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Key Points

•Outcomes of heavily
pretreated high-risk
CLL patients who un-
dergo alloHCT after
prior targeted therapy
are excellent.

• Immune reconstitution
over time was faster
for patients with prior
targeted therapy.

Allogeneic hematopoietic cell transplantation (alloHCT) can cure previously treated high-risk

chronic lymphocytic leukemia (CLL) patients if they are suitable for transplant through the

graft-versus-leukemia effect. However, since the emergence of targeted therapies, the role of

alloHCT for high-risk CLL is less clear. To address this question, we evaluated 108 high-risk

CLL patients who underwent alloHCT from 2010 to 2018. Thirty patients from the period of

2013 to 2018 received targeted therapy prior to alloHCT. The median age for the targeted

therapy cohort was 60 years (range, 30-71 years), and 20% and 73%had complete and partial

remission, respectively: 76% had del(17p), 46.2% had 5 or more cytogenetic abnormalities,

and 78.9% were IGHV unmutated. The median number of prior therapies was 4 (range, 1-9).

With a median follow-up time of 36 months (range, 10-72 months), the 3-year overall (OS)

and progression-free survival (PFS) were 87% and 69%, respectively. The 3-year cumulative

incidence of nonrelapsemortality and relapse was 7% and 24%, respectively. For the control

cohort of 78 patients who underwent alloHCT from 2010 to 2014 and received only

chemoimmunotherapy prior to transplant, the 3-year OS and PFS were 69% and 58%,

respectively. Patients treated with targeted therapy prior to alloHCT had a significantly

higher number of circulating T and B cells and a lower ratio of CD4 regulatory T cells to CD4

conventional T cells early after transplant. In summary, despite multiple high-risk features,

the clinical outcome of CLL patients who receive targeted therapy prior to transplant is

excellent and alloHCT should be offered while the disease is under control.

Introduction

Allogeneic hematopoietic cell transplantation (HCT; alloHCT) is an established treatment modality with
curative potential in chronic lymphocytic leukemia (CLL). Prior to the advent of targeted therapies,
alloHCT was recommended and widely accepted for high-risk CLL patients with relapsed/refractory
disease after purine-analog–based chemotherapy and for patients with genetic features such as
deletion of chromosome 17p [del(17p)] or TP53 mutation.1,2 However, with the widespread availability
of targeted therapies such as ibrutinib, idelalisib, duvelisib, and venetoclax, the landscape of CLL
treatment has changed markedly and the number of alloHCTs performed each year for CLL has
substantially decreased.3,4 Despite this trend, however, the outcome after alloHCT has been steadily
improving in safety and efficacy over time in both standard- and high-risk patients.5,6
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Targeted therapies have proven efficacy but the prognosis of
patients who receive targeted therapy after failure of chemo-
immunotherapies (CITs) remains relatively poor if they have
del(17p) and/or TP53mutation.7 In addition, many high-risk patients
discontinue targeted therapy due to the development of toxicity or
eventually progress through all available agents.7-11 For those
patients who have exhausted all therapies, few treatment options
are available and alloHCT remains the only established potentially
curative therapeutic modality. Nonetheless, identification of patients
who will most benefit from alloHCT and the optimal timing of
alloHCT have been less clear in the era of targeted therapy. In an
effort to address these questions, the American Society of Blood
and Marrow Transplantation published some recommendations for
the use of alloHCT in CLL,12 and the European Research Initiative
on CLL (ERIC) and the European Society for Blood and Marrow
Transplantation (EBMT) proposed a transplant algorithm for
patients with high-risk CLL treated with targeted therapies.7,13-16

However, only a few small studies have reported outcomes after
alloHCT in patients who have received prior targeted therapies.16,17

CD19-targeted chimeric antigen receptor T cells (CD19 CAR-T)
therapy has also been effective but the complete remission rate
in relapsed/refractory CLL has been lower than in other B-cell
maliganices.18-22 Although recent studies have been more encour-
aging, these studies are still quite small with relatively short follow-
up periods.

In this study, we retrospectively investigated alloHCT outcome for
high-risk CLL patients who failed CIT and received targeted
therapies prior to alloHCT, and compared their baseline character-
istics and clinical outcome with patients who only received CIT prior
to alloHCT. Our goal was to ascertain whether patient character-
istics have shifted, and whether transplant outcomes have been
affected by the use of targeted therapy. We also examined T-, B-,
and natural killer (NK)–cell recovery after alloHCT to investigate the
impact of targeted therapy on immune reconstitution.

