761 and
NCT03598608).

Our study requires careful interpretation, because there are
several limitations. An ideal tumor model would mirror human
disease in various characteristics such as size, histology, and
growth speed. In this point, spontaneous tumor development

8 SEPTEMBER 2020 x VOLUME 4, NUMBER 17 CD4+ T-CELL–MEDIATED ANTITUMOR EFFECTS ON cHL 4079

http://www.clinical
http://trials.gov


model at the orthotopic tissue would be ideal. Although these
syngeneic animal models offer an important clue for oncology
research, there is no syngeneic cHL mouse model, resulting in the
difficulty in addressing the clinical questions directly from animal
models. We then employed other lymphoma models (A20 and
E.G7) and a solid tumor model (MC-38) instead of a cHL mouse
model. Tumor cell lines with various expression patterns of MHC
were developed to reflect the patterns of MHC-I and MHC-II
expression observed in cHL. In these models, PD-1 blockade
activated effector T cells, such as CD41 T cells in the TME,
according to the expression patterns of MHC. Anti-PD-1 mAb
exhibited antitumor effects on MHC-I2MHC-II1 tumors, but not on
MHC-I2MHC-II2 tumors in a cytotoxic CD41 T-cell–dependent
manner. Thus, we believe that our models could imitate the TME of
cHL. Furthermore, we extended this finding to other cancer types
using an MC-38 solid tumor model, which is frequently used in
cancer immunology studies. PD-1 blockade exhibited antitumor
efficacy against MHC-II–expressing MC-38 tumors, regardless of
MHC-I expression via cytotoxic CD41 T cells, generalizing our
findings. Indeed, MHC-II is reportedly expressed by other solid
tumor cancers, including melanoma, breast, colorectal, and lung,
which can be related to improved prognosis.52 In addition, several
studies have demonstrated that MHC-II expression is related to
the efficacy of PD-1 blockade therapies regardless of MHC-I
expression.53,54

Another important point is the involvement of other immune-related
factors such as innate immunity and tumor intrinsic signals. The
TME of cHL possesses various innate immune cells such as
macrophages and dendritic cells.32,55 These cells also possess
MHC-II expression and act as antigen-presenting cells, which may
be involved in antitumor immunity. In addition, HRS cells have
complementary mechanisms of immune evasion including alter-
ations of NF-kB, JAK/STAT, PI3K signals, PD-L1, and B2M, all of
which are crucial for immune responses.56 To elucidate the
involvement of these mechanisms in cHL immunotherapy, further
studies are warranted.

In summary, we have demonstrated that cytotoxic CD41 T cells
play an essential role in both spontaneous and PD-1 blockade–
mediated antitumor immunity in MHC-II–expressing tumors,
including cHL, even without MHC-I expression. Furthermore,
LAG-3 was highly expressed by tumor-infiltrating CD41 T cells in
MHC-II–expressing tumors, and LAG-3 blockade exhibited
antitumor efficacy against these tumors mediated by cytotoxic
CD41 T cells. Cytotoxic CD41 T cells are important effector cells
in cHL, partially because of the loss of MHC-I expression, and
LAG-3 could be a therapeutic target in MHC-II–expressing
cancers, including cHL.
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