Materials and methods

Patient cohort

The Blood and Marrow Transplant data repository of the Dana-
Farber Cancer Institute (DFCI) was queried to identify all patients
with CLL, aged $18 years, who underwent alloHCT at the Dana-
Farber/Brigham and Women’s Cancer Center between 1 January
2010 and 31 August 2018. After obtaining permission from the
DFCI institutional review board and in accordance with the
Declaration of Helsinki, retrospective chart review was performed
to confirm the diagnosis of CLL: 108 patients were identified. Of
these 108 patients, 30 received targeted therapy (defined as
targeted small molecule therapy including Bruton tyrosine kinase,
phosphatidylinositol 3 kinase, B-cell lymphoma 2, and investiga-
tional kinase inhibitors) mostly as salvage therapy prior to alloHCT;
78 only received CIT prior to alloHCT. With the emergence of
targeted therapy for patients who failed CIT, targeted therapy was
administered before considering alloHCT at our institute, with this
transition starting in 2013. For patients who received prior targeted
therapy, reasons for receiving alloHCT are listed in Table 1. The
most common high-risk features included del(17p) (76%), IGHV-
unmutated status (79%), $3 prior therapies (73%), and complex
karyotype ($5 abnormalities) (46%). All patients received reduced-
intensity conditioning (RIC) HCT. The RIC regimens in this study

included fludarabine with IV busulfan at doses of 3.2 mg/kg (Flu/
Bu1; N 5 55) or 6.4 mg/kg (Flu/Bu2; N 5 48), fludarabine with
melphalan (100-140 mg/m2) and low-dose total-body irradiation
(TBI) 200 cGy (Flu/Mel/TBI) (N 5 1), fludarabine with melphalan
(100-140 mg/m2) and antithymocyte globulin (ATG; Flu/Mel/ATG)
(N 5 1), or fludarabine with cyclophosphamide (Cy) and low-dose
TBI 200 cGy (Flu/Cy/TBI) (N 5 3). Most of the patients received
matched related or unrelated peripheral blood stem cell grafts
(Table 2).

FISH

Retrospective chart review was performed to collect cytogenetic
and fluorescence in situ hybridization (FISH) information. Patients
with a standard metaphase karyotype analysis with at least 5 cells
were considered evaluable, although the majority had the usual
20; patients were categorized as to normal karyotype or by the
total number of abnormalities, with complex karyotype defined as 5
or more abnormalities. The choice of 5 abnormalities was based
on our recent Center for International Blood and Marrow Trans-
plant Research (CIBMTR) report23 as well as recent ERIC data.24

Patients with a FISH analysis were separately categorized as
to presence or absence of del(13q), del(11q), del(17p), and
trisomy 12.

Immunologic studies

The full description of immunologic studies is provided in supple-
mental Material.

Statistical analysis

Baseline characteristics were reported descriptively and compared
using the Fisher’s exact test, the x2 test, or the Wilcoxon rank-sum
test as appropriate. The primary end point was overall survival (OS)
and other end points of interest included progression-free survival
(PFS), relapse, and nonrelapse mortality (NRM). All time-to-event
end points were measured from stem cell infusion to death
(OS, NRM) or death or relapse (PFS, relapse). OS and PFS were
estimated using the Kaplan-Meier method; the log-rank test was
used for comparisons of Kaplan-Meier estimates. Cumulative
incidence curves for NRM and relapse were constructed in the
competing-risks framework considering relapse and NRM as
a competing event, respectively. The difference between cumulative
incidences in the presence of a competing risk was tested using the
Gray method.25 Univariable and multivariable Cox regression
analysis was performed to examine factors that are associated
with OS and PFS. For the multivariable model, high-risk features or
factors that were associated with P , .1 from univariable models
were included. Risk factors considered in regression analysis
included age, patient sex, patient and donor sex combination,
graft source, donor HLA type, RIC intensity, sirolimus use as graft-
versus-host disease (GVHD) prophylaxis, disease status at alloHCT,
patient-donor cytomegalovirus serostatus, HCT-comorbidity score,26

Richter transformation, number of prior therapies, white blood cell
count, percentage of bone marrow involvement, lactate dehydroge-
nase (LDH), immunoglobulin heavy chain variable region (IGHV)
mutation status, FISH, complex karyotype, and time from first CLL
therapy to alloHCT. Year of transplant correlated highly with type
of prior therapy (r5 0.78; P, .0001) and thus was not considered
in the Cox model to avoid a collinearity issue23 as this was
represented by the type of prior therapy. For the targeted therapy
cohort, duration of targeted therapies was also examined in
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univariable analysis. Prior to modeling, linearity assumption for
continuous variables, the proportional hazards assumption, and
significance of 2-way interaction terms were examined. For
selection of a best model, Akaike information criteria were used.27

Firth correction was applied to reduce the bias due to the limited
number of events.28,29 For comparison of laboratory parameters,
the Wilcoxon rank-sum test was used. Multiplicity was not
considered. All P values were 2-sided and the significance level
was set to .05. All analyses were performed using SAS 9.4 (SAS
Institute Inc, Cary, NC), and R version 3.6.1 (the CRAN project;
www.cran.r-project.org).

Results

Patients

The baseline characteristics of all patients are summarized in
Table 2. Thirty patients received targeted therapies prior and
subsequently underwent RIC alloHCT from 2013 to 2018 (targeted
therapy cohort). Twenty-eight of 30 patients had a prior history of
disease progression and/or refractoriness while receiving CIT prior
to receiving targeted therapy. Two patients who had received
a single prior therapy, ibrutinib, without a history of receiving CIT
before alloHCT underwent alloHCT due to high-risk features of
del(17p) and IGHV unmutated (Figure 1). Seventy-three percent of
patients were in partial remission at the time of alloHCT and 6
patients (20%) were in complete remission. The median number of
total prior therapies (combined CIT and targeted) was 4 (range,
1-9). The median duration of targeted therapy was 10.5 months
(range, 2.8-53.1) and the median time from first CLL therapy to
alloHCT was 39.5 months (range, 6.7-173.3). Nineteen (63%) had
received ibrutinib only, and 3 had received venetoclax only (10%),
mostly after failure of CIT; 8 (27%) had received multiple targeted
therapies prior to alloHCT (Figure 1; Table 2). Patients who
received multiple targeted therapies prior to alloHCT were more
recently transplanted. For a control cohort, 78 patients who
underwent alloHCT from 2010 to 2013 received CIT prior to
alloHCT. The median number of prior CIT was 3 (range, 1-10).
Baseline characteristics did not differ significantly between the 2
cohorts except for the RIC regimen, white blood cell count, year of
transplant, and frequency of del(17p). More patients in the targeted
therapy cohort had del(17p) and received Flu/Bu2 as the institute

gradually moved its practice from Flu/Bu1 to Flu/Bu2 in recent
years. In addition, day 30 total cell chimerism was similar between
the 2 cohorts: median chimerism was 97% (range, 51-100) vs 95%
(range, 59-100) for the targeted therapy and CIT, respectively
(P 5 .72).

Clinical outcome: targeted therapy cohort

The duration of prior targeted therapies, events of relapse, post-
HCT therapy, and duration of OS for all 30 patients are depicted in
Figure 1. The figure also depicts the high-risk features: del(17p),
complex karyotype (defined as $5 abnormalities22,23), Richter
transformation and IGHV-unmutated status, total number of prior
targeted and CIT therapies, HCT-comorbidity score, and disease
status at alloHCT; no association between the OS time and these
high-risk features (except 1 patient [subject 1]) was apparent.
Two long-term survivors (subjects 22 and 23) had 6 and 7 prior
therapies and relapsed after alloHCT; were rescued by post-HCT
therapy. Subject 22 received 6 prior therapies including ibrutinib,
CD19 CAR-T, second ibrutinib, and venetoclax prior to HCT, with
venetoclax for early post-HCT relapse, and is still alive at 41 months
after alloHCT. Subject 23 had Richter transformation; was treated
with 7 prior therapies including venetoclax prior to HCT; received
ibrutinib and rituximab, cyclophosphamide, doxorubicin, vincristine,
and prednisone (R-CHOP) post-HCT relapse; and died of infection
at 42 months after HCT.

Three patients had Richter transformation (subjects 11, 23, 29).
Two had partial remission (PR) and 1 had complete remission (CR)
at the time of alloHCT. Subject 11 had 5 prior therapies including
ibrutinib and R-CHOP and is still alive and relapse-free at 28 months
post-HCT. Subject 29 had 4 prior therapies and received R-CHOP
and donor lymphocyte infusion (DLI) for post-HCT relapse. This
patient is still alive at 56 months after alloHCT.

For the entire targeted cohort, the median follow-up among
survivors was 36 months (range, 10.3-72.3 months) and the
median OS and PFS were not reached (Figure 2). Overall, only 5 of
30 patients died and 1 patient relapsed prior to death. Four
additional patients relapsed without death. The 3-year OS was
87% (95% confidence interval [CI], 68%, 95%), 3-year PFS was
72% (95% CI, 52%, 85%), 3-year cumulative incidence of NRM
was 7% (95% CI, 1%, 19%), and 3-year cumulative incidence of
relapse was 21% (95% CI, 8%, 38%) (Table 3; Figure 2A-B).

To identify subsets of patients who benefit the most or the least
from alloHCT, we performed univariable Cox regression analysis
for OS for the patient and transplant characteristics listed in
Table 2. The only factor that was associated with increased risk
of death was the HCT-comorbidity score (hazard ratio [HR], 1.4;
95% CI, 1.03, 1.91; P 5 .032). Due to the small number of
events, multivariable analysis was not possible. HCT-comorbidity
score as a continuous variable was also the only significant
factor (HR, 1.26; 95% CI, 1.02, 1.57; P 5 .036) for PFS. No
effect of disease status was seen when comparing CR and PR
(supplemental Figure 3); relapse and induction failure at HCT
could not be properly assessed, with only 1 patient each. The 1
patient who was relapsed at HCT remains alive without disease
progression 40.2 months later, and the patient refractory to
idelalisib at HCT died at day 100 (subject 1). Neither FISH
abnormalities nor complex karyotype was significant in predicting
PFS or OS. Furthermore, exposure to multiple targeted therapies

Table 1. Reasons for receiving alloHCT after targeted therapies

n (%)

del(17p)* 22 (76)

No. of prior therapies $3 22 (73)

Complex karyotype ($5 abnormalities)* 12 (46)

IGHV unmutated* 15 (79)

Refractory to or relapsed after FCR prior to targeted therapy 4 (13)

Poor response to conventional chemotherapy 2 (7)

Poor response to targeted therapy 3 (10)

Richter transformation 3 (10)

FCR, fludarabine, cyclophosphamide, and rituximab.
*Missing data are excluded from the denominator in calculation of percentage. The

denominator is 29, 26, and 19 for del(17p), complex karyotype, and IGHV unmutated,
respectively.
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Table 2. Baseline characteristics

Prior therapy

All PTargeted CIT

Total, N 30 78 108

Age, median (range), y 60 (30-71) 59 (26-73) 59 (26-73) .36

Sex, n (%) .22

Male 25 (83.3) 55 (70.5) 80 (74.1)

Female 5 (16.7) 23 (29.5) 28 (25.9)

Patient-donor sex match, n (%) .13

Male ← Female 10 (33.3) 15 (19.2) 25 (23.1)

Disease status at HCT, n (%) .47

CR 6 (20) 21 (26.9) 27 (25)

PR 22 (73.3) 56 (71.8) 78 (72.2)

Relapse 1 (3.3) 1 (1.3) 2 (1.9)

Induction failure 1 (3.3) 1 (0.9)

ECOG PS, n (%) .16

0 5 (16.7) 18 (23.1) 23 (21.3)

1 18 (60) 51 (65.4) 69 (63.9)

2 7 (23.3) 9 (11.5) 16 (14.8)

Patient and donor CMV serostatus, n (%) .34

R2/D2 6 (20) 26 (33.3) 32 (29.6)

R2/D1 8 (26.7) 12 (15.4) 20 (18.5)

R1/D2 11 (36.7) 23 (29.5) 34 (31.5)

R1/D1 5 (16.7) 17 (21.8) 22 (20.4)

HCT-comorbidity score, n (%) .56

0 13 (43.3) 39 (50) 52 (48.1)

1 3 (10) 13 (16.7) 16 (14.8)

2 4 (13.3) 9 (11.5) 13 (12)

$3 10 (33.3) 17 (21.8) 23 (25)

No. of prior therapies .41

1, n (%) 2 (6.7) 9 (11.5) 11 (10.2)

2-3, n (%) 12 (40) 38 (48.7) 50 (46.3)

$4, n (%) 16 (53.3) 31 (39.7) 47 (43.5)

Median (range) 4 (1-9) 3 (1-10) 3 (1-10) .1

Time from first CLL tx to alloHCT, mo* .35

Median (range) 39.5 (6.7-173.3) 39.1 (4.2-151.6) 39.1 (4.2-151.6)

Targeted therapy prior to HCT, n (%) NA

Ibrutinib 19 (63.3) 20 (18.5)

Ibrutinib/idelalisib 1 (3.3) 2 (1.9)

Ibrutinib/venetoclax 5 (16.7) 4 (3.7)

Ibrutinib/CART19/ibrutinib2/venetoclax 1 (3.3) 1 (0.9)

Ibrutinib/idelalisib/ibrutinib2/venetoclax 1 (3.3)

Venetoclax 3 (10) 3 (2.8)

HLA type (at A, B, C, DRB1), n (%) .1

8/8 MRD 10 (33.3) 19 (24.4) 29 (26.9)

8/8 MUD 13 (43.3) 50 (64.1) 63 (58.3)

7/8 MUD 7 (23.3) 6 (7.7) 13 (12)

BM, bone marrow; Bu1, busulfan 3.2 mg/kg; Bu2, busulfan 6.4 mg/kg; CMV, cytomegalovirus; CR, complete remission; D, donor; ECOG PS, Eastern Cooperative Oncology Group
performance status; Flu, fludarabine; IQR, interquartile range; LDH, lactate dehydrogenase; MRD, matched related donor; MTX, methotrexate; MUD, matched unrelated donor; NA, not applicable;
PBSC, peripheral blood stem cell; PR, partial remission; R, recipient; Sir, sirolimus; Targeted, prior targeted therapy; tx, treatment; UNK, unknown; WBC, white blood cell.
*Four patients have missing date of the first CLL treatment in the CIT group.
†Due to a high number of missing data, P value is not provided.
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Table 2. (continued)

Prior therapy

All PTargeted CIT

5/8 MRD 1 (1.3) 1 (0.9)

5/8 MUD 2 (2.6) 2 (1.9)

Cell source, n (%) .7

BM 2 (2.6) 2 (1.9)

PBSC 30 (100) 74 (94.9) 104 (96.3)

Double cord 2 (2.6) 2 (1.9)

GVHD prophylaxis, n (%) .14

Calcineurin inhibitor/Sir/MTX 22 (73.3) 43 (55.1) 65 (60.2)

Calcineurin inhibitor/MTX 3 (10) 21 (26.9) 24 (22.2)

Other 5 (16.7) 14 (18.0) 19 (17.6)

RIC regimen, n (%) .009

Flu/Bu1 7 (23.3) 48 (61.5) 55 (50.9)

Flu/Bu2 21 (70) 27 (34.6) 48 (44.4)

Other 2 (6.7) 3 (3.8) 5 (4.6)

WBC count, 310
9/L .001

,2, n (%) 2 (6.7) 18 (23.1) 20 (18.5)

2-10, n (%) 21 (70) 57 (73.1) 78 (72.2)

.10, n (%) 7 (23.3) 3 (3.8) 10 (9.3)

Median (IQR) 4.6 (3.3-8.8) 3.3 (2.1-4.7) 3.7 (2.2-5.5) .002

% BM involvement .22

Median (IQR) 5 (5-15) 5 (5-10) 5 (5-14)

UNK, n 1 9 10

LDH

Median (IQR) 164 (150-209) 196 (155-230) 187 (153-228) .08

High LDH, .225, n (%) 6 (20.7) 23 (32.4) 29 (29) .33

UNK, n 1 7 8

IGHV mutation status† —

Unmutated, n (%) 15 (78.9) 26 (76.5) 41 (77.4)

Mutated, n (%) 4 (21.1) 8 (23.5) 12 (22.6)

UNK, n 11 44 55

Richter transformation, n (%) .4

No 27 (90) 74 (94.9) 101 (93.5)

Yes 3 (10) 4 (5.1) 7 (6.5)

Year HCT, n (%) ,.001

2010-2012 53 (68) 53 (49.1)

2013-2014 7 (23.3) 25 (32.1) 32 (29.6)

2015-2018 23 (76.7) 23 (21.3)

Del17p .025

No, n (%) 7 (24.1) 36 (50.7) 43 (43)

Yes, n (%) 22 (75.9) 35 (49.3) 57 (57)

UNK, n 1 7 8

Complex karyotype: ‡5 abnormalities .22

No, n (%) 14 (53.8) 39 (69.6) 53 (64.6)

Yes, n (%) 12 (46.2) 17 (30.4) 29 (35.4)

UNK, n 4 22 26

BM, bone marrow; Bu1, busulfan 3.2 mg/kg; Bu2, busulfan 6.4 mg/kg; CMV, cytomegalovirus; CR, complete remission; D, donor; ECOG PS, Eastern Cooperative Oncology Group
performance status; Flu, fludarabine; IQR, interquartile range; LDH, lactate dehydrogenase; MRD, matched related donor; MTX, methotrexate; MUD, matched unrelated donor; NA, not
applicable; PBSC, peripheral blood stem cell; PR, partial remission; R, recipient; Sir, sirolimus; Targeted, prior targeted therapy; tx, treatment; UNK, unknown; WBC, white blood cell.
*Four patients have missing date of the first CLL treatment in the CIT group.
†Due to a high number of missing data, P value is not provided.
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prior to alloHCT, type of targeted therapy, duration of targeted
therapy, or time from first CLL therapy to alloHCT did not affect
OS or PFS.

Comparison between the targeted and

chemoimmunotherapy cohorts

We then compared alloHCT outcome between the targeted
therapy cohort and the control cohort. The outcome for each
cohort and both cohorts combined (N 5 108) is presented in
Table 3 and Figure 2. For both cohorts combined, the 3-year OS
and PFS were 73% and 61%, respectively; 3-year cumulative
incidence of NRM and relapse was 14% and 24%, respectively; 6-
month grade III-IV acute GVHD was 9%, and the 1-year cumulative
incidence of chronic GVHD was 48%. Although most outcomes
trended better in the targeted therapy cohort, none were statistically
superior to the control cohort in this univariable analysis: 3-year OS,
87% vs 69%, respectively (P5 .22); 3-year PFS, 72% vs 58% (P5
.3); cumulative incidence of NRM at 3 years, 7% vs 17% (P 5 .2);
and 3-year relapse, 21% vs 26% (P5 .88). No difference was seen
in acute or chronic GVHD either; 6-month grade III-IV acute GVHD
was 13% vs 7.7% (P5 .5) and 1-year chronic GVHD 57% vs 45%
(P 5 .47).

In a multivariable Cox model for both cohorts combined, the HR for
the targeted therapy cohort relative to the control cohort was 0.35
(95% CI, 0.13, 0.97; P 5 .043) for OS and 0.47 (95% CI, 0.22,
1.03; P 5 .06) for PFS. Other factors that were significant in OS
were nonbusulfan-based conditioning regimen (HR, 5.1; 95% CI,
1.14, 22.8; P 5 .033) and Richter transformation (HR, 3.62; 95%
CI, 1.01, 12.9; P 5 .048). Factors that were associated with PFS
included male recipient with female donor (HR, 2.28; P 5 .02),

HCT-comorbidity score (HR, 1.17; P 5 .036), nonbusulfan-based
conditioning regimen (HR, 4.22; P 5 .045), and Richter trans-
formation (HR, 3.97; P 5 .005). Busulfan dose (Flu/Bu1 vs Flu/
Bu2) was not significantly associated with OS and PFS (supple-
mental Table 2).

Post-HCT therapy

Of 108 patients, 23 patients received post-HCT therapy for
posttransplant relapse including 1 impending relapse: 6 (20%) in
the targeted therapy cohort and 17 (22%) in the control cohort. The
post-HCT therapies included ibrutinib alone (N 5 9), ibrutinib with
other therapies (N 5 3), alemtuzumab plus or minus high-dose
methylprednisolone (N5 2), radiation (N5 2), DLI plus CIT (N5 1),
and rituximab plus or minus other (N 5 2). Two of 6 patients who
received post-HCT therapy in the targeted therapy cohort had
Richter transformation (subjects 23, 29); 1 received ibrutinib plus
R-CHOP and the other received R-CHOP and then DLI. Detailed
information on post-HCT therapy is listed in supplemental Table 3.
For these 23 patients, the median OS from the initiation of post-HCT
therapy has not been reached and the 3-year OS was 61%
(95% CI, 37%, 79%). In the targeted cohort, 5 patients who
received post-HCT therapy are still alive and 1 died of disease after
19.3 months of the post-HCT therapy.

Immunologic correlates

Immunophenotypic analysis by flow cytometry was performed
prospectively at defined intervals posttransplant using whole blood.
Compared with patients with prior CIT, patients with prior targeted
therapy had a higher lymphocyte count (P5 .03), circulating CD31

cells (P 5 .006), CD41 cells (P 5 .002), and normal B cells
(CD191CD52) (P 5 .001) at 1 month post-alloHCT (Figure 3A).
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Figure 1. High-risk features, duration of targeted therapy prior to allogeneic HCT, and time to event. (A) Duration of each targeted therapy is denoted in pink

(ibrutinib), green (CD19 CAR-T), dark blue (idelalisib), and light blue (venetoclax). Of note, time between targeted therapies is not reflected in the duration of targeted therapy.

In the center, boxes in red indicate subjects with IGHV unmutated (UM), del(17p), complex abnormalities ($5), or Richter transformation. Boxes in blue indicate no mutation or

no Richter transformation. Boxes in gray indicate missing information. Tot no. of prior tx denotes the total number of targeted and chemoimmunotherapies received prior to

alloHCT. No. of CIT denotes the total number of chemoimmunotherapies prior to targeted therapy. Disease status denotes complete remission (C), partial remission (P),

relapse (R), or induction failure (I) at alloHCT. (B) The blue horizontal bars indicate time to death or last seen alive with the indication of relapse and post-HCT therapy.

4118 KIM et al 8 SEPTEMBER 2020 x VOLUME 4, NUMBER 17



Patients with prior targeted therapy had a higher fraction of CD4
conventional T cells (CD4Tcons) relative to CD4 regulatory T cells
(CD41Tregs), which led to a significantly lower CD4Treg/CD4Tcon
ratio during the first 6 months after alloHCT (P 5 .003, .02, .004,
.016 at 1, 2, 3, 6 months post-alloHCT, respectively; Figure 3B). In
addition, within the CD4Tregs, patients with targeted therapy had

a smaller fraction of central memory (CM) cells at 3 and 18 months
(P 5 .025 and .04, respectively) and naive cells at 1, 2, and
6 months (P5 .008, .026, .03, respectively), but a higher fraction of
effector memory (EM) cells at 3 and 6 months (P 5 .01 and .02,
respectively) and terminally differentiated (TD) cells (P 5 .018 at 2
months, P , .001 at 3, 6, 9, 12, 18 months). Similarly, within
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Figure 2. Kaplan-Meier and cumulative incidence curves. OS (A), PFS (B), cumulative incidence of NRM (C), and cumulative incidence of relapse (D) according to the

type of prior therapy before alloHCT.

Table 3. Summary of outcome

All, % (95% CI) Targeted therapy, % (95% CI) Chemoimmunotherapy, % (95% CI) P

3-y OS 73 (64, 80) 87 (68, 95) 69 (58, 78) .22

3-y PFS 61 (51, 70) 72 (52, 85) 58 (46, 68) .3

3-y NRM 14 (8, 21) 7 (1, 19) 17 (9, 26) .2

3-y relapse 24 (17, 33) 21 (8, 38) 26 (17, 36) .88

6-mo grade III-IV acute GVHD 9 (5, 16) 13 (4, 28) 7.7 (3, 15) .5

1-y chronic GVHD 48 (38, 57) 57 (37, 73) 45 (34, 56) .47
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CD4Tcons, patients with targeted therapy had a smaller fraction
of CM cells at 1, 2, 6, and 9 months (P 5 .003, .02, .006, .03,
respectively) and naive cells at 1 month (P 5 .03), but a higher
fraction of EM cells at 3 and 6 months (P 5 .009 and .03,
respectively) and TD cells at all time points (P , .01 at 1, 2, 3, 6, 9,
12, 18 months and P5 .048 at 24 months; Figure 3C). Furthermore,
B-cell reconstitution was significantly faster in the targeted therapy
cohort compared with the control cohort (P 5 .001, .03, .003, .005,
.05 at 1, 2, 3, 6, 9 months; Figure 3D). The majority of B cells were
antigen-naive B cells (CD191CD52272) and the number of
circulating antigen-naive B cells was significantly higher in the
targeted therapy compared with the control cohort at 1, 3, and
6 months (P5 .006, .06, .03, .009 at 1, 2, 3, 6 months, respectively).
To rule out the impact of conditioning intensity on immune
reconstitution, the analysis was repeated for patients who received
Flu/Bu2 only and the result was consistent (supplemental Figure 4).

Discussion

Allogeneic transplant outcomes have been continuously and
steadily improving over the past 40 years due to advances in donor
source, conditioning regimen, high-resolution HLA typing, GVHD
prophylaxis, and supportive care.5,6 Consistent with this observa-
tion, we report a very favorable outcome for previously treated high-
risk CLL patients who underwent RIC HCT in recent years. The
outcome for patients who received targeted therapy after failure of
CIT prior to alloHCT was excellent (3-year OS and PFS, 87% and
72%, respectively) despite the fact that these patients had already
failed multiple targeted and/or CIT and transplant was offered in
most cases as a last resort. With use of RIC, the NRM rate (7%)
was low without overt increase of relapse (21%). This outcome
reported in the current study compares favorably to previously
published outcomes in high-risk CLL. To explore the feasibility of the
ERIC/EBMT transplant algorithm, in Hoffman et al,17 a small group
of patients was categorized into a low- and a high-transplant-risk
group; the 2-year OS and PFS were 95% and 68%, respectively, in
the low-transplant-risk group and 65% and 56%, respectively, in the
high-transplant-risk group.17 The low-transplant-risk group was
defined as patients with age #65 years, del(17p), and/or TP53
abnormalities, failed CIT but responding to first targeted therapy, no
comorbidity, and well-matched donor. According to this definition, 5
patients in our targeted cohort fell into the low-transplant-risk group
and the 3-year OS and PFS were 100% and 80%, respectively; the
3-year OS and PFS in the high-transplant-risk group were 84% and
71%, respectively. In another small study for pretransplant ibrutinib-
sensitive high-risk patients, Dreger et al reported 1-year PFS of
65%.16 There have also been a few CD19-directed CAR–T-cell
studies in relapsed/refractory CLL. In Porter et al,18 14 patients with
relapsed/refractory CLL were treated with CD19-CAR-T and the
18-month OS and PFS was 71% and 28.6%, respectively. In the
subsequent long-term follow-up study with more patients en-
rolled,19 Frey et al reported 3-year OS and PFS of 62% and 26%,
respectively. In a pilot study to assess concurrent administration of
ibrutinib with CAR-T in relapsed/refractory CLL (N 5 18), Gauthier
et al reported 1-year OS and PFS of 64% and 38%, respectively,
for concurrent ibrutinib plus CAR-T and 61% and 50%, respectively,
for CAR-T alone.20,21 In anti-CD19 CAR–NK-cell therapy, 5 patients
with relapsed/refractory CLL received CAR–NK-cell therapy.22

Of these 5, 4 patients received postremission therapy between 1
and 9 months of the infusion, thus making it impossible to

determine the duration of response. One patient did not achieve
remission and received alloHCT at 6 months of infusion and
remained disease-free.

Our data suggest that, for patients treated with targeted therapy,
high-risk features such as del(17p) or complex karyotype ($5
abnormalities) or depth of remission at the time of alloHCT (CR vs
PR) did not significantly impact alloHCT outcome, although confirma-
tion of this observation warrants a larger study. On the other hand,
HCT-comorbidity score showed a weak correlation with the outcome
as 1 patient with comorbidity score 8 is still alive and another patient
with comorbidity score 6 survived for 42 months, indicating that HCT
can still benefit patients with a high comorbidity score if disease is
reasonably controlled, although in general a lower HCT-comorbidity
score is more optimal.

When we examined whether there was a shift in baseline character-
istics in recent years, we noted that patients in both cohorts were
heavily pretreated with high-risk CLL and the targeted cohort had even
more patients with del(17p). This is not surprising, as targeted
therapies can result in long-term remission in lower-risk patients. In
contrast, the prognosis of high-risk patients [eg, del(17p)] treated with
a first targeted therapy after CIT failure remains poor, with a higher
likelihood of transforming to Richter syndrome.7,8 For this reason,
along with our prior experience and other reports,7,23,30 we believe
that disease control at the time of alloHCT is of paramount importance
for the success of alloHCT. Thus, until prospectively proven otherwise,
our current practice is to offer alloHCT to previously treated CLL
patients with del(17p) or $5 cytogenetic abnormalities on karyotype,
or Richter transformation, while their disease is reasonably controlled,
typically on a second targeted therapy, as these patients are likely to
relapse relatively early on targeted therapy.7,31 In regard to age, due
to the favorable tolerability of RIC, we offer alloHCT to patients up to
75 years of age.

Our immune correlative analyses provide some insights into the effect
of targeted therapy on immune reconstitution. We found that patients
who received prior targeted therapy had significantly higher
circulating T-cell counts early after alloHCT and a significantly lower
CD4Treg/CD4Tcon ratio up to 6 months after alloHCT compared
with those who received prior CIT. This result was consistent when
we limited to patients receiving Flu/Bu2 only. In our previous phase 3
study of administering ATG prior to stem cell infusion, we found that
all T cells were substantially suppressed early after alloHCT in the
ATG arm compared with the placebo arm.32 This result suggests that
the prior regimen profoundly affects the post-HCT immune re-
constitution. We also found that B-cell reconstitution is faster in the
targeted therapy cohort compared with the control cohort. This is
possibly due to the relatively nonimmunosuppressive nature of
targeted therapy compared with CIT. Although many studies
including our own33-36 have reported a positive correlation between
lymphocyte reconstitution and clinical outcome, whether this robust
lymphocyte reconstitution is associated with fewer infections and/or
a stronger graft-versus-leukemia effect warrants further investigation.

Our study is subject to all the inherent limitations of a single-center
retrospective review with a relatively small number of patients who
underwent alloHCT in the era of targeted therapy. Because all
patients who underwent alloHCT in recent years received prior
targeted therapy, whether the excellent outcome seen in the
targeted cohort is due to advances in alloHCT5,6 (including a more
intensive conditioning regimen) or due to the prior targeted therapy
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or both is unclear. To gain some insights into this question, we
examined OS for all of our patients with lymphoid malignancies who
received RIC HCT from 2010 and 2018 (N 5 579) at our institute
and found that the improvement was incremental: the 2-year OS
67% from 2010 to 2012, 74% from 2013 to 2015, and 79% after
2016. Therefore, it is likely that both improvements in alloHCT
management in recent years and rapid immune reconstitution
contribute to the excellent outcome seen in the targeted therapy
cohort.

In summary, in the midst of the emergence of targeted therapies,
alloHCT has made steady progress in improving outcomes. Disease
clearance by graft-versus-leukemia after alloHCT is known to be
durable and effective across all genetically defined high-risk
subsets14 and this is again supported by our study. As many high-
risk patients who are treated with targeted therapy will eventually
progress or discontinue the therapy due to toxicity, an integrative
approach of transplant and targeted therapy, that is, inducing
remission in high-risk patients with targeted therapy, offering
alloHCT during remission, and potentially reinstating targeted
therapy for consolidation post-HCT or post-HCT relapse, might
enhance the clinical outcome of these patients.16,23
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